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Remodeling of maternal mRNA through 
poly(A) tail orchestrates human 
oocyte-to-embryo transition

Yusheng Liu    1,2,11, Han Zhao3,11, Fanghong Shao4,5,11, Yiwei Zhang    2,6,11, Hu Nie2,7, 
Jingye Zhang3, Cheng Li3, Zhenzhen Hou3, Zi-Jiang Chen    3,8, 
Jiaqiang Wang    6 , Bing Zhou    4,9,10 , Keliang Wu    3  & Falong Lu    2,7 

Poly(A)-tail-mediated post-transcriptional regulation of maternal 
mRNAs is vital in the oocyte-to-embryo transition (OET). Nothing is 
known about poly(A) tail dynamics during the human OET. Here, we show 
that poly(A) tail length and internal non-A residues are highly dynamic 
during the human OET, using poly(A)-inclusive RNA isoform sequencing 
(PAIso-seq). Unexpectedly, maternal mRNAs undergo global remodeling: 
after deadenylation or partial degradation into 3ʹ-UTRs, they are 
re-polyadenylated to produce polyadenylated degradation intermediates, 
coinciding with massive incorporation of non-A residues, particularly 
internal long consecutive U residues, into the newly synthesized poly(A) 
tails. Moreover, TUT4 and TUT7 contribute to the incorporation of these U 
residues, BTG4-mediated deadenylation produces substrates for maternal 
mRNA re-polyadenylation, and TENT4A and TENT4B incorporate internal 
G residues. The maternal mRNA remodeling is further confirmed using 
PAIso-seq2. Importantly, maternal mRNA remodeling is essential for the 
first cleavage of human embryos. Together, these findings broaden our 
understanding of the post-transcriptional regulation of maternal mRNAs 
during the human OET.

The OET is the process by which a fully grown oocyte undergoes matura-
tion and fertilization, resulting in a totipotent embryo that can support 
the full development of a new organism1–4. The OET features the absence 
of transcription until zygotic genome activation (ZGA)5–7, during which 
diverse events are controlled by post-transcriptional regulation of 

maternal mRNAs1,8–13. Poly(A) tails are added to the 3′-ends of most 
eukaryotic mRNAs, where they are essential for mRNA stability and 
translation14,15. Poly(A)-tail-mediated post-transcriptional regulation 
has essential roles in the OET in several species1,8–14,16. In Drosophila 
oocytes, global poly(A) tail elongation, catalyzed by Wispy during late 
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from the PAIso-seq dataset and provides additional insights into the 
dynamic changes of 3′-end non-A residues during the human OET. 
Interestingly, blocking maternal mRNA remodeling leads to failed first 
cleavage of human embryos. Together, the results of our study reveal 
extensive remodeling of maternal mRNA poly(A) tails and provide an 
important resource for further study of the oocyte maturation and 
preimplantation development in humans.

Results
PAIso-seq analysis of human oocytes and early embryos
We applied single-oocyte/embryo PAIso-seq to donated human oocytes 
at the germinal vesicle, metaphase I, and metaphase II stages, as well as 
pre-implantation embryos at the one-cell, two-cell, four-cell, eight-cell, 
morula, and blastocyst stages (Fig. 1a). In total, we analyzed 24 oocytes 
and 31 pre-implantation embryos (Fig. 1b). In addition, to gain insight 
into the regulation of poly(A) tails during the human OET, we performed 
PAIso-seq on 18 human one-cell embryos with siRNA-mediated knock-
down of BTG4 (siBTG4), TUT4 and TUT7 simultaneously (siTUT4/7), or 
TENT4A and TENT4B simultaneously (siTENT4A/B), which encode can-
didate regulators of poly(A) tails, or a negative control (siNC) (Fig. 1b).

We obtained a total of 16 million poly(A)-tail-inclusive full-length 
complementary DNA reads mapped to the human genome from the 
73 oocytes and embryos. All the PAIso-seq experiments were success-
ful, except for one MI oocyte (MI-7), for which very few reads were 
recovered, indicating loss of this oocyte during the experiment (Sup-
plementary Table 1). Because the same barcode sequence was shared 
for the following pairs of oocytes, they were combined as one replicate 
in the subsequent analyses, except for the uniform manifold approxi-
mation and projection (UMAP) analysis of the gene expression level: 
GV-1 and GV-6, GV-2 and GV-7, GV-3 and GV-8, GV-4 and GV-9, MI-1 and 
MI-7, and MI-2 and MI-8, resulting in five germinal vesicle replicates 
and six metaphase I replicates. For the other PAIso-seq samples, each 
oocyte/embryo was used as one replicate in the analyses. Samples 
from the same stage clustered together for the 72 successful PAIso-seq 
datasets (MI-7 excluded) using UMAP analysis42, with the exception 
that two metaphase I oocytes clustered close to germinal vesicle  
oocytes (Fig. 1c).

Dynamics of mRNA poly(A) tail length during the human 
oocyte-to-embryo transition
The global transcriptome undergoes drastic changes in poly(A) tail 
lengths during the human OET (Fig. 1d and Supplementary Table 2). In 
the germinal vesicle stage, most transcripts have poly(A) tail lengths 
between 15 and 100 nt, with two peaks at around 18 nt and 36 nt. Dur-
ing oocyte maturation, the relative abundance of transcripts with 
25- to 60-nt poly(A) tails decreased in metaphase I stage, and further 
decreased in metaphase II stage, suggesting global deadenylation 
of maternal mRNAs. After fertilization, the relative abundance of 
transcripts with 12- to 60-nt poly(A) tails increased in one-, two-, and 

oogenesis, promotes global translation10,12,17,18. Zebrafish (Danio rerio) 
miR-430 promotes maternal mRNA clearance by facilitating deadenyla-
tion19. Uridylation by TUT4 and TUT7 is required for maternal mRNA 
clearance in early embryos to secure embryonic development in both 
zebrafish and Xenopus13. In addition, TUT4 and TUT7 are required for 
mouse oogenesis9. In mouse oocytes, deletion of the maternal Btg4 
or Cnot6l, which encode an adapter protein and a core component of 
the deadenylase complex, respectively, leads to developmental arrest 
of early embryos due to failed deadenylation of maternal mRNAs20–24. 
Interestingly, one-cell embryos from women with BTG4 mutations also 
showed failed first zygotic cleavage25.

Methods for analyzing transcriptome-wide poly(A) tails enable 
a global view of poly(A)-tail-mediated post-transcriptional regula-
tion. For example, TAIL-seq (or its modified version, mTAIL-seq) and 
poly(A)-tail-length profiling by sequencing (PAL-seq and PAL-seq2) 
are two main technologies, based on the Illumina platform, that can 
measure poly(A) tail length10,11,26,27. In addition, TAIL-seq reveals the 
existence of non-A residues at the 3′-ends of poly(A) tails26. Nanop-
ore sequencing can measure the poly(A) tail length through machine 
learning of the signal from poly(A) sequence28–30. Full-length poly(A) 
and mRNA sequencing (FLAM-seq) can quantify the length of poly(A) 
tails and measure the non-A residues in the body of poly(A) tails using 
PacBio HiFi sequencing31. Full-length elongating and polyadenylated 
RNA sequencing (FLEP-seq) can measure poly(A) tail length on both 
the PacBio and Nanopore platforms32,33.

Taking advantage of these methods, profiles of the 
transcriptome-wide mRNA poly(A) tails during the OET have been 
revealed in zebrafish, Xenopus, and Drosophila10–13. However, the 
transcriptome-wide poly(A) tail landscape during mammalian OET 
remains unknown, because the methods mentioned above require 
micrograms of input RNA, which cannot be obtained from oocytes 
or embryos from mammals10,11,26–34. The poly(A)-tail-length changes 
during the mouse OET are known for only a handful of genes20–24,35–38, 
whereas they are completely unknown for even a single gene during 
the human OET.

Recently, we developed PAIso-seq on the PacBio platform to 
accurately measure the poly(A) tail length and non-A residues within 
the body of poly(A) tails at single-mouse-oocyte-level sensitivity39,40. 
Here, using single-oocyte/embryo PAIso-seq, we investigated poly(A) 
tail profiles in human oocytes and early embryos. To study the poten-
tial regulatory mechanism of poly(A) tails during the human OET, we 
performed short interfering RNA (siRNA)-mediated knockdown of 
BTG4, TUT4, TUT7, TENT4A, and TENT4B, followed by PAIso-seq analy-
sis. PAIso-seq has limitations: it cannot detect mRNA with very short 
poly(A) tails, or mRNA with non-A residues at the 3′-ends39. Therefore, 
we additionally analyzed human oocytes and embryos with PAIso-seq2 
(ref. 41), which can detect transcripts with very short or no poly(A) tails, 
and transcripts with non-A residues at their 3′-ends, although at lower 
sensitivity. The PAIso-seq2 dataset well-validates our observations 

Fig. 1 | Profiles of mRNA poly(A) tail length in human oocytes and early 
embryos, measured by PAIso-seq. a, Microscopy imaging of human oocytes 
and early embryos. Scale bar, 50 µm. Germinal vesicle, GV; metaphase I, MI; 
metaphase II, MII; one-cell, 1C; two-cell, 2C; four-cell, 4C; eight-cell, 8C; morula, 
MO; blastocyst, BL. b, Numbers of human oocytes and early embryos analyzed. 
c, UMAP analysis of 72 single oocytes and embryos, based on gene expression. 
Different oocyte or embryo groups are shown as symbols with the same shape 
and color. d, Distributions of the poly(A) tail lengths of transcripts. Median 
length (nt): GV, 37; MI, 41; MII, 63; 1C, 33; 2C, 37; 4C, 42; 8C, 61; MO, 57; BL, 74. e, 
Box plots for poly(A) tail length distribution of BTG4 (reads: GV, 4,326; MI, 1,878; 
MII, 1,159; 1C, 921; 2C, 608; 4C, 174) and NLRP5 (reads: GV, 432; MI, 170; MII, 78; 
1C, 143; 2C, 188; 4C, 103). f, Box plots for geometric means of poly(A) tail length 
of alternative polyadenylation (APA) isoforms with a proximal polyadenylation 
site (pPAS) or a distal polyadenylation site (dPAS) in oocytes. Genes (GV, 817; MI, 

173; MII, 81) with two PASs have enough coverage (≥20 poly(A)+ reads for both 
dPAS and pPAS isoforms) to be analyzed here. g, Gene expression level change in 
siBTG4-transfected (n = 4) compared with siNC-transfected (n = 4) 1C embryos. 
The upregulated and downregulated genes are shown in pink and blue (|log2(fold 
change)| ≥ 0.5, P < 0.05). h, Distributions of poly(A) tail lengths of transcripts in 
siNC and siBTG4 1C embryos. i, Transcriptional abundance of PADI6, MOS, and 
ZP2 in siBTG4 (n = 4) and siNC (n = 4) 1C embryos. Error bars indicate the s.e.m. 
j, Histogram of poly(A) tail lengths of transcripts of PADI6, MOS, and ZP2 in siNC 
and siBTG4 1C embryos. Data lists for d and f–i are provided in Supplementary 
Tables 2–4. CPM, counts per million. The P values were calculated by one-tailed 
Student’s t-test. For all box plots, the ‘×’ indicates the mean value, the horizontal 
bars show the median value, and the top and bottom of the box represent the 
value of 25th and 75th percentiles, respectively.
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four-cell embryos, suggesting global polyadenylation. In eight-cell 
and morula embryos, in which ZGA has already taken place43–48, most 
transcripts have poly(A) tail lengths between 15 and 200 nt, with an 
~18-nt peak. In blastocysts, the relative abundance of transcripts with 
15- to 40-nt poly(A) tail is decreased.

