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ATM signaling modulates cohesin behavior 
in meiotic prophase and proliferating cells

Zhouliang Yu    1,2,3,4, Hyung Jun Kim1 & Abby F. Dernburg    1,2,3,4 

Cohesins are ancient and ubiquitous regulators of chromosome 
architecture and function, but their diverse roles and regulation remain 
poorly understood. During meiosis, chromosomes are reorganized as linear 
arrays of chromatin loops around a cohesin axis. This unique organization 
underlies homolog pairing, synapsis, double-stranded break induction, 
and recombination. We report that axis assembly in Caenorhabditis elegans 
is promoted by DNA-damage response (DDR) kinases that are activated at 
meiotic entry, even in the absence of DNA breaks. Downregulation of the 
cohesin-destabilizing factor WAPL-1 by ATM-1 promotes axis association of 
cohesins containing the meiotic kleisins COH-3 and COH-4. ECO-1 and PDS-5 
also contribute to stabilizing axis-associated meiotic cohesins. Further, our 
data suggest that cohesin-enriched domains that promote DNA repair in 
mammalian cells also depend on WAPL inhibition by ATM. Thus, DDR and 
Wapl seem to play conserved roles in cohesin regulation in meiotic prophase 
and proliferating cells.

Three-dimensional chromosome architecture is strongly influenced 
by cohesins. The core cohesin complex comprises four proteins: a 
heterodimer of two large ATPases, the structural maintenance of chro-
mosomes (SMC) proteins Smc1 and Smc3; a HEAT repeat protein known 
as sister chromatid cohesion 3/stromal antigen (Scc3/SA/Stag); and 
an alpha-kleisin protein. Cohesins are related to condensins and the 
SMC5/6 complex, and homologous SMC complexes are found across 
all domains of life1,2.

Cohesin binding during DNA replication establishes sister chro-
matid cohesion, which is required for accurate chromosome segrega-
tion during mitosis and meiosis. Cohesins are also molecular motors 
that move along chromatin, forming loops that govern chromosome 
topology. They contribute to transcriptional regulation, chromosome 
condensation, and repair of DNA damage. The diverse chromosome 
architectures observed in different cell types are presumed to be modu-
lated by cohesin subunits and additional regulatory factors, but how 
these factors collaborate to shape chromosomes in distinct contexts 
remains mysterious.

Sexually reproducing organisms produce haploid gametes 
through the specialized cell-division process of meiosis. During meiotic 

prophase, homologous chromosomes pair and undergo synapsis 
to enable recombination and crossover formation, which underlie 
reductional chromosome segregation and genetic variation3–5. In 
early meiosis, replicated chromosomes become highly elongated as 
cohesins reorganize to form a linear chromosome ‘axis.’6 Axis morpho-
genesis is a prerequisite for the induction of meiotic double-strand 
breaks (DSBs), homologous chromosome pairing, synapsis, and DSB 
repair7–13. Meiotic cohesins also recruit additional axis proteins that 
influence and monitor synapsis and recombination and regulate cell 
cycle progression8,10,14–17.

Remodeling of meiotic chromosomes to form an axis-loop struc-
ture is thought to be driven in part by expression of meiosis-specific 
cohesin subunits. All eukaryotes studied to date express one or more 
meiosis-specific kleisins, and some also have meiosis-specific SMC 
and/or Scc3/Stag isoforms10,13,18. However, it is largely unknown how the 
activities of meiotic cohesins differ from those in other cells, except 
that the Rec8 kleisin can be selectively protected from cleavage to keep 
sister chromatids together during the first meiotic division.

Less attention has been paid to meiotic roles or regulation of fac-
tors that modulate the loading, unloading, and dynamics of cohesins 
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intact animals expressing green fluorescent protein (GFP)-tagged 
WAPL-1 (ref. 32), suggesting that WAPL-1 probably dissociates from 
chromosomes, rather than being degraded in early meiosis.

WAPL-1 reaccumulates in oocyte nuclei during later stages of 
meiotic prophase and contributes to removing COH-3/4 cohesin from 
the axes as chromosomes condense during diplotene and diakinesis31. 
However, this role is nonessential; wapl-1-null mutants are viable and 
fertile, with normal meiotic segregation, as indicated by a low produc-
tion of male progeny, which arise through X chromosome nondisjunc-
tion and are diagnostic for meiotic errors31,32, in broods of self-fertilizing 
hermaphrodites. They do show hallmarks of reduced mitotic fidelity, 
including some embryonic and larval lethality and low-penetrance 
egg-laying and locomotion defects32.

We found that loss of WAPL-1 from chromatin at meiotic entry 
requires the essential meiotic kinase CHK-2 (Fig. 1a). Either chk-2 
loss-of-function mutations or auxin-induced degradation of CHK-2 
resulted in persistence of WAPL-1 on meiotic chromosomes (Fig. 1b,d). 
Loss of CHK-2 does not abolish axis assembly or recruitment of the 
HORMA domain protein HTP-3 (Fig. 1c). However, the abundance of 
COH-3 was greatly reduced following CHK-2 depletion (Fig. 1e,f), in 
accordance with prior evidence that WAPL-1 preferentially releases 
COH-3/4-containing cohesins from meiotic chromosomes during late 
prophase31. Co-depletion of WAPL-1 and CHK-2 fully restored COH-3/4 
to wild-type levels (Fig. 1e,f). Interestingly, we also observed a marked 
increase in REC-8 intensity following this co-depletion (Fig. 1e,g), 
similar to observations in wapl-1 mutants34.

WAPL-1 contains four consensus phosphorylation sites for CHK-2 
(R-X-X-S/T). However, mutation of all four potential sites to nonphos-
phorylatable residues (wapl-14SA) did not affect the localization of 
WAPL-1 in proliferating or meiotic nuclei (Extended Data Fig. 1a–d). 
Thus, we considered the possibility that regulation of WAPL-1 by CHK-2 
might be indirect. We tested whether WAPL-1 downregulation requires 
the formation of meiotic DSBs, synapsis, and/or homologous pairing, 
three distinct meiotic events that depend on CHK-2 activity in early 
prophase17,35,36. Loss-of-function mutations32 or auxin-induced deple-
tion of SPO-11, which is essential for meiotic DSBs, did not alter WAPL-1 
localization, indicating that WAPL-1 downregulation is independent of 
DSBs (Extended Data Fig. 1e–g). WAPL-1 localization was also unaffected 
when we depleted SYP-3, an essential component of the synaptonemal 
complex (SC), although chromosome synapsis was disrupted, confirm-
ing that depletion was effective (Extended Data Fig. 1e–g)37,38. Similarly, 
WAPL-1 localization was unaffected by co-depletion of PLK-1 and PLK-2, 
two orthologs of mammalian PLK1 that play partially overlapping roles 
in chromosome pairing and synapsis during early prophase32,39,40.

Previous studies in mammalian cells have shown that ATM pro-
motes genome-wide enhancement of cohesin binding in response 
to ionizing radiation (IR)-induced DNA damage41. DDR signaling also 
governs localized cohesin binding at DNA-damage loci in budding yeast 
and mammalian cells42–45. Moreover, WAPL has been identified as a tar-
get of ATM and ATR in Arabidopsis46. We found that depletion of ATM-1 

on chromatin. These include the ‘loading’ complex Scc2–Scc4, the 
acetyltransferase Eco1/Ctf7, the ‘release factor’ Wapl, and Pds5. 
Wapl destabilizes cohesin binding to chromosomes by a mechanism 
that is independent of kleisin cleavage. This activity is inhibited by 
Eco1-mediated acetylation of Smc3 but is promoted in some contexts 
by Pds5 (refs. 19–27).

Here, we investigate the mechanism of chromosome remodeling 
during the early meiotic (EM) prophase in C. elegans. This nematode 
expresses two types of meiotic kleisins: REC-8 and COH-3 and COH-4 
(COH-3/4). COH-3/4 are closely related paralogs with overlapping roles 
and are thus regarded as a single type of kleisin12. REC-8 and COH-3/4 
are essential for homolog pairing and synapsis but have distinct roles 
(Fig. 1a). REC-8 is expressed in premeiotic (PM) germ cells and is thus 
present during DNA replication12; REC-8 cohesins mediate sister chro-
matid cohesion (SCC) that prevents inter-sister recombination and 
synapsis28. COH-3/4 are expressed only after replication; these com-
plexes likely create chromatin loops that emanate from the axis and are 
more abundant than REC-8 cohesins12,15,28,29. No other meiosis-specific 
cohesin proteins have been identified in C. elegans. During most of 
meiotic prophase, cohesin complexes containing REC-8 and COH-3/4 
localize along the length of chromosome axes. Following crossover 
designation at mid-pachytene, the two types of cohesins become 
enriched on reciprocal ‘arms’ of the bivalent to mediate two sequential 
rounds of segregation12,30.

Wapl/Rad61 is a widely conserved cohesin regulator that was 
identified in screens for radiation sensitivity in budding yeast and 
mitotic defects in Drosophila. Its best-known role is promoting the 
release of ‘arm’ cohesion during mitotic prophase. Here, we show that 
C. elegans WAPL-1 is downregulated by ATM-1 (ataxia telangiectasia 
mutated, ATM) at meiotic entry. This inhibition promotes or stabi-
lizes COH-3/4 binding along chromosome axes. Surprisingly, we find 
that ATM-1 is activated at meiotic entry by the CHK-2 (Chk2) kinase, 
which, together with ECO-1 (Eco1) and PDS-5 (Pds5), preferentially 
protects cohesin complexes containing REC-8 from the effects of 
WAPL-1. Together, these findings reveal that constitutive activation of 
DDR kinases at meiotic entry reshapes the genome through cohesins 
to promote interhomolog interactions and meiotic recombination. 
Finally, we extend our observations to show that inhibition of WAPL 
by ATM promotes cohesin enrichment at sites of DNA damage in pro-
liferating human cells.

Results
CHK-2 leads to downregulation of WAPL-1 at meiotic entry
Immunolocalization of C. elegans WAPL-1 (Wapl) reveals diffuse nuclear 
localization in most tissues, including the germline. Its localization to 
chromatin drops abruptly at meiotic entry31,32. We were intrigued by 
this finding because depletion of WAPL from mammalian cells during 
interphase can lead to formation of ‘vermicelli,’ linear cohesin chromo-
some cores that resemble meiotic chromosome axes33. This reduction 
was more pronounced in dissected, immunostained gonads than in 

Fig. 1 | CHK-2 is required for downregulation of WAPL-1 at meiotic entry. 
a, Diagram of a C. elegans gonad containing proliferating germline stem cells 
and meiotic nuclei. The dashed line between red and blue nuclei indicates 
the boundary between PM and EM cells. Important meiotic events and the 
behaviors of REC-8 and COH-3/4 cohesins in each stage are shown. b, WAPL-1 
immunostaining in the distal tip region of gonads, showing the persistence 
of WAPL-1 on meiotic chromosomes following CHK-2 depletion. Here and 
elsewhere, ‘controlAID’ indicates treatment of a negative control strain with 
auxin in parallel with the experimental strain(s). The control strain is isogenic 
except that it lacks any degron-tagged genes, that is, it contains the same 
TIR1 transgene as the experimental strain(s). Red and blue rectangles outline 
regions containing PM germline stem cell and EM nuclei, respectively, which 
are enlarged in c. Scale bar, 10 µM. Meiotic nuclei but not PM nuclei display 
chromosomes marked by the HORMA domain protein HTP-3 (magenta). In the 

merged images, WAPL-1 (W) is shown in green and HTP-3 (H) is shown in magenta. 
Scale bar, 2 µM. d, Quantification of WAPL-1 immunostaining in b. Lower and 
upper box ends represent the first and third quartiles, with the median indicated 
by the horizontal line within the box. All data points are shown, and the sample 
sizes are indicated. ****P < 0.0001 (two-sided Wilcoxon–Mann–Whitney test, 
adjusted by Bonferroni correction). a.u., arbitrary units. e, COH-3/4 and REC-8 
immunolocalization (in green) in early pachytene nuclei, showing that WAPL-1 
negatively regulates axial COH-3/4, but not REC-8, upon CHK-2 depletion. 
Scale bar, 2 µM. f,g, Quantification of the intensity of COH-3/4 and REC-8 
immunostaining in auxin-treated animals of the indicated genotypes. e. Lower 
and upper box ends represent the first and third quartiles, with the median 
indicated by the horizontal line within the box. All data points are shown, and the 
sample sizes are indicated. ****P < 0.0001 (two-sided Wilcoxon–Mann–Whitney 
test, adjusted by Bonferroni correction). See ‘Data presentation’ for more details.
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(ATM) in the C. elegans germline abolished WAPL-1 downregulation, 
whereas depletion of ATL-1 (ATR) had no effect on WAPL-1. Importantly, 
ATL-1 depletion phenocopied the effects of an atl-1-null mutation on 

the size and number of germline nuclei (Fig. 2b–d and Extended Data 
Fig. 2g)47. Alignment of WAPL-1 homologs also revealed a small but 
conserved cluster of S/T-Q residues (Fig. 2a). S/T-Q cluster domains 
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Fig. 2 | WAPL-1 suppression depends on ATM-1 and a small target domain 
(mini-SCD). a, Diagram illustrating the domain architecture of C. elegans 
WAPL-1. The N-terminal mini-SCD identified in this study and the two putative 
phosphorylation sites are shown. Partial alignment of amino acid sequences of 
corresponding regions of Wapl orthologs show conservation of this mini-SCD 
across species (C.e., Caenorhabditis elegans; D.m., Drosophila melanogaster; 
D.r., Danio rerio; M.m., Mus musculus; H.s., Homo sapiens). SQs and TQs are 
highlighted and outlined. b,e, WAPL-1 immunostaining in the distal tip of 
gonads, showing that ATM-1 and WAPL-1 mini-SCDs are essential for WAPL-1 

downregulation at meiotic entry. Scale bars, 10 µM. c,f, Enlarged images showing 
WAPL-1 immunostaining (in green) in PM nuclei and EM nuclei from b and  
e. HTP-3 is recruited to axes at meiotic entry. Scale bar, 2 µM. d,g, Quantification 
of the intensity of WAPL-1 immunostaining in b and e. Lower and upper box 
ends represent the first and third quartiles, with the median indicated as the 
horizontal line within the box. All data points are shown, and the sample sizes are 
indicated. ****P < 0.0001 (two-sided Wilcoxon–Mann–Whitney test, adjusted by 
Bonferroni correction).
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(SCDs), defined as segments of 100 or fewer amino acids containing 3 
or more S/T-Q motifs, are found in many substrates of ATM or ATR48. 
Although the two SQ motifs in C. elegans WAPL-1 do not meet this strict 

definition of an SCD, we tested the function of this putative mini-SCD 
by replacing the serines with nonphosphorylatable (wapl-12A) or phos-
phomimetic (wapl-12D) amino acids (Fig. 2a). WAPL-12A showed defective 
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CHK2 orthologs is shown below the schematic, with all S/TQs highlighted.  
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ZIM, or pH/Z), showing that CHK-2 activity is independent of ATM-1 and ATL-1. 
DAPI-stained DNA highlights meiotic nuclei. Scale bar, 2 µM. c, Quantification 
of pHIM-8/ZIM immunostaining in b. Lower and upper box ends represent the 
first and third quartiles, with the median indicated by the horizontal line within 

the box. All data points are shown, and the sample sizes indicated. ****P < 0.0001 
(two-sided Wilcoxon–Mann–Whitney test, adjusted by Bonferroni correction). 
d, pS/TQ immunostaining (in green) of EM nuclei (left) or mid-pachytene nuclei 
(right) under the indicated conditions, showing that ATM-1 activity depends  
on CHK-2. SYP-1 immunostaining (in magenta) shows the SC. Scale bar, 2 µM.  
e, Quantification of the intensity of pS/TQ immunostaining in d. Lower and upper 
box ends represent the first and third quartiles, with the median indicated by the 
horizontal line within the box. All data points are shown with the sample sizes 
indicated. ****P < 0.0001 (two-sided Wilcoxon–Mann–Whitney test, adjusted by 
Bonferroni correction).
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downregulation (Fig. 2e), despite the activity of CHK-2 (Extended Data 
Fig. 2a–c) and ATM-1 (Extended Data Fig. 2d–f). By contrast, phospho-
mimetic WAPL-12D was reduced on chromatin both before and after 
meiotic entry (Fig. 2e). Localization of WAPL-12D was not restored by 
depletion of CHK-2 or ATM-1 (Fig. 2e–g). These results support the 
idea that ATM-1 inhibits the association of WAPL-1 with chromatin at 
meiotic entry by phosphorylating these SQ motifs.