There is no information about poly(A) tail length for any gene 
in human oocytes and early embryos. Therefore, we turned to two 
genes that are known to be of conserved translational regulation in 
human and mouse oocytes. In both mice and humans, BTG4 protein 
is absent in germinal vesicle oocytes, and its translation begins after 
germinal vesicle breakdown21,23,25, while NLRP5 protein is already 
present in the germinal vesicle oocytes49–51. BTG4 mRNA harbored a 
shorter poly(A) tail than did NLRP5 in human germinal vesicle oocytes  
(Fig. 1e), and its length increased gradually during human oocyte matu-
ration. In contrast, the poly(A) tail length of NLRP5 decreased gradually  
(Fig. 1e). These results suggest that BTG4, but not NLRP5, is also dor-
mant maternal mRNA in human germinal vesicle oocytes and is similar 
to that in mice21,23,49,50. In addition, the poly(A) tail lengths of BTG4 
and NLRP5 also showed differential changes in early human embryos  
(Fig. 1e). These results indicate that poly(A) tail lengths are differentially 
regulated in human oocytes and early embryos.

PAIso-seq can analyze the mRNA-isoform-specific poly(A) tails39. 
Interestingly, isoforms derived from distal polyadenylation site (dPAS) 
carried significantly longer poly(A) tails than proximal ones in human 
germinal vesicle, metaphase I, and metaphase II oocytes (Fig. 1f and 
Supplementary Table 3), indicating that mRNA isoforms are differ-
entially controlled through poly(A) tail length during human oocyte 
maturation.

BTG4 regulates maternal mRNA deadenylation during the 
human oocyte-to-embryo transition
Among the BTG/Tob family genes, BTG4 was highly expressed in 
mouse21,23 and human oocytes and early embryos (Extended Data  
Fig. 1a). In BTG4-knockdown human one-cell embryos, 588 genes 
showed significant upregulation, while 284 genes showed significant 
downregulation (Fig. 1g, Extended Data Fig. 1c,d, and Supplemen-
tary Table 4). As the read number for the low-input full-length tran-
scriptome is relatively low, to quantify the level of transcripts of the 

coding genes measured by PAIso-seq, we compared the counts per 
million reads mapped (CPM), followed by Student’s t-test analysis, 
which showed comparable results to those of the DESeq2 and EdgeR 
methods (Extended Data Fig. 1g). The global distribution of poly(A) 
tail lengths shifted right towards the longer side, with more long tails 
and fewer short tails in human BTG4-knockdown one-cell embryos  
(Fig. 1h and Supplementary Table 2). Decay of Padi6, Mos, and Zp2 mRNAs 
occurs through BTG4-mediated deadenylation in mouse oocytes and 
one-cell embryos21,23. These three genes also showed increased mRNA 
level with poly(A) tails in the range of 20–40 nt in BTG4-knockdown 
human one-cell embryos (Fig. 1i,j). These results reveal that human 
BTG4 regulates global maternal mRNA deadenylation.

Two unique features of mRNA poly(A) tails of maternal mRNA
When examining the poly(A) tails of the maternal mRNAs at different 
stages, we found two very interesting features, as shown by Integrative 
Genomics Viewer (IGV) screenshots of TLE6 and ZAR1 (Fig. 2), which 
encode essential regulators of the OET in mice and in humans50,52–55. 
We observed the appearance of many polyadenylated transcripts with 
shortened 3′-untranslated regions (3′-UTRs) (violet dotted rectangu-
lar in Fig. 2) in one-, two-, and four-cell embryos, compared with the 
amount in the germinal vesicle and metaphase I stages. Many non-A 
residues appeared (colors other than cyan in the poly(A) tails in Fig. 2),  
especially in the one-, two-, and four-cell stages. Notably, internal U 
residues, which refer to U residues within poly(A) tails that are not 
located at the very 3′-ends, often existed in a consecutive manner, such 
as UU, UUU and Un up to more than 20 U residues (violet arrows in Fig. 2,  
Extended Data Fig. 2a, and Supplementary Table 5). Similar features 
were observed for other maternal mRNA species (IGV files available 
in the ‘Data availability’ section in the Methods), implying that these 
features were common for maternal mRNAs during the human OET.

Polyadenylated degradation intermediates
We called the polyadenylated transcripts with intact 3′-UTRs or short-
ened 3′-UTRs polyadenylated intact transcripts (PITs) or polyade-
nylated degradation intermediates (PDIs), respectively (Fig. 3a). In the 
germinal vesicle, metaphase I, and metaphase II oocytes, around 15% of 
reads were PDIs. However, the proportion of PDIs increased drastically 

Fig. 2 | Genome browser view of aligned PAIso-seq reads for two 
representative genes. a,b, IGV tracks showing reads (including part of the CDS, 
3′-UTR and poly(A) tail) of TLE6 (a) and ZAR1 (b) in oocytes and early embryos. 
For TLE6, the vertical dotted lines in black mark the position of annotated 
polyadenylation sites. For ZAR1, the vertical dotted line in black marks the 
position of an annotated proximal polyadenylation site, while the vertical dotted 
line in violet marks the position of an unannotated distal polyadenylation site, 
and gray lines between the black and violet dotted line represent alternative 
3′-UTR sequences included in the long isoform. The sequences that match 
the reference genome are shown in gray (the dispersed colored regions in the 

genomic regions indicated unmatched residues caused by single-nucleotide 
polymorphisms or sequencing errors); the poly(A) tails that cannot map to the 
genome are shown in colors (A residues, cyan; U residues, magenta; C residues, 
blue; G residues, dark yellow). Violet dotted rectangle highlights polyadenylated 
reads showing a 3′-UTR shorter than the canonical 3′-UTR. The violet arrow 
indicates the presence of a large amount of U residues within the poly(A) tails. 
There are very few detected TLE6 reads in MO and BL embryos, and there are very 
few detected ZAR1 reads in 8C, MO, and BL embryos. We combined all replicates 
of each stage for analysis.

Fig. 3 | There is a high level of PDIs and internal non-A residues in human 
oocytes and early embryos. a, Illustration of PITs and PDIs. The dashed 
trapezoid highlights partially degraded 3′-UTRs, with degraded nucleotides 
shown as small rectangular in gray. b, The PDI level of mRNA transcripts. c, Box 
plots of the PDI level of individual genes (GV, 7,796; MI, 5,133; MII, 3,425; 1C, 4,031; 
2C, 3,919; 4C, 3,156; 8C, 1,987; MO, 4,812; BL, 4,951; HeLa S3, 2,020; iPSCs, 259; 
organoids, 471). d, Proportion of the PDIs in the detected reads for TLE6, ZAR1, 
ZAR1L, BTG4, KHDC3L, PADI6, NLRP2, NLRP7, NLRP5, TUBB8, REC114, MOS, PATL2, 
WEE2, and PANX1. Stages with coverage of fewer than 20 poly(A)+ reads are left 
blank in the graph. e, Frequency of non-A residues of mRNA transcripts. f, Box 
plots showing frequency of non-A residues of individual genes (GV, 8,298; MI, 
5,471; MII, 3,643; 1C, 4,265; 2C, 4,154; 4C, 3,378; 8C, 2,341; MO, 6,131; BL, 6,431; 

HeLa S3, 2,532; iPSCs, 300; organoids, 594). g, Distribution of U length of mRNAs. 
The U length is the number of the longest consecutive U residues within the 
poly(A) tail. h–i, Frequency of non-A residues of mRNAs grouped by the length 
of the consecutive non-A residues within poly(A) tails. The number of replicates 
in b, e, h, and i: GV, 5; MI, 6; MII, 7; 1C, 5; 2C, 5; 4C, 6; 8C, 5; MO, 5; BL, 5; HeLa S3, 
2; iPSCs, 2; organoids, 2. Data lists for b–i are provided in Supplementary Tables 
6–10. For gene-level analysis, genes with ≥20 reads (the sum of the number of 
PDIs and PITs for PDI analysis; the number of poly(A)+ reads for non-A residue 
analysis) are included. Error bars indicate the s.e.m. The P values were calculated 
by one-tailed Student’s t-test. For all box plots, the ‘×’ indicates the mean value, 
the horizontal bars show the median value, and the top and bottom of the box 
represent the value of 25th and 75th percentiles, respectively.
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to around 60% in one-cell embryos, which remained high in two- and 
four-cell embryos, and started to decrease in eight-cell embryos, with 
the level returning to around 15% in morula and blastocyst (Fig. 3b and 
Supplementary Table 6). To examine the level of PDIs in non-germ cells, 
we analyzed HeLa S3, human induced pluripotent stem cell (iPSC), and 
organoid data generated by FLAM-seq31. The proportion of PDIs in these 
cells was also around 15% (Fig. 3b). Gene-level analysis revealed that 
the pattern of changes in PDIs across different samples was similar to 
that seen in the transcript-level analysis (Fig. 3c and Supplementary 
Table 7), for example for TLE6, ZAR1, ZAR1L, BTG4, KHDC3L, PADI6, 
NLRP2, NLRP7, NLRP5, TUBB8, REC114, MOS, PATL2, WEE2, and PANX1  
(refs. 25,53–66), which encode key regulators of the mouse or human OET 
(Fig. 3d and Supplementary Table 7). These results reveal that a high 
level of PDIs is a unique feature for human one-, two-, and four-cell 
embryos, but not for other stages or somatic cells.