CHK-2 positively regulates ATM-1 activity
In the canonical DDR pathway in mammalian cells, CHK2 is an essen-
tial downstream transducer of ATM activity49,50. However, previous 
studies have found that C. elegans CHK-2 is dispensable for check-
point activation in response to hydroxyurea and ionizing radiation in 
embryos and the adult germline, and is essential only for meiosis35,36. 
Like other meiosis-specific CHK2 orthologs, C. elegans CHK-2 lacks the 
amino-terminal SCD that mediates activation by ATM (Fig. 3a). Addi-
tionally, CHK-2-dependent phosphorylation of the nuclear envelope 
protein SUN-1 was observed in the absence of ATM-1 and ATL-1 (ref. 51). 
We further found that pairing center proteins HIM-8 and ZIM-1, ZIM-2, 
and ZIM-3, which are direct targets of CHK-2 (ref. 17), were phospho-
rylated when we depleted ATM-1, ATL-1, or both proteins (Fig. 3b,c), 
confirming that CHK-2 activity is independent of ATM-1 and ATL-1.

Since WAPL-1 persists on chromatin following depletion of either 
CHK-2 or ATM-1, we tested whether ATM-1 activity might depend on 
CHK-2. The intensity of immunostaining using an antibody against 
phosphorylated SQ/TQ (pS/TQ)52, which recognizes ATM/ATR sub-
strates, was greatly reduced in meiotic nuclei following depletion of 
either CHK-2 or ATM-1 (Fig. 3d).

Formation of meiotic DSBs in C. elegans requires CHK-2 
 (refs. 35,53,54). We tested whether ATM-1 activity depends on DSBs by 
depleting the SPO-11 endonuclease, and found that this also reduced 
pS/TQ immunofluorescence, albeit less so than depletion of ATM-1 
(Figs. 3d,e). This is consistent with our evidence that SPO-11 depletion 
does not affect WAPL-1 downregulation at meiotic entry (Extended Data 
Fig. 1a–c). Together, these results indicate that CHK-2 promotes basal 
levels of ATM-1 activity in the absence of meiotic DSBs.

A CHK-2 consensus site is essential for ATM-1 activity
Previous studies have shown that high concentrations of Chk2 can lead 
to self-activation in vitro and phosphorylation of H2AX and other S/T-Q 
sites in vivo55,56, suggesting that Chk2 may promote ATM/ATR activity 
under certain conditions. We aligned the amino acid sequences of ATM 
family proteins and found a conserved CHK-2 consensus phosphoryla-
tion motif (R-X-X-S/T) within their FAT domains, which are critical for 
ATM/ATR activation (Fig. 4a)57–59. A mutation in this motif was identified 
in a person with leukemia with ATM deficiency60.

Mutation of the arginine and serine residues in this motif (atm-1KA) 
greatly reduced pS/T-Q immunofluorescence in meiotic nuclei  
(Fig. 4a–c and Extended Data Fig. 3), while the corresponding phos-
phomimetic mutation did not appear to alter ATM-1 activity (Fig. 4a,b). 
Additionally, phosphomimetic ATM-1S1853D showed detectable, albeit 
reduced, activity, even when CHK-2 was depleted (Fig. 4b–d). Depletion 
of either CHK-2 or SPO-11 in animals expressing ATM-1S1853D resulted in 
similar levels of anti-pS/TQ immunofluorescence (Fig. 4e,f). Together, 
these observations suggest that break-independent phosphorylation 
of S1853 by CHK-2 promotes a basal level of ATM-1 activity, and DSBs 
further elevate its activity.

Together, these findings indicate that the persistence of WAPL-1 on 
meiotic chromosomes upon CHK-2 depletion may be a consequence of 
a failure to activate ATM-1. To further test this idea, we examined WAPL-1 
immunostaining in atm-1KA and atm-1S1853D, alleles that showed defec-
tive and normal kinase activity, respectively, in early meiosis. CHK-2 
showed normal activity in both cases (Fig. 4b–d). Animals expressing 
only the nonphosphorylatable atm-1KA allele showed aberrant WAPL-1 
staining, similar to that seen following depletion of CHK-2 or ATM-1 

(Fig. 5a–c). By contrast, the phosphomimetic atm-1S1853D allele resulted 
in normal downregulation of WAPL-1, even when CHK-2 was depleted 
(Fig. 5a–c). Moreover, nonphosphorylatable WAPL-12A persisted on 
EM chromosomes in atm-1S1853D, indicating that ATM-1S1853D regulates 
WAPL-1 through its N-terminal mini-SCD (Extended Data Fig. 5d,e). We 
tested whether atm-1S1853D could bypass the requirement for CHK-2 in 
DSB induction, and found that RAD-51 foci were absent, indicating that 
CHK-2 promotes breaks independently of ATM activation (Extended 
Data Fig. 4a,b), which also validated the depletion efficacy of SPO-11.

Together, our results indicate that CHK-2 activates ATM even in 
the absence of DSBs (Fig. 3d,e), and that this CHK-2-dependent ATM-1 
activity downregulates WAPL-1, resulting in stabilization of cohesins 
along chromosomes. Consistent with this interpretation, phosphomi-
metic mutations in ATM-1 or WAPL-1 restored robust axis localization 
of COH-3/4 when CHK-2 was depleted (Fig. 5d,e).

CHK-2 synergizes with cohesin acetylation to promote axis 
assembly
The evidence above indicates that CHK-2 regulates COH-3/4 localization 
through ATM-1 and WAPL-1. However, loss of CHK-2 reduced COH-3/4 
along the axis more dramatically than loss of ATM-1 or expression of 
nonphosphorylatable WAPL-1 (Extended Data Fig. 5a), suggesting that 
CHK-2 may also stabilize cohesins through other mechanisms. Our 
evidence that COH-3/4 localization is fully restored by WAPL-1 deple-
tion in chk-2 mutants suggests that CHK-2 may promote an activity that 
antagonizes WAPL-1. Sororin in vertebrates and Drosophila61–63, and 
cohesin acetylation by Eco1, ESCO1, ESCO2, or ECO-1 (refs. 64–67), are 
both known to counteract cohesin destabilization by WAPL in other 
contexts. We thus investigated the role of the likely C. elegans Eco1 
ortholog F08F8.4 (now ECO-1).

Depletion of ECO-1 alone did not reduce COH-3/4 localization  
(Fig. 6a–c). However, co-depletion of ECO-1 and ATM-1, or depletion 
of ECO-1 in wapl-12A, showed additive effects on COH-3/4 localiza-
tion, nearly recapitulating the effects of CHK-2 depletion (Fig. 6a–c 
and Extended Data Fig. 5a–c). These results suggest that ECO-1 can 
antagonize WAPL-1 in early meiosis, but that WAPL-1 downregulation 
normally makes this unnecessary.

Previous studies have shown that Eco1/Eso1/ESCO1/2 antagonizes 
Wapl-dependent cohesin release by acetylating cohesin subunits68,69, 
including two conserved lysine sites on the ATPase head of Smc3  
(refs. 19,23,26,27). We mutated the corresponding lysines in C. elegans 
SMC-3 to glutamine to mimic acetylation (K106Q K107Q; smc-3QQ). Axial 
COH-3/4 localization and axis morphogenesis in early meiosis appeared 
normal in smc-3QQ mutants (Fig. 6d). These mutations partially restored 
COH-3/4 localization upon CHK-2 depletion (Fig. 6d,e), suggesting that 
CHK-2 activity may promote acetylation of SMC-3 (see ‘Discussion’).

PDS-5 protects REC-8 from WAPL-mediated release
Prior work and our observations indicate that WAPL-1 has a greater 
impact on COH-3/4 than on REC-8 localization (Fig. 1e–g)31. However, 
Wapl can promote release of Rec8 cohesin in yeast, plant, and human 
meiocytes70–73. Therefore, we wondered why C. elegans REC-8 cohesin 
is more resistant to WAPL-1 activity than COH-3/4 during meiotic 
prophase.

The cohesin regulator Spo76/EVL-14/Pds5/PDS-5 is required 
to establish and maintain sister chromatid cohesion in mitosis and 
meiosis74–77. Intriguingly, Pds5 can either recruit Wapl to release 
cohesin or prevent Wapl from accessing cohesin, depending on the 
context61,66,74,76,78. Importantly, chromosome condensation defects 
seen in budding yeast Pds5 mutants are rescued by loss of Rad61/Wpl1 
(Wapl), suggesting a direct antagonism between Pds5 and Wapl79,80.

PDS-5 (also known as EVL-14) is essential for gonad development 
in C. elegans, presumably owing to its mitotic functions77. The protein 
localizes to nuclei throughout the germline and is enriched along chro-
mosome axes in meiotic nuclei (Extended Data Fig. 6a,b). Its abundance 
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on axes was not affected by loss of CHK-2 (Extended Data Fig. 6a–c), 
despite the reduction in COH-3/4 (above), supporting the idea that 
PDS-5 preferentially associates with REC-8 cohesin.

Depletion of PDS-5 did not affect the abundance of REC-8 in  
PM nuclei, much of which is likely nucleoplasmic, but in early  
meiosis REC-8 was markedly reduced along axes (Fig. 7a,b,e). This 
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(Huntington, Elongation Factor 3, PR65/A, and TOR) and FAT (FRAP, ATM, and 
TRRAP) domains. An alignment of the C-terminal end of FAT domains from 
several ATM orthologs is shown below the schematic, with the Rad53/CHK2 
consensus motif outlined. The conserved arginine and the putative phospho-
serine/threonine site of the consensus motif are indicated with asterisks. S.p., 
Schizosaccharomyces pombe. b, A phosphomimetic mutation in ATM-1 results 
in CHK-2-independent activity in EM nuclei. pS/TQ immunostaining is used as 
a proxy for ATM-1/ATL-1 activity, while phosphorylation of conserved motifs 
on HIM-8 and the ZIM proteins is indicative of CHK-2 activity. DAPI-stained 
DNA highlights meiotic nuclei. Scale bar, 2 µM. c,d, Quantification of pS/TQ 

immunofluorescence intensity (c) and pHIM-8/ZIM intensity (d) (see ‘Data 
presentation’ for more details). Lower and upper box ends represent the first 
and third quartiles, with the median indicated by the horizontal line within the 
box. All data points are shown, and the sample sizes are indicated. ****P < 0.0001 
(two-sided Wilcoxon–Mann–Whitney test, adjusted by Bonferroni correction). 
e, pS/TQ immunostaining shows comparable kinase activity of ATM-1S1853D 
upon depletion of CHK-2 and SPO-11. Scale bar, 2 µM. f, Quantification of pS/TQ 
immunofluorescence in e. Lower and upper box ends represent the first and third 
quartiles, with the median indicated by the horizontal line within the box. All data 
points are shown, and the sample sizes are indicated. ****P < 0.0001 (two-sided 
Wilcoxon–Mann–Whitney test, adjusted by Bonferroni correction).
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Fig. 5 | CHK-2 suppresses WAPL-1 by activating ATM-1. a, A phosphomimetic 
mutation in ATM-1 is sufficient to suppress WAPL-1 at meiotic entry upon CHK-2 
depletion. Scale bar, 10 µM. b, Enlarged images of the regions boxed in a. HTP-3 
localizes to axes starting at meiotic entry. Scale bar, 2 µM. c, Quantification of the 
intensity of WAPL-1 immunostaining in a. Lower and upper box ends represent 
the first and third quartiles, with the median indicated by the horizontal line 
within the box. All data points are shown, and the sample sizes are indicated. 
****P < 0.0001 (two-sided Wilcoxon–Mann–Whitney test, adjusted by Bonferroni 

correction). d, COH-3/4 immunostaining (in green) of early pachytene nuclei, 
showing that either mimicking ATM-1 activation or WAPL-1 phosphorylation is 
sufficient to restore COH-3/4 localization upon CHK-2 depletion. Scale bar, 2 µM. 
e, Quantification of the intensity of COH-3/4 immunostaining in d. Lower and 
upper box ends represent the first and third quartiles, with the median indicated 
by the horizontal line within the box. All data points are shown, and the sample 
sizes are indicated. ****P < 0.0001 (two-sided Wilcoxon–Mann–Whitney test, 
adjusted by Bonferroni correction).
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is similar to findings in fission yeast but contrasts with observa-
tions from budding yeast and mammals, where loss of Pds5 has little  
effect on Rec8 binding to chromosomes81–85. By contrast, the locali-
zation of COH-3/4 cohesin was unaltered by depletion of PDS-5, 
supporting the idea that PDS-5 preferentially stabilizes REC-8  
(Fig. 7c,d,f).

Co-depletion of CHK-2 and PDS-5 resulted in dramatic reduction 
of REC-8 along chromosome axes (Fig. 7g), although the abundance of 
REC-8 in PM cells was again unaffected (Fig. 7g,h). Importantly, upon 
co-depletion of PDS-5 and CHK-2, REC-8 localization was fully rescued 
by co-depletion of WAPL-1, indicating that PDS-5 protects REC-8 from 
release by WAPL-1 (Fig. 7g–i and Extended Data Fig. 6e,f).
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defective. Scale bar, 10 µM. b, Enlarged views of the regions indicated in a. Bright 
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Fig. 7 | PDS-5 protects REC-8 cohesin from WAPL-1-dependent release in early 
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tip of gonads, showing that WAPL-1 can release REC-8 cohesin upon co-depletion 
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horizontal line within the box. All data points are shown, and the sample sizes are 
indicated. ****P < 0.0001 (two-sided Wilcoxon–Mann–Whitney test, adjusted by 
Bonferroni correction).
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The HORMA domain protein HTP-3 can be recruited to axes 
in the absence of either REC-8 or COH-3/4 cohesin, but not both12. 
Co-depletion of CHK-2 and PDS-5 resulted in loss of HTP-3 from axes 
(Fig. 7g–i), corroborating the conclusion that both classes of cohesin 
were severely disrupted12. Localization of REC-8 and HTP-3 was restored 
by co-depletion of WAPL-1 (Fig. 7g–i). Together, these results reveal 
that downregulation of WAPL-1 and protection of REC-8 by PDS-5 are 
parallel pathways that contribute to cohesin stability and axis assembly 
at meiotic entry. Acetylation of cohesins by ECO-1 likely also contrib-
utes to axis formation, but this is only evident when WAPL-1 cannot be 
properly downregulated.

Cohesin enrichment at DNA damage foci is regulated by WAPL
Our identification of a conserved mini-SCD in Wapl homologs 
prompted us to explore whether WAPL downregulation is impor-
tant in contexts other than meiosis. Studies in yeast and human cells 
have shown that the DDR kinases ATM and ATR mediate cohesin 
enrichment at DNA-damage loci, which promotes repair41,44,86.  
ATM has also been found to promote the enrichment of CTCF, a 
cohesin binding partner, at DNA-damage sites in human cells87. We 
thus investigated whether the establishment of cohesin-enriched 
domains at DNA-damage foci depends on ATM activity and/or WAPL 
downregulation.

We treated HeLa cells with DNA-damage-inducing agents, includ-
ing the radiomimetic DNA-cleaving agent bleomycin and the topoi-
somerase II poison etoposide (ETO), both of which lead to DSBs that 
activate ATM. Following treatment with either agent, we observed 
foci that were positive for both γH2A.X (S139-phosphorylated histone 
H2A.X) (Fig. 8a)88,89 and pS/TQ (Fig. 8b)52. The mitotic kleisin Rad21 was 
concentrated at many of these damage foci (Fig. 8a–d).

We next induced DNA damage after treating cells with specific 
inhibitors of ATM, ATR, and DNA-PK (Fig. 8e), three paralogous 
DNA-damage transducer kinases. Inhibition of ATM, but not ATR or 
DNA-PK, resulted in markedly reduced γH2A.X upon ETO treatment 
(Fig. 8e and Extended Data Fig. 7a). Inhibition of ATM also largely 
eliminated damage-induced Rad21 foci (Fig. 8e,i).