Internal non-A residues of poly(A) tails during the human 
oocyte-to-embryo transition
Another feature is the appearance of a large amount of internal non-A 
residues within poly(A) tails during the human OET. PAIso-seq is not 
able to capture poly(A) tails with non-A residues at the 3′-end39. Owing 
to the small amount of 3ʹ-end non-A residues that were sequenced 
(Extended Data Fig. 2b,c and Supplementary Table 8), in the following 
analysis of non-A residues in the PAIso-seq dataset, we did not sepa-
rate the internal and 3′-end non-A residues and considered them all 
as internal non-A residues.

Transcript-level analysis revealed that levels of internal U residues 
were very high in human one-, two-, and four-cell embryos; these resi-
dues were found in around 60% of the mRNA poly(A) tails. The level 
started to increase along the oocyte maturation, was very high at the 
one-, two-, and four-cell stages, decreased from the eight-cell stage, and 
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Fig. 4 | The relationship between PDIs and internal non-A residues in human 
early embryos, measured by PAIso-seq. a, The distribution of number of reads 
detected in 1C embryo PAIso-seq data for the 171 transcriptionally activated 
genes, as reported in a recent study67. The y axis is the number of genes with 
the given number of detected reads. The numbers in the brackets refer to the 
minimal (left) and maximal (right) number of read counts for genes included in 
the groups. b, Bar plots of the number of poly(A) tails containing U residues or 
PDIs for the 171 genes mentioned in a or for all the genes in 1C embryo PAIso-seq 
data. c, Bar plots of the number of genes with ≥20 reads among the 171 genes 
mentioned above or the entire transcriptome in 1C embryo PAIso-seq data. d, 
Frequency of U residues of PITs or PDIs in 1C (n = 5), 2C (n = 5), and 4C (n = 6) 
embryos. The proportion (y axis) shows the number of PITs or PDIs with U 

residues in their poly(A) tails divided by total number of PITs or PDIs for each 
sample. Error bars indicate the s.e.m. The P values were calculated by one-tailed 
Student’s t test. e, Proportion of genes with ≥50% PDIs in 1C, 2C, and 4C embryos. 
f, Venn diagram showing the overlap of genes defined in e in 1C, 2C, and 4C 
embryos. g, Proportion of genes with ≥50% uridylated reads in 1C, 2C, and 4C 
embryos. h, Venn diagram showing the overlap of genes defined in g in 1C, 2C, 
and 4C embryos. i, Venn diagrams showing the overlap between genes defined 
in e and genes defined in g in 1C, 2C, and 4C embryos, respectively. Data lists 
for d, e, and g are provided in Supplementary Tables 11, 7, and 9. Poly(A)+ reads 
are included for the analysis. Genes with ≥20 poly(A)+ reads in each stage are 
included for the analyses in d–i.
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was lower than that in the germinal vesicle stage in the morula and blas-
tocyst stages (Fig. 3e). The levels of internal C and G residues showed 
a similar pattern of dynamic changes as internal U residues during the 
human OET, but the levels of internal C and G residues were lower than 
that of internal U residues (Fig. 3e). In the FLAM-seq datasets, in which 
we also could not detect 3ʹ-end non-A residues31, the transcript-level 
internal non-A residue abundance was low and was similar to that 
seen in human germinal vesicle oocytes (Fig. 3e). Gene-level analysis 
revealed that the pattern of changes of internal non-A residues across 
different samples was similar to that seen in transcript-level analysis 
(Fig. 3f and Supplementary Table 9). These results reveal that there is a 
high level of internal non-A residues in human one-, two-, and four-cell 
embryos.

We found consecutive internal U residues in the poly(A) tails of 
maternal mRNAs (Fig. 2 and Supplementary Table 5), with lengths of 
up to 20 nt; in non-germ cells, the lengths were up to only 5 nt (Fig. 3g 
and Supplementary Table 10). In contrast, the length of consecutive 
internal C or G residues was short (Supplementary Table 10). To further 
quantify the level of consecutive or monomeric internal non-A residues, 
we separated the poly(A) tails with non-A residues into three groups 
(U1, U2–5, U≥6 for U; C1, C2, C≥3 for C; and G1, G2, G≥3 for G) on the 
basis of the maximum length of consecutive non-A residues within a 
given poly(A) tail. During the human OET, the majority of internal C and 
G residues were monomeric, and the majority of internal U residues 
were consecutive (Fig. 3h and Supplementary Table 8). In contrast, the 
majority of the internal non-A residues in poly(A) tails were monomeric 
in HeLa S3, iPSCs, and organoids (Fig. 3i and Supplementary Table 8).

Maternal mRNA remodeling through poly(A) tails during the 
human oocyte-to-embryo transition
There are two possible mechanisms responsible for global polyade-
nylation together with the production of PDIs and internal non-A resi-
dues in human one-, two-, and four-cell embryos: new transcription or 
post-transcriptional regulation of maternal mRNAs. Transcription is 
minor before the eight-cell stage in human embryos43–48, suggesting 
that new transcription contributes minimally to the above global 
changes in poly(A) tails. To further distinguish the contributions 
from the zygotic transcripts and maternal transcripts, we examined 
the amount of potentially zygotically transcribed mRNAs. A recent 
study reported 171 genes (log2(FC) > 0.5, P < 0.05) with low-level new 
transcription in human one-cell embryos67. There were 366,976 reads 
in our one-cell embryo poly(A) tail data. However, among the 171 
genes, 45 were not detected in our data, and the number of reads for 
the detected genes was small (Fig. 4a). We detected 201,801 PDIs and 
241,245 reads with internal U residues, and only 1,382 PDIs and 2,588 
reads with internal U residues belong to the 171 genes (Fig. 4b). We 
needed at least 20 reads for gene-level analysis; 4,265 genes in our 
one-cell data and only 38 genes among the 171 genes met this criteria 
(Fig. 4c). These results reveal that most of the transcripts analyzed 

here are maternal mRNAs, and only a few are from potentially newly 
transcribed mRNAs.

Therefore, maternal mRNAs are globally deadenylated and then 
re-polyadenylated with a large amount of degradation intermediates 
being re-polyadenylated to produce PDIs during the human OET, coin-
ciding with incorporation of large numbers of internal non-A residues 
into the newly synthesized poly(A) tails. We call this process maternal 
mRNA remodeling.

Uridylation of polyadenylated degradation intermediates in 
maternal mRNA remodeling
About 60–70% of PDIs contained internal U residues within their poly(A) 
tails in human one-, two-, and four-cell embryos (Fig. 4d and Supple-
mentary Table 11), indicating that internal U residues could be incor-
porated into poly(A) tails during the synthesis of most of the PDIs. We 
focused on genes in which at least 50% of reads were PDIs and genes 
in which at least 50% of poly(A) tails contained internal U residues. For 
the majority of the genes in human one-, two-, and four-cell embryos, 
at least 50% of transcripts were PDIs or at least 50% of poly(A) tails 
contained internal U residues (Fig. 4e,g and Supplementary Tables 7 
and 9), and they overlapped highly among these three developmental 
stages (Fig. 4f,h). In addition, genes with at least 50% PDIs and genes in 
which at least 50% of poly(A) tails contained internal U residues showed 
good overlap (Fig. 4i). Gene Ontology (GO) analysis showed that these 
groups of genes were enriched for similar GO terms (Supplementary 
Table 12), likely because of large overlap of genes among these groups.

Role of BTG4 in maternal mRNA remodeling
We asked whether active deadenylation affects the production of PDIs 
and internal non-A residues. BTG4 regulates maternal mRNA deadenyla-
tion (Fig. 1h), so we examined the PDI level in the BTG4-knockdown 
one-cell embryos. Both transcript- and gene-level analyses revealed 
that the level of PDIs decreased significantly after BTG4 knockdown 
(Fig. 5a,b and Supplementary Tables 6 and 7), including most of the 
above mentioned functionally important regulators (Fig. 5c and Sup-
plementary Table 7). Internal U residues in the poly(A) tails usually 
exist close to the 5′-ends of poly(A) tails (Fig. 2). Hereafter, the length 
of the sequences between the end of a 3′-UTR and the first U residue is 
called N length (Fig. 5d). We quantified the global distribution of the 
N length in human one-, two-, and four-cell embryos. In all U1, U2–5, 
and U≥6 groups, the N length of the poly(A) tails was very short, with 
about 30% at 0 and the vast majority having an N length between 1–15 nt  
(Fig. 5e and Supplementary Table 13), implying that uridylation takes 
place on the deadenylated maternal mRNAs. Indeed, the N length 
tended to become longer upon BTG4 knockdown in human one-cell 
embryos (Fig. 5f and Supplementary Table 13). Together, our results 
reveal that BTG4-mediated maternal mRNA deadenylation produces 
substrates for uridylation and re-polyadenylation to generate internal 
non-A residues and PDIs during maternal mRNA remodeling.