To corroborate the specificity of the chemical inhibitors, we per-
formed short interfering RNA (siRNA)-mediated knockdown of ATM 
and ATR (Fig. 8f). We confirmed knockdown of ATM using a commercial 
antibody (Extended Data Fig. 7c,d). Although we lacked a similar tool 
to monitor ATR abundance, we noted that nuclear volume was reduced 
by either ATR inhibition or ATR knockdown (Extended Data Fig. 7b,g). 
Consistent with our observations with small-molecule inhibitors, 
ATM knockdown resulted in a substantial decrease in nuclear γH2A.X 
intensity (Fig. 8f and Extended Data Fig. 7f). Importantly, Rad21 was 
no longer enriched at damage foci marked by either γH2A.X or pS/TQ 
(Fig. 8f,j and Extended Data Fig. 7e). Together, these results indicate 

that the activity of ATM, but not ATR or DNA-PK, is required for cohesin 
enrichment at DNA-damage foci.

We next tested whether WAPL downregulation contributes to 
the assembly of these cohesin-enriched domains. We reasoned that 
if ATM promotes the formation of cohesin foci by phosphorylating 
WAPL, overexpression of nonphosphorylatable WAPL might impair 
focus formation. Human WAPL has two potential mini-SCDs (Fig. 8g). 
Importantly, neither overlaps with the FGF or YSR motifs, which medi-
ate the interaction between WAPL and PDS5 (refs. 24,90). Overexpression 
of GFP-tagged wild-type WAPL or mutant proteins did not affect the 
appearance of γH2A.X following DNA damage (Fig. 8g–h), indicating 
that ATM signaling was not perturbed (Fig. 8h and Extended Data  
Fig. 7h). Overexpression of wild-type WAPL also did not significantly 
affect nuclear RAD21 foci following damage (Fig. 8h,k). However, over-
expression of nonphosphorylatable GFP-WAPL (WAPL5A) blocked the 
formation of RAD21 foci very effectively, whereas GFP-WAPL5D lacked 
this activity (Fig. 8h,k). To test whether the reduction of RAD21 foci 
in cells expressing GFP-WAPL5A is due to WAPL-dependent cohesin 
release, we overexpressed a nonphosphorylatable WAPL protein lack-
ing four amino acids (1116MEDC1119) that are critical for release activ-
ity (Fig. 8g)91,92. Although this mutant protein (WAPL5AΔ4) localized  
to nuclei, it had no effect on RAD21 foci following DNA damage  
(Fig. 8h,k). Interestingly, we also found that GFP-WAPL5AΔ4 overexpres-
sion caused nucleus-wide clustering of cohesin, similar to the ‘vermi-
celli’ phenotype, although the cohesin threads appeared to be much 
thinner (Fig. 8h)33, suggesting that this protein may act in a dominant 
negative fashion. Taken together, these results indicate the role of both 
ATM activity and WAPL mini-SCD in regulating local enrichment of 
cohesin at damage foci in mammalian cultured cells, similar to results 
for C. elegans meiotic chromosome axes.

Discussion
We have found that downregulation of WAPL by ATM promotes 
cohesin localization along meiotic chromosome axes in C. elegans 
and at DNA-repair foci in mammalian cells (Extended Data Fig. 8). A key 
function of meiotic axes is to regulate the outcome of repair of induced 
DSBs93,94, so it makes teleological sense that this assembly would be 
regulated by DDR signaling95. Our findings illuminate the role of cohesin 
regulators and how they are orchestrated by DDR during the unique 
cell cycle state of meiotic prophase. Expression of meiosis-specific 
cohesins is necessary but not sufficient for axis formation and func-
tion96,97. We find that CHK-2 promotes break-independent activation of 
ATM-1 at meiotic entry, which in turn promotes axis assembly through 
downregulation of WAPL-1, a key regulator of cohesin dynamics21,22. Pre-
vious studies have shown that WAPL reduces cohesin residence time on 
chromatin and modulates cohesin clustering and cohesin-dependent 
loop extrusion33,98. We find that downregulation of WAPL-1 is important 

Fig. 8 | ATM-mediated WAPL downregulation regulates cohesin 
concentration at DNA-damage foci. a,b, Immunostaining of phosphorylated 
H2A.X (ƔH2A.X) and RAD21 in nuclei of HeLa cells that were treated  
with either bleomycin (BLEO) or ETO, showing the concentration of cohesin at 
DNA-damage foci. DMSO was used as a solvent control. In the merged images,  
‘R’ indicates RAD21 and ‘ƔH’ indicates ƔH2A.X. Scale bar, 10 µM.  
c,d, Quantification of the number of RAD21 foci under conditions shown in  
a and b. Lower and upper box ends represent the first and third quartiles, with 
the median indicated by the horizontal line within the box. All data points are 
shown, and the sample sizes are indicated. ****P < 0.0001 (two-sided Wilcoxon–
Mann–Whitney test, adjusted by Bonferroni correction). e, Immunostaining 
of ƔH2A.X and RAD21 in nuclei of HeLa cells treated with kinase inhibitors, 
followed by ETO to induce DNA damage, showing that ATM activity is required 
for cohesin concentration at DNA-damage foci. The chemical inhibitors, which 
affected specific kinases, were as follows: KU55933 (ATMi), VE-821 (ATRi), and 
NU7441 (DNA-PKi). The control group (CONi) was treated with DMSO. Scale 
bar, 10 µM. f, RAD21 immunostaining in nuclei of HeLa cells depleted of ATM 

and/or ATR prior to ETO-induced DNA damage, showing that ATM is required 
for cohesin concentration at DNA damage foci. siRNAs specific for each kinase 
were used for knockdown. A non-targeting siRNA pool (Methods) was used for 
control knockdowns (siCON). Scale bar, 10 µM. g, Domain architecture of human 
WAPL, indicating the positions of the YSR (tyrosine-serine-arginine) motif, 
FGF (phenylalanine-glycine-phenylalanine) motifs, the two SCD domains, the 
MEDC (methionine-glutamate-aspartate-cysteine) sequence, and the residues 
that were mutated in our transgenic constructs. h, Immunofluorescence of 
HeLa cell nuclei expressing GFP or GFP-WAPL, showing that overexpression of 
nonphosphorylatable WAPL inhibits cohesin concentration at DNA-damage foci. 
Scale bar, 10 µM. i,j,k, Quantification of the number of RAD21 foci in  
e, f, and h, as described in ‘Image analysis’ and ‘Data presentation’. Lower and 
upper box ends represent the first and third quartiles, with the median indicated 
by the horizontal line within the box. All data points are shown, and the sample 
sizes are indicated. ****P < 0.0001 (two-sided Wilcoxon–Mann–Whitney test, 
adjusted by Bonferroni correction).
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for meiotic axis assembly. This is likely a conserved feature of meiosis, as 
loop anchors emerge along with axis compaction and reduced cohesin 
dynamics during meiosis in many species33,98–100.

Our findings also reveal that phosphorylation by ATM inhib-
its WAPL. A role for ATM in meiotic axis morphogenesis has also 
been demonstrated in Arabidopsis101. ATM and ATR localize sequen-
tially to chromosome axes during EM prophase in mice, consistent  
with roles in regulating cohesin along the axis102. Our results  

also reveal a key function for this regulatory pathway in the DDR in 
proliferating cells103,104.

We also find that the acetyltransferase ECO-1 contributes to the sta-
bility of axial cohesins, although this was apparent only when downregu-
lation of WAPL was defective. This is consistent with observations from 
yeast, Drosophila, and Arabidopsis64,105,106. Our results suggest that ECO-1 
may also be regulated by CHK-2. In budding yeast, phosphorylation of the 
mitotic kleisin Mcd1 by Chk1 promotes Eco1-dependent Mcd1 acetylation, 
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which in turn antagonizes Wapl and promotes cohesion68,107. Analogous 
regulation of C. elegans COH-3/4 by CHK-2 has also been proposed12.