Fig. 5 | The rle of BTG4 in maternal mRNA remodeling in one-cell embryos. a, 
The proportion of the PDIs in siNC (n = 4) and siBTG4 (n = 4) 1C embryos. b, Box 
plot of the proportion of the PDIs of individual genes (4,643 genes with ≥20 reads 
in both samples) in siNC and siBTG4 1C embryos. In box plots, the ‘×’ indicates the 
mean value, the horizontal bars show the median value, and the top and bottom 
of the box represent the 25th and 75th percentiles, respectively. c, Proportion 
of the PDIs for TLE6, ZAR1, ZAR1L, TUBB8, PADI6, NLRP2, NLRP7, NLRP5, KHDC3L, 
REC114, MOS, PATL2, WEE2, and PANX1 in siNC and siBTG4 1C embryos. d, Diagram 
depicting mRNAs with U residues, grouped by the length of longest stretch of 
consecutive U residues. The N length represents the number of residues between 
the end of the 3′-UTR and the first base of the longest consecutive stretch of U 
residues in a poly(A) tail. e, Distribution of N length of mRNAs divided into U1, 
U2–5, and U≥6 groups in 1C, 2C, and 4C embryos. f, Distribution of N length of 
mRNAs divided into U1, U2–5, and U≥6 groups in siNC (n = 4) and siBTG4 (n = 4) 

1C embryos. The P values of N0 to N25 are 0.042, 0.017, 0.324, 0.179, 0.338, 0.375, 
0.017, 0.178, 0.012, 0.023, 0.348, 0.214, 0.016, 0.011, 2.744 × 10–3, 1.355 × 10–3, 
1.886 × 10–3, 1.779 × 10–4, 6.477 × 10–4, 2.710 × 10–3, 2.103 × 10–3, 9.146 × 10–3, 2.885 
× 10–3, 3.757 × 10–3, 2.151 × 10–3, 9.896 × 10–3 for the U1 group; 9.172 × 10–3, 7.515 × 
10–3, 0.260, 2.945 × 10–3, 0.395, 0.311, 7.969 × 10–3, 0.026, 0.095, 2.454 × 10–3, 0.033, 
0.028, 5.442 × 10–3, 2.917 × 10–3, 0.051, 2.314 × 10–3, 0.021, 4.852 × 10–3, 2.962 × 
10–3, 8.939 × 10–4, 0.031, 0.044, 0.065, 9.049 × 10–3, 0.038, 4.591 × 10–4 for U2–5 
group; and 0.056, 0.044, 0.231, 0.061, 0.098, 0.407, 0.059, 0.129, 0.160, 0.047, 
0.161, 6.804 × 10–3, 0.010, 0.489, 0.111, 0.098, 0.386, 2.021 × 10–3, 4.605 × 10–3, 
0.046, 0.263, 0.179, 0.207, 0.131, 9.133 × 10–3, 0.175 for the U6 group. Data lists for 
a–c and e and f are provided in Supplementary Tables 6, 7, and 13. The data here 
were measured by PAIso-seq. Error bars indicate the s.e.m. The P values were 
calculated by one-tailed Student’s t-test. Genes with ≥20 reads are included for 
gene-level analysis.
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Role of TUT4 and TUT7 in maternal mRNA remodeling
In HeLa cells and during mouse oogenesis, TUT4 and TUT7 are respon-
sible for the mRNA 3ʹ-end oligo-uridylation, but contribute minimally 

to the mono-uridylation9,68. To test whether TUT4 and TUT7 contrib-
ute to poly(A) tail internal oligo-uridylation in human early embryos, 
we performed knockdown of TUT4 and TUT7 (Extended Data Fig. 1c). 
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Transcript-level analysis revealed that the level of internal U residues 
that were no more than 10 nt was minimally affected, whereas the 
level of those longer than 10 nt decreased significantly in TUT4- and 
TUT7-knockdown human one-cell embryos (Fig. 6a and Supplementary 
Table 10). Gene-level analysis also revealed a significant reduction of uri-
dylation upon TUT4 and TUT7 knockdown (Fig. 6b and Supplementary 
Table 14). These results reveal that long consecutive internal U residues 
are sensitive to TUT4 and TUT7 knockdown in human one-cell embryos.

Of note, the expression levels of TUT4 and TUT7 are relatively 
low (Extended Data Fig. 1b and Supplementary Table 4), and could 
not be detected in the PAIso-seq data for control and TUT4- and 
TUT7-knockdown human one-cell embryos. In addition, the transcrip-
tional changes upon knockdown of TUT4 and TUT7 knockdown were 
moderate (Extended Data Fig. 1h and Supplementary Table 4).

Internal U residues and re-polyadenylation
Next, we asked whether U residues affected re-polyadenylation. PDIs 
are produced through re-polyadenylation of maternal transcripts that 
undergo deadenylation and 3′-UTR partial degradation, and most PDIs 
contain internal U residues, making PDIs a good system for studying the 
relationship between U residues and re-polyadenylation. Internal U resi-
dues of PDIs were significantly reduced in TUT4- and TUT7-knockdown 
one-cell embryos (Fig. 6c and Supplementary Table 14), whereas the 
level of PDIs was not affected (Fig. 6d,e and Supplementary Tables 6 
and 7). These results indicate that reduced uridylation likely does not 

affect the re-polyadenylation of degradation intermediates in human 
early embryos.

The role of TENT4A and TENT4B in maternal mRNA 
remodeling
TENT4A and TENT4B catalyze mRNA guanylation that shields 
mRNA from rapid deadenylation in somatic cells69. We performed 
siRNA-mediated knockdown of TENT4A and TENT4B simultaneously 
in human one-cell embryos (Extended Data Fig. 1c,e,f and Supple-
mentary Table 4). Both transcript- and gene-level analyses showed 
that the number of internal G residues was significantly reduced in 
TENT4A- and TENT4B-knockdown human one-cell embryos (Fig. 7a,b 
and Supplementary Tables 8 and 9). We found that 1,192 genes were 
downregulated, whereas only 213 genes were upregulated in TENT4A- 
and TENT4B-knockdown one-cell embryos (Fig. 7c and Supplementary 
Table 4).

Extensive maternal mRNA remodeling occurs in the human 
one-cell stage; thus, the 1,192 genes may be targets of remodeling. 
The levels of PDIs (Fig. 7d,e and Supplementary Tables 6 and 7) and 
internal non-A residues (Fig. 7f,g and Supplementary Tables 8 and 
9) for these 1,192 genes dramatically increased from metaphase II 
to the one-cell stage. Moreover, the levels of both PDIs (Fig. 7h and 
Supplementary Table 7) and internal non-A residues (Fig. 7i and Sup-
plementary Table 9) for these 1,192 genes decreased significantly 
upon TENT4A and TENT4B knockdown. At the transcript level, the 
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decrease in poly(A) tails with G residues for these 1,192 genes after 
TENT4A and TENT4B knockdown (siNC, 30.24%; siTENT4A/B, 25.44%) 
was similar to the trend seen at the gene level (Fig. 7i). These results 
suggest that TENT4A and TENT4B take part in the maternal mRNA 
remodeling through incorporation of internal G residues to stabilize 
the newly synthesized poly(A) tails.

PAIso-seq2 analysis of human oocytes and embryos
We used PAIso-seq2 (ref. 41) to measure transcripts that could not be or 
were inefficiently captured by PAIso-seq (Fig. 8a), and analyzed oocytes 

at the germinal vesicle and metaphase II stages as well as embryos at the 
one-, two-, and four-cell stages using three to five oocytes or embryos 
per replicate, with two replicates (Extended Data Fig. 3a). We obtained 
3.32 million poly(A)-inclusive cDNA reads mapped to the genome (Sup-
plementary Table 15). Among all replicates, the second replicates for 
metaphase II, one-cell, and two-cell samples had a small number of 
detected reads, leading to detection of only a few genes in these three 
replicates (Extended Data Fig. 3b and Supplementary Table 4). In addi-
tion, the sensitivity of PAIso-seq2 was much lower than that of PAIso-seq 
(Extended Data Fig. 3d).
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In the PAIso-seq2 dataset, most mRNAs had poly(A) tail lengths 
in the range of 6–100 nt, with two major peaks at around 12 nt and 36 
nt in the germinal vesicle stage (Fig. 8b and Supplementary Table 2). 
There was a large decrease in the relative abundance of transcripts with 
poly(A) tails in the range of 20–72 nt and a large increase in the abun-
dance of those below 20 nt during oocyte maturation, which was not 
seen in the PAIso-seq data (Fig. 8b and Supplementary Table 2). After 
fertilization, the relative abundance of transcripts with poly(A) tails in 
the range of 12–40 nt increased (Fig. 8b and Supplementary Table 2). 
Except for the appearance of a large amount of poly(A) tails shorter 
than 20 nt in the metaphase II stage, the trends in poly(A)-tail-length 
changes observed in the PAIso-seq2 data were largely consistent with 
those in the PAIso-seq data (Fig. 1d). Taking advantage of PAIso-seq2 
in capturing very short poly(A) tails, we detected a very large amount 
of poly(A) tails shorter than 20 nt in metaphase II oocytes, which were 
products of global maternal mRNA deadenylation during oocyte matu-
ration, leading to overall shorter poly(A) tails in the PAIso-seq2 data, 
expect at the germinal vesicle stage (Figs. 1d and 8b, Extended Data 
Fig. 3e, and Supplementary Table 16).

Further analysis of PAIso-seq2 data revealed that the patterns of 
dynamic changes of internal non-A residues (Fig. 8c, Extended Data 
Fig. 4a,d, and Supplementary Tables 8 and 9), PDIs (Fig. 8d, Extended 
Data Fig. 4b, and Supplementary Tables 6 and 7), length of consecutive 
U residues (Extended Data Fig. 4c and Supplementary Table 10), and N 
length of uridylated poly(A) tails (Extended Data Fig. 4e and Supple-
mentary Table 13) during the human OET were consistent with those 
observed in PAIso-seq data. PAIso-seq2 can detect the non-A residues 
at the 3ʹ-ends that PAIso-seq cannot detect. Interestingly, there was a 
very high level of 3ʹ-end U residues in the metaphase II and four-cell 
stages, whereas the levels in the one- and two-cell stages were low and 
comparable to that in the germinal vesicle stage (Fig. 8c, Extended 
Data Fig. 4a,d (bottom), and Supplementary Tables 8 and 9) which 
were different from the internal ones, suggesting that there are two 
waves of uridylation during the human OET. Together, PAIso-seq and 
PAIso-seq2 data are complementary and mutually supportive, which 

cross-validates the findings that maternal mRNA remodeling occurs 
with global deadenylation followed by re-polyadenylation during the 
human OET.

Maternal mRNA remodeling is necessary for the first cleavage
3ʹ-deoxyadenosine (3ʹ-dA) is an adenosine analog that is converted 
to 3ʹ-dATP in cells (Extended Data Fig. 5a), which can be incorporated 
into poly(A) tails to prevent further cytoplasmic polyadenylation 
owing to the absence of a 3′ hydroxyl group70–74. To test the role of 
re-polyadenylation after fertilization, we treated the embryos with 3ʹ-dA 
immediately following fertilization through intracytoplasmic sperm 
injection (ICSI) in five independent experiments (Fig. 8e). There were 
11 3ʹ-dA-treated two-pronuclear one-cell embryos in total, all of which 
were arrested at the one-cell stage, whereas about 95% of non-treated 
two-pronuclear one-cell embryos could complete the first cleavage. 
Although 3ʹ-dA can interfere with transcription in actively transcribing 
cells75, the phenotype observed here was not due to the transcription 
interference, because human embryos could develop to the eight-cell 
stage normally after global transcriptional inhibition by α-amanitin76,77.