Studies across diverse eukaryotes have established critical 
roles for Pds5 in regulating cohesin-dependent chromosomal eve
nts20,24,25,74,76,108–110. It plays a widely conserved role in meiosis and is often 
regarded as an axis component75, but its specificity seems to vary across 
species. In C. elegans, PDS-5 stabilizes REC-8 against WAPL-1, analogous 
to evidence from fission yeast81. However, loss of Pds5 in budding yeast 
or of PDS5 in Arabidopsis has little effect on the association of Rec8 
(REC8) with meiotic chromosomes82,83,111. Nevertheless, budding yeast 
PDS5 mutants show SC formation between sister chromatids, rather 
than homologous chromosomes, a phenotype also seen in C. elegans 
and mouse spermatocytes lacking REC-8 or Rec8, respectively28,82. 
Thus, Pds5 may promote cohesive activity of Rec8 cohesin, even if it is 
dispensable for Rec8 localization to chromosome axes.

The functional interplay between Pds5 and Wapl in different organ-
isms has been enigmatic. Some results have indicated that these factors 
act as a complex; in other cases, Pds5 antagonizes Wapl activity, as 
shown here. We found that WAPL-1 antagonizes cohesin localization 
even when PDS-5 is depleted (Fig. 7g,h), indicating that it can function 
independently of PDS-5. Most importantly, WAPL-1 depletion restores 
axial REC-8 cohesin upon PDS-5 depletion. Notably, the FGF and YSR 
motifs in vertebrate Wapl that mediate binding to Pds5 (refs. 24,90) are 
both absent from C. elegans WAPL-1 (ref. 71). C. elegans PDS-5 also has a 
relatively long, unstructured domain that may modulate its activities 
through mechanisms analogous to the function of Sororin in vertebrates 
and Dalmatian in Drosophila, both of which are cohesin-protecting fac-
tors that antagonize WAPL-dependent cohesin release61.

Taken together, the results of our work show that axis assem-
bly is driven by the specialized roles of meiotic cohesins and their 
interactions with cohesin regulators, which in turn are controlled by 
specialized DDR signaling during meiotic prophase. Additionally, our 
study reveals a pathway that regulates cohesin activity to promote 
programmed induction and repair of DSBs in meiotic cells and repair 
of exogenous breaks in proliferating cells.
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Methods
Strain maintenance
All C. elegans strains were maintained on standard nematode growth 
medium (NGM) plates seeded with OP50 bacteria at 20 °C112. Young 
adult hermaphrodites (20–24 hours (h) post-L4) were used for immu-
nofluorescence analysis. C. elegans is a laboratory model nematode 
that does not require ethical approval to study.

Strain construction
All new alleles used in this study were generated by CRISPR–
Cas9-mediated genome editing. See Supplementary Table 1 for the list 
of strains used in this study. Briefly, Alt-R CRISPR–Cas9 crRNAs specific 
for target sites were mixed with a dpy-10-specific crRNA113 at a molar 
ratio of 8:1. These were denatured and annealed to an equal quantity 
of tracrRNA (Integrated DNA Technologies) by being heated to 95 °C 
for 5 minutes (min), followed by 5 min at 25 °C. 1 µL of 100 µM hybrid-
ized tracrRNA/crRNA was combined with 2.5 µL of 40 µM S. pyogenes 
Cas9-NLS purified protein (QB3 MacroLab) and incubated at room 
temperature for 5 min. Next, 0.5 µL of 100 µM stock of an Ultramer DNA 
oligonucleotide (IDT) repair template containing 35–45 bp homology 
arms and the desired epitope/degron or mutation sequence was added 
to the mixture, for a total volume of 5 µL, and injected into the gonads 
of young adult hermaphrodites aged 24 h from the late L4 stage. Her-
maphrodites were injected and maintained on individual plates at 20 °C 
for 3–4 days. Roller and Dumpy F1 progeny were singled, maintained 
at 20 °C for 3 days, and screened by PCR for the desired mutation or 
epitope tag. Candidate alleles were verified by Sanger sequencing. See 
Supplementary Table 2 for a complete list of crRNAs, repair templates, 
and genotyping primer sequences used in this study. Validations of key 
constructed strains are available in Supplementary Table 4.

Worm viability and fertility
To quantify brood sizes, male self-progeny, and embryonic viability, 
L4 hermaphrodites were plated individually and transferred to new 
plates daily for four consecutive days. Eggs were counted twice a day 
to minimize counting errors. Viable progeny and males were scored 
when they reached young adulthood.

Auxin-induced protein depletion in worms
Auxin-induced depletion of degron-tagged proteins was performed 
as previously described114. Hermaphrodites at the L4 stage were trans-
ferred to seeded plates containing 1 mM indole-3-acetic acid (IAA, 
auxin) and incubated for 24 h before analysis. For each experiment, 
strains being compared were treated in parallel using the same batch 
of auxin-containing plates. Degron and epitope tags were inserted 
into genes of interest by genome editing in a strain expressing TIR1 in 
the germline (see Supplementary Table 1 for detailed information), 
which was used as a control and treated in parallel with all other strains 
in each assay. The stability and function of degron-tagged proteins in 
the absence of auxin were validated by localization and/or phenotypic 
assays. The kinetics and efficacy of depletion were analyzed by immu-
nolocalization, functional assays, and, where feasible, by western blots.

Plasmids
To express human WAPL in HeLa cells, sequences were inserted into 
the pcDNA3-acGFP vector, obtained from Addgene (cat. no. 128047). 
The WAPL coding sequence was divided into four ~1-kb fragments 
(sequences are available in Supplementary Table 3) and synthesized 
by Twist Bioscience. These fragments were inserted at the 3′ end of the 
GFP coding sequence using Gibson assembly115 and verified by Sanger 
sequencing.

Antibodies and reagents
Primary antibodies were purchased from commercial sources or have 
been described in previous studies, and were diluted as follows: rabbit 

anti-RAD-51 (1:500)39, rabbit anti-pHIM-8/ZIMs (1:500)17, goat anti-SYP-1 
(1:300)39, chicken anti-HTP-3 (1:500)116, mouse anti-HA (1:400, Thermo 
Fisher 26183)117, mouse anti-FLAG (1:500, Sigma F3165)114, mouse anti-V5 
(1:500, Thermo Fisher R960-25)117, rabbit anti-V5 (1:250, Millipore 
Sigma V8137)117, mouse anti-WAPL (1:500, Santa Cruz sc-365189), rab-
bit anti-γH2A.X antibody (1:500, Cell Signaling, cat. no. 2577), mouse 
anti-ATM antibody (1:500, Thermo Fisher, cat no. MA1-23152), rab-
bit anti-pS/TQ antibody (1:500, Cell Signaling, cat. no. 6966), rabbit 
anti-COH-3/4 antibody (1:500, SDQ3972, ModENCODE project)118, rab-
bit anti-REC-8 antibody (1:500, SDQ0802, ModENCODE project), rabbit 
anti-WAPL-1 antibody (1:500, SDQ3963, ModENCODE project). Second-
ary antibodies raised in donkey and labeled with Alexa Fluor 488, Cy3, 
Cy5, or Alexa Fluor 647 ( Jackson ImmunoResearch Laboratories, Alexa 
Fluor 488-donkey anti-mouse no. 715-545-151, Alexa Fluor 488-donkey 
anti-chicken no. 703-545-155, Alexa Fluor 488-donkey anti-goat no. 
705-545-147, Cy3-donkey anti-mouse no. 715-165-151, Cy3-donkey 
anti-rabbit no. 711-165-152, Cy3-donkey anti-chicken no. 703-165-155, 
Cy5-donkey anti-mouse no. 715-175-151, Cy5-donkey anti-chicken no. 
703-175-155, Alexa Fluor 647-donkey anti-mouse no. 715-605-151, Alexa 
Fluor 647-donkey anti-goat no. 705-605-147, Alexa Fluor 647-donkey 
anti-rabbit no. 711-605-152) and were used at 1:400 dilution. Kinase 
inhibitors included VE-821 (Selleckchem S8007); NU7441 (Selleckchem 
S2638); and KU55933 (Selleckchem S1092). DNA-damage-inducing 
agents included ETO (Sigma cat. no. E1383) and bleomycin (Fisher cat. 
no. B397210MG).

siRNA-mediated knockdown
The following ON-TARGETplus SMARTpool siRNAs were purchased 
from Horizon Discovery: non-targeting control pool (negative con-
trol pool), cat. no. D-001810-10-05; WAPL siRNA, cat. no. L-026287-
01-0005; ATM siRNA, cat. no. L-003201-00-0005; ATR siRNA, cat. 
no. L-003202-00-0005. HeLa cells were cultured on coverslips in 
6-well plates to 25% confluency, and siRNA knockdown was performed 
using DharmaFECT, according to the manufacturer’s recommenda-
tions. Cells were fixed and analyzed 72 h after siRNA transfection. 
DNA-damage-inducing agents and/or kinase inhibitors were added 
24 h before fixation.