Next, we performed PAIso-seq2 on the 3ʹ-dA-treated human 
one-cell embryos (Fig. 8e). One of the 3′-dA replicates was lost dur-
ing library preparation. To minimize the use of human embryos and 
because one replicate of the 3′-dA-treated sample yielded compelling 
results, we proceeded with one replicate. The levels of both PDIs (Fig. 8f, 
Extended Data Fig. 5b, and Supplementary Tables 6 and 7) and internal 
non-A residues (Fig. 8g (top), Extended Data Fig. 5c, and Supplementary 
Tables 8 and 9) decreased significantly in 3ʹ-dA-treated human one-cell 
embryos. Moreover, 3ʹ-dA treatment led to an obvious decrease in 
the level of poly(A) tails in the range of 15–40 nt and an increase in the 
range below 15 nt (Fig. 8h and Supplementary Table 2), the opposite of 
our prior observation of the change from the metaphase II stage to the 
one-cell stage (Fig. 8b), further confirming that re-polyadenylation is 
blocked by 3ʹ-dA. In addition, we did not observe a decrease of 3ʹ-end 
U residues in 3ʹ-dA-treated human one-cell embryos (Fig. 8g (bottom), 
Extended Data Fig. 5d, and Supplementary Tables 8 and 9), indicating 

Fig. 8 | Human oocytes and early embryos analyzed by PAIso-seq2. a, Diagram 
showing the principle and capability of capturing different types of transcripts 
for PAIso-seq and PAIso-seq2. b, Global distribution of poly(A) tail lengths of 
mRNAs measured by PAIso-seq2. Median poly(A) tail length (nt): GV, 40; MII, 
25; 1C, 21; 2C, 17; 4C, 21. c, Frequency of non-A residues separated by internal 
and 3′-end positions in oocytes and early embryos, measured by PAIso-seq2 
(two replicates each). d, The PDI level of mRNAs in oocytes and early embryos, 
measured by PAIso-seq2 (two replicates each). e, Illustration of 3′-dA treatment 
experiments in 1C embryos for PAIso-seq2 analysis. f, Box plots showing the PDI 
level of individual genes (29 genes with ≥20 reads in both samples) in control 
(Con) and 3′-dA-treated 1C embryos. g, Box plot of frequency of non-A residues of 

individual genes (29 genes with ≥20 reads in both samples) in control and 3′-dA-
treated 1C embryos. h, Global distribution of poly(A) tail lengths of mRNAs in 
control and 3′-dA-treated 1C embryos. The bottom histogram is zoomed in view 
of the upper histogram between 1–50 nt. Data lists for b–d and f–h are provided 
in Supplementary Tables 2 and 6–9. The data here were measured by PAIso-seq2. 
Error bars indicate the s.e.m. The P values were calculated by one-tailed Student’s 
t-test. Genes with ≥20 reads were included for gene-level analysis. For all box 
plots, the ‘×’ indicates the mean value, the horizontal bars show the median 
value, and the top and bottom of the box represent the value of 25th and 75th 
percentiles, respectively.

Fig. 7 | Role of TENT4A and TENT4B in maternal mRNA remodeling in human 
one-cell embryos. a, The frequency of mRNA poly(A) tails containing G residues 
in siNC (n = 4) and siTENT4A/B (n = 6) 1C embryos. The proportion (y axis) shows 
the number of poly(A) tails with G residues divided by the total number of 
reads with poly(A) tails for each sample. b, Box plot showing the frequency of G 
residues in poly(A) tails of individual genes in siNC and siTENT4A/B 1C embryos 
(4,474 genes). c, Gene expression level change in siTENT4A/B (n = 6) compared 
with siNC (n = 4) 1C embryos. The upregulated and downregulated genes 
upon TENT4A and TENT4B knockdown are shown in pink and blue (|log2(fold 
change)| ≥ 0.5, P < 0.05). d, The PDI level of mRNAs of 1,192 downregulated 
genes upon TENT4A and TENT4B knockdown in oocytes and early embryos. e, 
Box plot of the PDI level of individual genes downregulated upon TENT4A and 
TENT4B knockdown (number: GV, 978; MI, 666; MII, 266; 1C, 579; 2C, 518; 4C, 
425; 8C, 258; MO, 639; BL, 621). f, Frequency of non-A residues in mRNAs of 1,192 
downregulated genes upon TENT4A and TENT4B knockdown in oocytes and early 

embryos. g, Box plot of the frequency of poly(A) tails containing non-A residues 
for genes that are downregulated following TENT4A and TENT4B knockdown 
(number: GV, 1,019; MI, 702; MII, 282; 1C, 611; 2C, 556; 4C, 445; 8C, 272; MO, 701; 
BL, 678). h, Box plot of the PDI level of individual genes that are downregulated 
following TENT4A and TENT4B knockdown in siNC and siTENT4A/B 1C embryos 
(397 genes). i, Box plot of frequency of poly(A) tails containing U, C, or G 
residues in individual genes that are downregulated following TENT4A and 
TENT4B knockdown in siNC and siTENT4A/B 1C embryos (420 genes). Number of 
replicates in d and f (GV, 5; MI, 6; MII, 7; 1C, 5; 2C, 5; 4C, 6; 8C, 5; MO, 5; BL, 5).  
Data lists for a–i are provided in Supplementary Tables 4 and 6–9. The data 
here are measured by PAIso-seq. Error bars indicate the s.e.m. The P values were 
calculated by one-tailed Student’s t-test. Genes with ≥20 reads are included 
for gene-level analysis. For all box plots, the ‘×’ indicates the mean value, the 
horizontal bars show the median value, and the top and bottom of the box 
represent the value of 25th and 75th percentiles, respectively.
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that blockage of re-polyadenylation prevents the conversion of 3ʹ-end 
U residues to internal U residues. Together, these results suggest that 
maternal mRNA re-polyadenylation after fertilization has essential 
roles in early embryo development in humans.

Discussion
This study reveals unexpected dynamic changes of PDIs and 
poly(A) tail non-A residues in the maternal transcripts during 
the human OET (Extended Data Fig. 5e (left)). Maternal mRNAs 
undergo BTG4-dependent global deadenylation during oocyte 
maturation, followed by either mRNA body decay or cytoplasmic 
re-polyadenylation. Interestingly, a large amount of the degradation 
intermediates are not further degraded, which undergo cytoplasmic 
re-polyadenylation. The cytoplasmic re-polyadenylation can be uri-
dylation followed by re-polyadenylation or direct re-polyadenylation. 
These re-polyadenylation events are associated with G residues 
incorporated by TENT4A and TENT4B, which potentially stabilize the 
re-polyadenylated tails. Importantly, re-polyadenylation in the one-cell 
embryos is essential for the first cleavage (Extended Data Fig. 5e (right)).

More than 60% of the transcripts are PDIs in one-, two-, and 
four-cell embryos. We are confident that these PDIs are generated by 
polyadenylation on partially degraded transcripts, but not by regular 
PAS-cleavage-coupled polyadenylation, for the following four reasons. 
First, the high level of PDIs is with their polyadenylation sites within the 
coding sequences (CDS) (around 10% in PAIso-seq data for the one-, 
two-, and four-cell stages, while only around 1% in the germinal vesicle 
and blastocyst stages). Second, if the new PASs are generated through 
canonical cleavage-coupled polyadenylation, we would expect that 
the cleavage sites would cluster near the polyadenylation signal sites; 
however, we see largely even distribution upstream of the original PAS. 
Third, new transcription is minimal in human one-, two-, and four-cell 
embryos43–48; therefore, it is very unlikely that there are highly abundant 
cleavage and polyadenylation events that are generally transcription 
coupled. Forth, the results from knockdown of BTG4, TUT4 and TUT7, 
or TENT4A and TENT4B support dynamic post-transcriptional regula-
tion of poly(A) tails by these factors.

The maternal mRNA remodeling brings forward many interesting 
directions for the future. Are there other factors involved in mRNA 
deadenylation and decay, such as RNA m6A modification, that also 
contribute to this process? What factors protect these degradation 
intermediates from further degradation? What poly(A) polymerases 
or other factors are responsible for the massive re-polyadenylation? 
What are the roles of global re-polyadenylation? Why does the global 
poly(A)-tail-length distribution generally have two peaks? A previous 
study has found mRNAs with non-canonical poly(A) sites in pre-ZGA 
zebrafish embryos, which were thought to be produced by cytoplasmic 
polyadenylation of degradation intermediates78 and were similar to 
the PDIs described here. Therefore, we’d expect conserved features 
for the PDIs in vertebrate embryos. Zebrafish embryos may be a good 
system for exploring the above questions about the mechanism and 
function of PDIs.

TUT4- and TUT7-mediated uridylation is coupled with rapid mRNA 
degradation in human somatic cells and during mouse oogenesis9,68. 
However, during the human OET, uridylated transcripts account for 
up to two-thirds of the maternal mRNAs. Transcripts with internal U 
residues become drastically increased at the one-cell stage and are 
maintained stably until the four-cell stage, spanning about two days 
until degradation at the eight-cell stage, when ZGA takes place. There-
fore, mRNAs with uridylation at their 3′-ends do not go through imme-
diate degradation in human oocytes and early embryos, but can be 
stabilized and further re-polyadenylated to form a new type of poly(A) 
tail with U residues followed by a stretch of A residues. Identification 
of the stage-specific biochemical mechanisms responsible for stabi-
lization versus degradation of transcripts with U residues represents 
an interesting research direction for future studies. Furthermore, the 

large amount of maternal transcripts with internal U residues may 
promote their degradation at the eight-cell stage, which warrants 
further investigation.