Transient transfection
For WAPL overexpression, HeLa cells were grown on coverslips in 
6-well plates to 50% confluency. Then, 2.5 µg of purified plasmid DNA 
was mixed with 5 µL Lipofectamine 3000 (Thermo Fisher) and used 
for transfection according to the manufacturer’s protocol. Cells were 
fixed for imaging 48 h after transfection. DNA-damage-inducing agents 
and/or kinase inhibitors were added 24 h before fixation.

Chemical treatments
DNA damage was induced by addition of 0.8 µM ETO or 0.4 µM bleo-
mycin for 24 h. KU55933, VE-821, and NU7441 were added at 1 µM for  
24 h. Chemicals were dissolved in DMSO (dimethylsulfoxide).

Immunofluorescence assays
Adult hermaphrodites were dissected on a clean coverslip in egg buffer 
(25 mM HEPES pH 7.4, 118 mM NaCl, 48 mM KCl, 2 mM EDTA, 0.5 mM 
EGTA) containing 0.01% tetramisole and 0.1% Tween-20. Samples were 
fixed for 2 min in egg buffer containing 1% formaldehyde and then 
transferred to a 1.5-mL tube containing PBS + 0.1% Tween-20 (PBST). 
After 5 min, the buffer was replaced with ice-cold methanol and incu-
bated at −20 °C for an additional 10 min. Worms were washed twice 
with PBST, blocked with Roche blocking reagent diluted into PBST, 
and stained with primary antibodies diluted in blocking solution at 
4 °C overnight. Samples were then washed with PBST and incubated 
with secondary antibodies that were diluted in blocking solution at 
room temperature for 1 h. Worms were washed twice with PBST and 
mounted in ProLong Diamond with DAPI (Invitrogen) before imaging.
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For immunofluorescence of HeLa cells, coverslips in 6-well plates 
were washed with PBS and then fixed with 4% formaldehyde in PBS 
at room temperature for 10 min. After 3 washes with PBS, cells were 
permeabilized by addition of 0.5% Triton X-100 in PBS at room tem-
perature for 5 min. They were rinsed with PBS and blocked with 5% 
BSA in PBS at room temperature for 1 h. Cells were then washed with 
PBS and incubated with primary antibodies diluted in 1% BSA at room 
temperature for 2 h. After another PBS wash, cells were incubated in 
secondary antibodies diluted in 1% BSA in PBS at room temperature for 
1 h in the dark. Cells were then washed again with PBS and mounted in 
ProLong Diamond with DAPI before imaging.

Microscopy
All images were acquired as z-stacks of optical sections at 0.2-µm inter-
vals using a DeltaVision Elite microscope (GE) with a ×100, 1.4 numeri-
cal aperture (NA) or ×60, 1.42 NA oil-immersion objective. Iterative 
three-dimensional (3D) deconvolution, image projection, and coloriza-
tion were performed using the softWoRx package, ImageJ/Fiji (v1.53t), 
and Adobe Photoshop CC 2017, respectively.

Image analysis
To quantify the abundance of proteins in C. elegans germline nuclei, 
additive projections were generated from raw (undeconvolved) 3D 
data stacks after background subtraction using the rolling ball tool 
in ImageJ. Individual nuclei (regions of interest, ROIs) were manually 
segmented based on DAPI staining in ImageJ, and the integrated inten-
sity within each ROI was calculated. For each condition, 80-200 nuclei 
from 3-4 representative gonads were quantified.

To quantify protein abundance in HeLa cell nuclei, individual 
nuclei (ROIs) were first segmented on the basis of DAPI fluorescence in 
an equatorial optical section from a 3D image stack using the 2D water-
shed tool (scikit-image library v0.18, Python 3.9). Protein abundance 
(integrated intensity) within this region was calculated from additive 
Z projections, similar to the approach we used to quantify proteins in 
C. elegans germline nuclei.

To quantify RAD21 enrichment at sites of DNA damage in HeLa 
cells, we developed an automated method to ensure consistency 
and minimize potential investigator bias. Following empirical opti-
mization, the method was applied to each dataset using ImageJ 
macros. For experiments involving expression of GFP or GFP-WAPL, 
only GFP-positive cells were included; these were identified based 
on GFP fluorescence in equatorial sections using the Auto Threshold 
tool in ImageJ in ‘Li’ maximum entropy mode. Nuclear ROIs were 
segmented as described above. Peaks of immunofluorescence of 
DNA-damage markers (γH2A.X or pS/TQ) were segmented using the 
Auto Threshold tool in MaxEntropy mode. The resulting binary masks 
of damage-marker-enriched nuclear regions were used to segment and 
calculate the average intensity (integrated intensity/area) of RAD21 
at DNA-damage regions from additive Z projections. The average 
background RAD21 intensity was calculated from the nuclear regions 
outside of these masks.

Data presentation
For data based on immunofluorescence in C. elegans germline nuclei, 
we show representative images of the distal regions of dissected 
gonads. All images are oriented with the distal tip on the left. They 
show the entire proliferative (PM) region and a similarly sized region 
containing nuclei in EM prophase. The boundary between PM and 
meiotic prophase is indicated by a dashed line. Figure labels indicate 
proteins that were depleted by auxin treatment. For immunofluores-
cence in HeLa cells, representative images of individual nuclei are 
shown with enlargements of fluorescent foci as insets.

For quantitative analysis of immunofluorescence, the integrated 
nuclear intensity or number of foci were measured as described above 
under ‘Image analysis.’ Tukey boxplots of data points from individual 

nuclei were generated using R. Boxes indicate the quartiles and median, 
and the median value is also indicated next to the box. The number  
of nuclei that were scored for each condition or group is shown in 
parentheses underneath the data points.

Statistical analysis
We used the Shapiro–Wilk test to determine whether our data for 
each condition showed a normal distribution. We used Student’s t-test 
to compare data sets that were found to show a normal distribution 
(P > 0.05 by the Shapiro–Wilk test); otherwise, we used the Wilcoxon–
Mann–Whitney test. P values were adjusted by Bonferroni correction 
when statistical analyses involved multiple tests on the same dataset. 
The number of asterisks indicates the calculated P values: **P < 0.01, 
***P < 0.001, ****P < 0.0001. The exact values of the P values that are 
greater or equal to 0.01 are indicated on the plots.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper.

Code availability
ImageJ macros and Python scripts to automate the image analysis 
process tasks are available at https://github.com/zhouliangyu.
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Extended Data Fig. 1 | WAPL-1 downregulation does not require direct 
phosphorylation by CHK-2, DSBs, or synapsis. a, WAPL-1 sequence indicating 
the positions of CHK-2 consensus motifs that were mutated in the wapl-14SA 
allele. b,e, WAPL-1 immunostaining germline nuclei, showing that neither direct 
CHK-2-dependent WAPL-1 phosphorylation, SPO-11-dependent meiotic DSB 
formation, nor SC components is required for WAPL-1 suppression at meiotic 
entry. Scale bar, 10 µM. c,f, Enlarged images of the regions outlined in b and e. 