Blocking maternal mRNA re-polyadenylation after fertilization led 
to first cleavage failure of human one-cell embryos. A recent clinical 
genetic study has revealed that maternal mutation of BTG4 also leads 
to the first cleavage failure of human one-cell embryos25,79. There-
fore, poly(A) tails of maternal mRNAs need to be tightly regulated to 
ensure successful human embryonic development. The mechanistic 
link between regulation of poly(A) tails and embryonic development 
warrants further investigation. The relationship between poly(A) tail 
dynamics and mRNA translational efficiency80,81 is an obvious direc-
tion to explore.

In conclusion, we reveal extensive dynamic poly(A) tail changes 
and provide evidence of potential regulatory mechanisms during 
the human OET. As poly(A) tails are universal in eukaryotic mRNAs, 
poly(A) tail length and non-A-residue-mediated post-transcriptional 
regulations can be general mechanisms that control diverse biological 
or disease processes.
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Methods
Human oocytes and embryos
The collection and use of human gametes and embryos in this study 
follow these guidelines: Human Biomedical Research Ethics Guidelines 
(set by National Health Commission of the People’s Republic of China in 
2016), the 2016 Guidelines for Stem Cell Research and Clinical Translation 
(issued by the International Society for Stem Cell Research, ISSCR), and 
the Human Embryonic Stem Cell Research Ethics Guidelines (set by China 
National Center for Biotechnology Development on 24 December 2003). 
The aim and protocols of this study are in compliance with the above 
ethical regulations and have been reviewed and approved by the Insti-
tutional Review Board of Reproductive Medicine, Shandong University.

Immature oocytes in either the germinal vesicle or metaphase 
I stage were donated by individuals taking intracytoplasmic sperm 
injection (ICSI) treatments, and these immature oocytes were not 
used in regular clinical practice. The donor women are 25–38 years old 
with tubal-factor infertility, and their partners have healthy semen. In 
general, immature oocytes obtained in controlled ovarian hyperstimu-
lation cycles were not used for subsequent clinical practice, because 
the development efficiency of embryos from immature oocytes was 
low, and participants generally had enough mature oocytes. Therefore, 
the research purpose was clearly explained to participants with a large 
number of follicles before oocyte retrieval, to see whether they would 
be willing to donate immature oocytes for scientific research with no 
compensation; participants were also assured that the donated oocytes 
would be used for only research, not any clinical purposes. Written 
informed consent was obtained from all donors. When obviously imma-
ture germinal vesicle or metaphase I oocytes were identified by an 
embryologist during oocyte denuding, another embryologist would 
confirm the oocyte maturity and then check whether the participant 
had signed the informed consent for donation. The oocytes that met 
the requirements were collected for subsequent scientific research. 
The sperm is cryopreserved normal semen donated for research pur-
poses from men no older than 35, with written informed consent.

In vitro maturation, ICSI, and other oocyte processing steps were 
completed in the scientific research laboratory, which is physically 
separated from the clinical laboratory. The source and destination of 
all the donated samples were recorded according to the regulations to 
ensure that they could be tracked.

Metaphase II oocytes were from denuded germinal vesicle or meta-
phase I oocytes that were kept in in vitro maturation (IVM) medium 
at 37 °C in an atmosphere with 5% CO2 for 23–27 hours (staring from 
germinal vesicle stage) or for 18–24 hours (staring from the metaphase 
I stage)82. The IVM medium consists of M199 medium (GIBCO, 11-150-
059) with 20% serum substitute supplement (Irvine Scientific, 99193) 
and 75 mIU/ml of recombinant follicle stimulating hormone (Merck 
Serono, Gonal-f).

The early embryos at each developmental stage without treatment 
were prepared as described below, while the early embryos that were 
treated with an inhibitor or siRNA were prepared as described in the 
‘3′-dA treatment’ and ‘Gene knockdown by siRNA’ sections. For early 
embryos without treatment, the in vitro-matured oocytes described 
above were fertilized using donated sperm through ICSI. Then the 
embryos were cultured in G1.5 medium (Vitrolife, 10128) in a humidi-
fied atmosphere at 37 °C with 6% CO2 in air around 17–19 hours at the 
one-cell stage, 27 hours at the two-cell stage, 48 hours at the four-cell 
stage, 3 days at the 8-cell stage, 4 days at the morula stage, and 5 days 
at the blastocyst stage to be vitrified, as described in the previous 
study83. Vitrification was done by incubating the embryos in Vitrifica-
tion Solution 1 (8% ethylene glycol and 8% dimethyl sulfoxide (DMSO) in 
Cryobase (10 mM HEPES-buffered media containing 20 mg/ml human 
serum albumin and 0.01 mg/ml gentamicin)) at room temperature 
for 11 minutes. After initial shrinkage, embryos with original volume 
were transferred into Vitrification Solution 2 (16% ethylene glycol, 16% 
DMSO, and 0.68 M trehalose in Cryobase) for 1–1.5 minutes. Then, the 

embryos were transferred onto Cryotop strip in a very small volume 
of solution (<0.1 µl) and plunged into liquid nitrogen. The Cryotop 
with the protective cover added was transferred into liquid nitrogen 
for storage. Thawing of the vitrified embryos was done by removing 
them from the liquid nitrogen after removal of the protective cover, 
and then immersing them in 2.5 ml of 37 °C Warming Solution 1 (1 M 
trehalose in Cryobase) for 1 minute on a heated stage. Embryos were 
then transferred to 0.5 ml of Warming Solution 2 (0.5 M trehalose in 
Cryobase) for 3 minutes, and then placed into 0.5 ml Cryobase for 
5 minutes, followed by fresh 0.5 ml Cryobase for 1 minute. Embryos 
were finally transferred to G1.5 or G2 medium (Vitrolife, 10131) for evalu-
ation of embryo quality. Embryos of good quality were washed with 
1× phosphate-buffered saline (PBS, Invitrogen, AM9625) containing 
0.1% bovine serum albumin (BSA, Sigma-Aldrich, A1933) three times 
and were collected into PCR tubes with a very small volume of buffer. 
The oocytes and embryos were randomly assigned to experimental 
groups. A single oocyte or embryo was used for PAIso-seq analysis with 
4–9 replicates for each stage (details in Fig. 1b). Three to five oocytes or 
embryos were used for each PAIso-seq2 replicate (details in Extended 
Data Fig. 3a). No statistical methods were used to pre-determine sample 
sizes, but our sample sizes are similar to those used in previous publica-
tions44,45. All embryos used in this study were cultured for no more than 
7 days and were used only for molecular analyses.

3′-dA treatment
3′-dA (Sigma, C3394) was directly dissolved using G1.5 medium to a final 
concentration of 2 mM. The medium without 3′-dA was used as a con-
trol. The in vitro matured metaphase II oocytes described above were 
fertilized through ICSI and cultured immediately in control medium 
or medium containing 3′-dA. The embryos were either monitored for 
development or collected at the PN3–5 stage for PAIso-seq2 library 
construction.

Gene knockdown by siRNA
The germinal vesicle oocytes were microinjected with 5–10 pl siRNA, 
matured in vitro to the metaphase II stage as described above, ferti-
lized through ICSI, and cultured until collection at the PN3–5 stage 
for PAIso-seq analysis. The siRNAs against BTG4, TUT4, TUT7, TENT4A, 
TENT4B, and negative control were purchased from ON-TARGETplus 
SMARTpool (Dharmacon, https://grcf.jhmi.edu/dna-services/sishrna/
dharmacon/). siRNA sequence information is included in Supple-
mentary Table 17. The concentration used for injection was 10 µM 
for control siRNA and siBTG4. For siTUT4/7 and siTENT4A/B, used to 
knockdown two genes simultaneously, equal amounts of the siRNA 
against each gene were mixed to a final concentration of 10 µM.

PAIso-seq library construction
A single human oocyte or embryo (details in Fig. 1b) was washed with 
1× phosphate-buffered saline (PBS, Invitrogen, AM9625) containing 
0.1% bovine serum albumin (BSA, Sigma-Aldrich, A1933) three times, 
and transferred into a 0.2-ml thin-walled PCR tube containing 2.5 µl 
of cell lysis buffer (0.2% Triton X-100 (Sigma-Aldrich, T9284) contain-
ing 2 U/µl of RNase inhibitor (TaKaRa, 2313A)) using a micro capillary 
pipette in the lowest possible volume (around 0.5 µl) to a final volume 
of around 3 µl. Then samples were incubated at 85 °C for 5 minutes for 
lysis and denaturation of the RNA, then put on ice immediately. The 
single-oocyte/embryo PAIso-seq library construction was carried out 
following our recently published detailed protocol40. The libraries were 
sequenced on a PacBio Sequel or Sequel II System under HiFi mode 
according to the standard PacBio Iso-Seq procedures at Annoroad (a 
sequencing service provider in China, http://www.annoroad.com/).

PAIso-seq2 library construction
Sample collection and lysis. Three to five (details in Extended Data 
Fig. 3a) human oocytes or embryos were washed with 1× PBS containing 
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0.1% BSA three times, and transferred into a 0.2-ml thin-walled PCR tube 
containing 2.5 µl of cell lysis buffer using a micro capillary pipette in the 
lowest possible volume (around 0.5 µl) to a final volume of around 3 µl. 
Then samples were incubated at 85 °C for 5 minutes for lysis and dena-
turation of the RNA, and then put on ice immediately. The samples were 
ready for PAIso-seq2 library preparation as described briefly below.

3′-end adapter ligation to preserve poly(A) tails. One microliter of 
3′-end adapter (20 µM, Supplementary Table 18), 3 µl of nuclease-free 
water, and 13 µl adapter ligation mix (final concentration: 1× T4 RNA 
Ligase 2 truncated KQ reaction buffer (NEB, M0373L), 10 U/µl of T4 
RNA Ligase 2 truncated KQ (NEB, M0373L), 2 U/µl of RNase inhibitor, 
and 15% PEG8000 (NEB, M0373L)) was added to each of the samples, 
which were incubated at 16 °C for 16 hours. The ligation reaction was 
stopped by heating at 65 °C for 20 minutes. Then the samples with dif-
ferent barcodes were mixed together into one tube and purified using 
RNA Clean & Concentrator-5 kit in accordance with the manufacturer’s 
guidelines. Briefly, following binding and washing, the adapter-ligated 
RNA was eluted with 7 µl nuclease-free water.

Reverse transcription with template switching. Each sample was 
added with 0.4 µl of RT primer (100 µM, Supplementary Table 18) and 
1 µl of dNTP mix (10 mM each), incubated at 72 °C for 3 minutes, and 
put on ice immediately, to anneal the RT primer to the 3′-end adapter 
of RNAs. After adding 11.6 µl of the RT mix (final concentration: 1× 
SuperScript II first-strand buffer, 10 U/µl of SuperScript II reverse tran-
scriptase (Invitrogen, 18064-014), 1 U/µl of RNase inhibitor (TaKaRa, 
2313A), 5 mM DTT (Invitrogen, 18064-014), 1 M Betaine (Sigma-Aldrich, 
61962), 6 mM MgCl2 (Invitrogen, AM9530G), and 0.98 µM TSO (Sup-
plementary Table 18)), the sample was incubated at 42 °C for 90 min-
utes; 10 cycles of 50 °C for 2 minutes and 42 °C for 2 minutes; 70 °C for 
15 minutes; and held at 4 °C.

cDNA synthesis. Twenty microliters of nuclease-free water and 1 µl 
of Ribonuclease H (TaKaRa, 2151) were added to each of the samples, 
which were incubated at 37 °C for 20 minutes. Then, 100 µl of KAPA 
HiFi HotStart ReadyMix (2×), 30 µl of IS PCR primer (10 µM, Supple-
mentary Table 18), and 29 µl of nuclease-free water were added to 
the samples, followed by PCR with the following program: 98 °C for 
3 minutes; 3 cycles of 98 °C for 20 secconds, 67 °C for 15 seconds, and 
72 °C for 6 minutes; 72 °C for 10 minutes; and held at 4 °C. Then, the 
double-stranded cDNA was purified using 0.8× SPRIselect beads and 
eluted with 50 µl of nuclease-free water.

Ribosomal sequence removal. PAIso-seq2 uses CRISPR–
Cas9-mediated removal of cDNA from rRNA, as described in the pre-
vious study with minor modifications84. The templates for sgRNA 
targeting ribosomal sequence were prepared by PCR amplification with 
forward primers containing a T7 promoter, 20-nt variable protospacer 
sequences targeting the human ribosomal sequence, a 20-nt sequence 
paired with the 5′-end of the sgRNA backbone (Supplementary Table 
19), and a reverse primer paired with a 30-nt sequence of the 3′-end of 
the sgRNA backbone (Supplementary Table 19), a plasmid template 
containing the sgRNA backbone (pX330)85, and KOD-Plus-Neo DNA 
Polymerase (TOYOBO, KOD-401). The DNA templates were used for 
in vitro transcription (IVT) to produce sgRNAs using the HiScribe T7 
Quick High Yield RNA Synthesis Kit (New England Biolabs, E2040S). 
Next, the IVT products were cleaned with RNA Clean & Concentrator-5 
Kit according to the manufacturer’s instructions. The purified sgRNAs 
were stored at −80 °C. Each sample was digested with Cas9 digestion 
mix (final concentration: 1× NEBuffer 3.1 (New England Biolabs, B7203), 
200 nM Cas9 nuclease (New England Biolabs, M0386M), and 8–15 ng/
µl of the above sgRNA targeting human genes encoding nuclear and 
mitochondrial rRNA) and incubated at 37 °C for 5 hours. After Cas9 
digestion, 2 µl of RNase A (TaKaRa, 2158) was added to digest sgRNAs 

with incubation at 37 °C for 30 minutes. Then the mixture was purified 
using 0.8× SPRIselect beads and eluted with 20 µl of nuclease-free 
water.

PCR preamplification. Twenty-five microliters of KAPA HiFi HotStart 
ReadyMix (2×, KAPA Biosystems, KK2601) and 5 µl of IS PCR primer 
(10 µM, Supplementary Table 18) were added to each sample. Pre-
amplification was performed with the following program: 98 °C for 
3 minutes; 15 cycles of 98 °C for 20 seconds, 67 °C for 15 seconds, and 
72 °C for 6 minutes; 72 °C for 10 minutes; and hold at 4 °C. Then the 
preamplification product was purified using 0.8× SPRIselect beads 
(Beckman Coulter, B23318) and eluted with 20 µl of nuclease-free 
water. The concentration of the purified preamplification product was 
measured via Fluorometer (DeNovix, DS-11 FX+).

Large-scale PCR. Twenty nanograms of purified preamplification 
product was added with 400 µl of KAPA HiFi HotStart ReadyMix 
(2×), 80 µl of IS PCR primer (10 µM, Supplementary Table 18), and 
nuclease-free water to achieve an 800 µl mix, which was then split into 
16 × 50-µl tubes for large-scale PCR with the following program: 98 °C 
for 3 minutes; 10 cycles of 98 °C for 20 seconds, 67 °C for 15 seconds, 
72 °C for 6 minutes; 72 °C for 10 minutes; and hold at 4 °C. Then, the 
large-scale PCR product was purified using 0.8× SPRIselect beads 
and eluted with 100 µl of nuclease-free water. The concentration of 
the purified large-scale PCR product was measured via Fluorometer 
(DeNovix, DS-11 FX+).

SMRTbell library construction and sequencing. SMRTbell library 
construction was performed using SMRTbell Template Prep Kit 
in accordance with the manufacturer’s guidelines with purified 
double-stranded cDNA from the large-scale PCR. Then the SMRTbell 
library was sequenced on a PacBio Sequel II System under HiFi mode 
according to the standard PacBio Iso-Seq procedures at Annoroad (a 
sequencing service provider in China, http://www.annoroad.com/).

PAIso-seq sequencing data processing
Raw circular consensus sequencing reads conversion from sub-
reads. The sequencing data in .subreads.bam files off the PacBio 
sequencing instrument were provided by the sequencing service 
provider. Then, highly accurate single-molecule circular consensus 
sequencing (CCS) reads were generated using ccs software (https://
github.com/PacificBiosciences/ccs, version 5.0.0) and converted 
to fastq format using bam2fastq software with the pbbam package 
(https://github.com/PacificBiosciences/pbbam, version 1.0.6). The 
number of passes for each of the raw CCS reads was generated using 
GetCCSpass.pl (https://github.com/Lulab-IGDB/polyA_analysis/blob/
main/bin/).

Clean circular consensus sequencing reads extraction from raw 
circular consensus sequencing reads. The barcode split clean reads 
were extracted from CCS reads in fastq format using CCS_split_clean_
end_extension_v1.py (https://github.com/Lulab-IGDB/polyA_analysis/
blob/main/PAIso-seq/). The output file contains seven columns, includ-
ing CCS ID (column 2, containing information of CCS name, barcode, 
and pass number with colon delimiter), clean CCS read sequence (col-
umn 6), and quality value (column 7), and was then converted into 
fastq format.

Human genome alignment of clean circular consensus sequenc-
ing reads. The clean CCS reads in fastq format were aligned to human 
reference genome (GRCh38) using minimap2 (https://github.com/lh3/
minimap2, version v2.15)86 with the following parameters ‘-ax splice 
-uf–secondary=no -t 40 -L–MD–cs–junc-bed human.genome.bed 
human.genome.mmi’. The reference file human.genome.bed was built 
from the gtf format annotation file of human genome (human.genome.
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gtf, https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/
release_36/gencode.v36.annotation.gtf.gz) using paftools.js, a script 
in minimap2 software; and the reference file human.genome.mmi was 
built from human genome sequences in fasta format (https://ftp.ebi.
ac.uk/pub/databases/gencode/Gencode_human/release_36/GRCh38.
primary_assembly.genome.fa.gz) using minimap2 software with the 
following parameters ‘-x splice -t 20’. Then, the files were filtered by 
samtools software (http://samtools.sourceforge.net, version 1.9) with 
the following parameters ‘-F 3844 -bS’ (https://broadinstitute.github.
io/picard/explain-flags.html). At this point, the mapped CCS reads in 
bam format were ready for poly(A) tail extraction. About 10 ,000–
700,000 mapped reads were obtained from single human oocytes or 
preimplantation embryos (Supplementary Table 1). One of the samples 
among the 73 individual oocytes or embryos failed in PAIso-seq (MI-7, 
Supplementary Table 1), which contained only 92 extracted CCS reads 
or 86 mapped reads.

Annotation of the mapped clean CCS reads. The mapped clean CCS 
reads were assigned to annotated genes using featureCounts software 
in subread package (http://subread.sourceforge.net/) with the follow-
ing parameters ‘-L -g gene_id -t exon -s 1 -R CORE human.genome.gtf’. 
The output file *.clean.filter.bam.featureCounts will be used for the 
following poly(A) tail annotation step, which contains four columns, 
including CCS ID (column 1) and gene ID (column 4).

Poly(A) tail extraction for mapped clean CCS reads. The poly(A) 
tail of each mapped clean CCS read in bam format was extracted using 
PolyA_trim_V5.4.1.py (https://github.com/Lulab-IGDB/polyA_analysis/
blob/main/bin/). Alignments with the ‘SA’ (supplementary alignment) 
tags were ignored, and the terminal clipped sequence of the aligned 
CCS reads was used as candidate poly(A) tail sequence. According 
to previous reports26,31,39, the majority of the residues in poly(A) tails 
were A residues, and if the poly(A) tails contain non-A residues, they 
were randomly distributed without a defined pattern. Therefore, we 
call a poly(A) tail taking the proportion of U (presented as T in CCS 
reads, the same goes for the following), C, and G residues and the 
distribution pattern of U, C, and G residues within a tail into account. 
If the proportion of U, C, and G were all no less than 0.1 in the 3′-soft 
clip sequence, this read would be marked as ‘HIGH_TCG’. We defined 
a continuous score based on the transitions between the two adjacent 
nucleotide residues throughout the 3′-soft clip sequences. From the 
5′-end to the 3′-end of the 3′-soft clip sequence, a transition from one 
residue to the same residue was scored as 0, and a transition from 
one residue to a different residue scored as 1, and the sum was the 
score for the read. The reads would be marked as ‘FALSE_score_12+’ if 
they scored more than 12. After the above two steps, the 3′-soft clips 
classified as neither ‘HIGH_TCG’ nor ‘FALSE_score_12+’ were marked 
as ‘TRUE’. Reads with ‘TRUE’ tags were used for the following poly(A) 
tail annotation and analysis.