HTP-3 marks chromosome axes in meiotic prophase nuclei. Scale bar, 2 µM. d,g, 
Quantification of WAPL-1 intensity in b and e, respectively. Lower and upper box 
ends represent the first and third quartiles, with the median indicated as the 
horizontal line within the box. All data points are shown with the sample sizes 
indicated below the boxes. ****P < 0.0001 (two-sided Wilcoxon–Mann–Whitney 
test, adjusted by Bonferroni correction). Data for plots in d and g are available as 
source data.
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Extended Data Fig. 2 | Mutation of ATM target sites in WAPL-1 does not  
affect CHK-2 or ATM-1 activity at meiotic entry. a,d, pHIM-8/ZIM (a) and  
pS/TQ (d) immunostaining in the distal tip of gonads of wild-type and wapl-
12A worms, showing that the activity of CHK-2 and ATM-1 do not change in the 
nonphosphorylatable WAPL-1 mutant. ‘Control’ indicates animals from the 
same background strain carrying wild-type alleles. The pHIM-8/ZIM antibody 
also recognizes an unidentified, CHK-2-independent epitope in mitotic cells. 
Scale bar, 10 µM. b and e, Enlarged images of the regions outlined in a and d, 

respectively. Scale bar, 2 µM. c and f, Quantification of the intensity of pHIM-8/
ZIMs (c) and pS/TQ (f). Lower and upper box ends represent the first and third 
quartiles, with the median indicated as the horizontal line within the box. All data 
points are shown with the sample sizes indicated below the boxes. ****P < 0.0001 
(two-sided Wilcoxon–Mann–Whitney test, adjusted by Bonferroni correction). 
g, Western blot analysis showing the depletion of HA-degron-tagged ATL-1 upon 
auxin addition. Unprocessed Western blot image for g and Data for plots in c and f 
are available as source data.
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Extended Data Fig. 3 | A putative CHK-2 target site in the FAT domain of ATL-1 
does not promote its kinase activity. a, Alignment of residues at the C-terminus 
of the FAT domains of C. elegans ATM-1 and ATL-1. CHK-2 consensus motifs are 
highlighted. The conserved serines and arginines at the -3 position are marked 
by asterisks. b, Viability of embryos and frequency of male self-progeny from 

hermaphrodites homozygous for the indicated alleles. Null alleles of both atm-1 
(atm-1(gk186)) and atl-1 (atl-1(tm853)) were assayed for comparison. The number 
of eggs scored for each allele is shown in parentheses. Data for graphs in b are 
available as source data.
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Extended Data Fig. 4 | DSBs are dispensable for a basal level of ATM-1 activity 
in meiotic prophase nuclei. a, RAD-51 foci indicate the presence or absence of 
meiotic DSBs in pachytene nuclei. Scale bar, 2 µM. n = 4 biological replicates.  
b, Quantitative analysis of RAD-51 foci. The region of the germline from the distal 

tip to late pachytene was divided into six zones of equal length. The distribution 
of RAD-51 foci per nucleus nuclei for each region is shown for each of the 
conditions represented by images in a. Data for plots in b are available as  
source data.
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Extended Data Fig. 5 | CHK-2 promotes axial cohesin stabilization. a, COH-
3/4 immunofluorescence in the distal region of gonads, showing that CHK-2 
activity controls a cohesin-stabilizing activity that is independently of WAPL-1 
suppression. Dashed lines indicate the boundaries between PM and meiotic 
germline. Scale bar, 10 µM. b, Enlarged images of the regions indicated in a. 
HTP-3 immunostaining (in magenta) marks chromosome axes. Scale bar, 2 µM. 
c, Quantification of the intensity of COH-3/4 immunostaining in a and in Fig. 6a. 
Lower and upper box ends represent the first and third quartiles, with the median 
indicated as the horizontal line within the box. All data points are shown with the 
sample sizes indicated below the boxes. ****P < 0.0001 (two-sided Wilcoxon–
Mann–Whitney test, adjusted by Bonferroni correction). **P < 0.01 (P = 0.0013, 

two-sided Wilcoxon–Mann–Whitney test, adjusted by Bonferroni correction) d, 
WAPL-1 immunostaining in the distal tip of gonads, showing that ATM-1S1853D fails 
to downregulate the nonphosphorylatable WAPL-12A at meiotic entry. ‘Control’ 
indicates animals from the same background strain carrying wild-type alleles. 
Scale bar, 10 µM. e, Quantification of the intensity of WAPL-1 immunostaining 
in d. Lower and upper box ends represent the first and third quartiles, with the 
median indicated as the horizontal line within the box. All data points are shown 
with the sample sizes indicated below the boxes. ****P < 0.0001 (two-sided 
Wilcoxon–Mann–Whitney test, adjusted by Bonferroni correction). Data for 
plots in c and e are available as source data.
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Extended Data Fig. 6 | PDS-5 localizes to meiotic chromosome axes 
independently of CHK-2. a, PDS-5::V5 immunofluorescence using anti-V5 
in C. elegans gonads, showing that PDS-5 localization does not change in the 
absence of CHK-2. Scale bar, 10 µM. b, Enlarged images of the regions outlined 
in a. HTP-3 immunostaining (in magenta) marks chromosome axes. Scale bar, 
2 µM. c, Quantification of the PDS-5::V5 intensity in b. Lower and upper box 
ends represent the first and third quartiles, with the median indicated as the 
horizontal line within the box. All data points are shown with the sample sizes 

indicated below the boxes. P values are calculated by two-sided Wilcoxon–Mann–
Whitney test. d, PDS::FLAG immunofluorescence in diplotene nuclei, showing 
that PDS-5 localizes to ‘short arms’. SYP-1 immunofluorescence in late diplotene 
nuclei is restricted to the ‘short arm’ of each bivalent. Scale bar, 2 µM. n = 3 
biological replicates. e,f, Immunofluorescence of HA, FLAG and WAPL-1 in  
C. elegans gonads of pds-5AID; wapl-1AID; chk-2AID, showing that the three proteins 
are depleted simultaneously upon auxin addition. Data for plots in c are available 
as source data.
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Extended Data Fig. 7 | ATM-mediated WAPL downregulation promotes 
cohesin enrichment at DNA damage foci. a,b, Quantification of nuclear γH2A.X 
intensity (a) and nuclear size (b) in cells that were exposed to ETO-induced 
following chemical inhibition of DNA damage kinases. ATM was inhibited by 
addition of KU55933 (ATMi), ATR by VE-821 (ATRi), and DNA-PK by NU7441 
(DNA-Pki). c, Immunofluorescence of ATM in HeLa cells treated with control 
siRNA or siRNA targeting ATM, with or without ETO treatment. d, Quantification 
of nuclear ATM intensity in cells treated as in (c). Integrated ATM intensity was 
normalized against DAPI intensity for each nucleus. e, Immunofluorescence of 
RAD21 in nuclei of HeLa cells treated with either control siRNA or siRNA against 
ATM, and then ETO to induce DNA damage. DNA damage foci are marked by pS/
TQ immunofluorescence. f,g, Quantification of nuclear γH2A.X intensity (f) and 
estimated nuclear size (g) in cells following siRNA-mediated knockdown of ATM 
and/or ATR. The integrated γH2A.X intensities were normalized by integrated 
DAPI intensities for each nucleus. h, Quantification of nuclear γH2A.X intensity 

in transfected HeLa cells expressing GFP or GFP-WAPL fusion proteins, following 
ETO-induced DNA damage. i, Immunofluorescence of WAPL in nuclei of HeLa 
cells treated with either control siRNA or siRNA against WAPL. j, Quantification 
of nuclear WAPL intensity in HeLa cells, normalized against DAPI intensity 
in each nucleus (i). k, Immunofluorescence of RAD21 in nuclei of HeLa cells 
treated with the indicated siRNA and then ETO. WAPL siRNA was combined with 
KU55933 (ATMi) or siRNA targeting ATM. γH2A.X immunofluorescence marks 
DNA damage foci. n = 3 biological replicates, at least 25 cells for each condition 
are assayed for each condition. Data for plots in a, b, d, f, g, h and j are available 
as source data. In all quantitative analyses, lower and upper box ends represent 
the first and third quartiles, with the median indicated as the horizontal line 
within the box. All data points are shown with the sample sizes indicated below 
the boxes. P values are calculated by two-sided Wilcoxon–Mann–Whitney test, 
multiple comparisons are adjusted by Bonferroni correction. ****P < 0.0001. 
Scale bar, 10 µM.
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Extended Data Fig. 8 | A conserved phosphoregulatory pathway promotes cohesin clustering in meiosis and proliferating cells. In C. elegans meiosis, ATM-
mediated WAPL downregulation promotes global cohesin clustering to form the meiotic chromosome axis. The same pathway promotes local cohesin clustering at 
DNA damage foci in mammalian proliferating cells.
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