Poly(A) tail annotation for mapped clean CCS reads. After poly(A) 
tail extraction and read annotation, the information about the length 
and residue content of the poly(A) tail (including 0-nt tails) of each 
mapped clean CCS read was summarized using PolyA_note_V2.1.py 
(https://github.com/Lulab-IGDB/polyA_analysis/blob/main/bin/). 
Each *.polyA_note.txt output file contains the following 13 columns 
of information: barcode, CCS ID, gene ID, pass number, ‘1’, number 
of residue A, number of residue T, number of residue C, number 
of residue G, number of non-A residues, ‘0’, poly(A) tail sequence, 
and average quality value of poly(A) tail bases. The *.polyA_note.
txt files were ready for the analysis of poly(A) tail length and  
non-A residues.

In this manuscript, transcripts from protein-coding genes encoded 
in the nuclear genome (excluding genes encoding histones and histone 
variants) were used in all analyses, except for the saturation curve 

analysis in Extended Data Fig. 3d, which used all the annotated genes. 
In this manuscript, gene expression and saturation curve analyses 
employed reads with CCS reads with at least one pass, while analyses 
involving poly(A) tails employed CCS reads with at least ten passes87,88. 
Reads with pass number at least 10 and poly(A) tail length at least 1 nt, 
were called poly(A)+ reads.

Each single oocyte or embryo was used as one replicate in the 
oocyte and embryo similarity analysis by uniform manifold approxi-
mation and projection (UMAP). The following pairs of oocytes were 
combined as one replicate in other analyses owing to shared barcode 
sequence: GV-1 and GV-6, GV-2 and GV-7, GV-3 and GV-8, GV-4 and GV-9, 
MI-1 and MI-7, as well as MI-2 and MI-8, resulting five replicates for the 
germinal vesicle and six replicates for metaphase I. Each single oocyte/
embryo for the other PAIso-seq samples was used as one replicate in 
other analyses (replicate number: germinal vesicle, n = 5; metaphase 
I, n = 6; metaphase II, n = 7; one-cell stage, n = 5; two-cell stage, n = 5; 
four-cell stage, n = 6; eight-cell stage, n = 5; morula, n = 5; blastocyst, 
n = 5; siNC, n = 4; siTUT4/7, n = 4; siTENT4A/B, n = 6; siBTG4, n = 4). For 
the gene expression analyses, the above numbers of replicates were 
used. For gene-level analyses of poly(A) tail length, non-A residues, 
and PDIs, the replicates were combined for each stage. As at least 20 
poly(A)+ reads were required for genes to be included in these analyses, 
if individual replicates were filtered with this cutoff, very few genes 
could be retained for analysis.

PAIso-seq2 sequencing data processing
Raw CCS reads conversion from subreads. The steps were as 
described in the ‘PAIso-seq sequencing data processing’ section.

Clean CCS reads extraction from raw CCS reads. The barcode split 
clean reads were extracted from CCS reads in fastq format using CCS_
split_clean_UMI_V4.py (https://github.com/Lulab-IGDB/polyA_analy-
sis/blob/main/PAIso-seq2/). The output file was in the same format as 
described in the ‘PAIso-seq sequencing data processing’ section, and 
was then converted into fastq format.

Human genome alignment of clean CCS reads and annotation 
of the mapped clean CCS Reads were performed in the same way as 
described in the ‘PAIso-seq sequencing data processing’ section. In 
general, about 100,000–700,000 mapped reads were generated from 
each of the PAIso-seq2 replicates for 3–5 human oocytes or preimplan-
tation embryos (Supplementary Table 15).

Poly(A) tail sequence extraction for mapped clean CCS reads. The 
poly(A) tail of each clean CCS read was extracted via PolyA_trim_last_
exon_V5.5.2.1.py (https://github.com/Lulab-IGDB/polyA_analysis/
blob/main/bin/). Reads were also added tags with ‘TRUE’, ‘HIGH_TCG’, 
or ‘FALSE_score_12+’ as described in the ‘PAIso-seq sequencing data 
processing’ section. The PAIso-seq2 data contain unique molecular 
identifiers (UMIs), which can be used to remove the PCR duplicates 
by pickOne_V2.py (https://github.com/Lulab-IGDB/polyA_analysis/
blob/main/PAIso-seq2/). The UMI deduplicated reads were used for 
downstream PAIso-seq2 analysis. In addition, reads whose polyadenyla-
tion site was located in the last exon of its assigned gene are marked 
as ‘Last_’. For PAIso-seq2 data for human oocyte and embryo, reads 
were frequently found to end at the middle of annotated transcripts, 
which were not polyadenylated, indicating that RNA fragmentation 
happened during sample collection, transportation, or preparation. 
Therefore, we focused on reads that end at the last annotated exons 
for poly(A) tail analysis for all the PAIso-seq2 data analysis of human 
oocytes and embryos.

Poly(A) tail annotation for mapped clean CCS reads. The steps were 
as described in the ‘PAIso-seq sequencing data processing’ section, but 
the output file was named *.polyA_note.UMI_uniq.txt to convey the 
information of UMI deduplication in the prior step.
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rRNA reads analysis. The clean CCS reads were aligned to the human 
nuclear rRNA sequences (RNA45SN1, 45S pre-ribosomal N1, gene ID: 
106631777) with bwa software (https://github.com/lh3/bwa) with the 
‘-x pacbio’ option. Then, the CCS ID of the reads aligned to nuclear rRNA 
were used for counting of rRNA reads or for filtering out rRNA reads. 
Reads assigned to ENSG00000211459.2 (MT-RNR1, mitochondrial 12S 
RNA) and ENSG00000210082.2 (MT-RNR2, mitochondrial 16S RNA) 
by minimap2 and featureCounts in the human genome alignment of 
clean CCS reads and annotation of the mapped clean CCS reads steps 
were considered mitochondrial rRNA reads. The proportion of rRNA 
remaining in the PAIso-seq2 datasets were calculated by dividing the 
number of nuclear rRNA reads or mitochondrial rRNA reads to the num-
ber of clean CCS reads. We found that about 20% of nuclear rRNA and 
about 3% of mitochondrial rRNA remained in the PAIso-seq2 datasets 
(Extended Data Fig. 3c), suggesting that most of the rRNA is removed 
in our PAIso-seq2 procedures.

FLAM-seq sequencing data processing
The raw subreads data of FLAM-seq on Hela S3 cells, the human iPSCs, 
and human cerebral organoids were kindly provided by the authors 
of ref. 31.

Raw CCS reads conversion from subreads. The steps were as 
described in the ‘PAIso-seq sequencing data processing’ section.

Clean CCS reads extraction from raw CCS reads. The barcode split 
clean reads were extracted from CCS reads in fastq format using CCS_
split_clean_UMI_FLAM-seq_V2.py (https://github.com/Lulab-IGDB/
polyA_analysis/blob/main/bin/). Because GI tailing was used in library 
preparation of FLAM-seq31, about nine residues (Gs) would be added 
after the poly(A) tails and before UMI and barcode sequences, thus 
the reads with fewer than seven Gs before UMI and barcode sequences 
were discarded. For each read with 7–16 Gs before the UMI and barcode 
sequence, the sequence before the Gs would be extracted as a clean 
CCS read. Although the ratio was very low (for example, 133 out of 
49,307 in sample hiPSC_rep1), for each read with ≥17 Gs before UMI and 
barcode sequences, the sequences before 17 Gs would be extracted as 
a clean CCS read. The output file was in the same format as described 
in the ‘PAIso-seq sequencing data processing’ section, and was then 
converted into fastq format.

Human genome alignment of clean CCS reads, annotation of the 
mapped clean CCS reads, poly(A) tail extraction for mapped clean 
CCS reads, and CCS readspoly(A) tail annotation for mapped clean 
CCS reads were performed in a same way as described in the ‘PAIso-seq 
sequencing data processing’ section with the additional step of remov-
ing PCR duplicates based on UMI by pickOne_V2.py before poly(A) 
tail extraction and naming the output file *.polyA_note.UMI_uniq.txt 
to convey the UMI deduplication. At this point, the FLAM-seq data 
were ready for downstream analysis in the same way as PAIso-seq and 
PAIso-seq2 data.

Measurement of poly(A) tail length
The PAIso-seq, PAIso-seq2, and FLAM-seq datasets were processed in 
the same way. The poly(A) tail length of a poly(A)+ transcript was the 
number of all bases within the poly(A) tail. The poly(A) tail length of a 
given gene was calculated by the geometric mean poly(A) tail length of 
all the transcripts assigned to it, because poly(A)-tail-length distribu-
tion of a gene follows a lognormal-like distribution10.

Detection of non-A residues in poly(A) tails
The PAIso-seq, PAIso-seq2, and FLAM-seq datasets were processed 
in the same way. The number of U, C, and G residues in the poly(A) 
tail of each CCS read were summarized in column 7, 8, and 9 of the 
output *.polyA_note.txt or *.polyA_note.UMI_uniq.txt file, respec-
tively, and the complete poly(A) tail sequences were in column 12. 

The transcript-level proportion of non-A residues was the number of 
transcripts with non-A residues divided by the total number of poly(A)+ 
transcripts. The gene-level proportion of non-A transcripts (CCS reads 
containing the given non-A residues) of a gene was calculated as the 
number of transcripts containing the given non-A residues divided by 
the total number of poly(A)+ transcripts for the gene.

Un refers to poly(A) tails with an n number of consecutive U resi-
dues. For grouping poly(A) tails based on longest consecutive non-A 
residues, U1 refers to poly(A) tails which contain a single U, U2 refers 
to poly(A) tails that contain UU, U≥3 refers to poly(A) tails that contain 
three or more consecutive Us, U2–5 refers to poly(A) tails which contain 
2–5 consecutive Us, and U ≥ 6 refers to poly(A) tails which contain 6 or 
more consecutive Us. C and G residues were analyzed in the same way.

For assigning the poly(A) tails based on the positions of U residues 
in poly(A) tails, a given poly(A) tail was first scanned for 3′-end U resi-
dues. If 3′-end U residues were found, the poly(A) tail would be assigned 
to poly(A) tails with 3′-end U residues. If no 3′-end U residues were 
found, the poly(A) tail was further scanned for U residues and assigned 
to poly(A) tails with internal U residues if found. C and G residues were 
analyzed in the same way.

For calculating the N length for U residues, a given poly(A) tail 
was first searched for the longest consecutive U residues within it. The 
length of sequence located 5ʹ upstream of this longest consecutive 
stretch of U residues was considered the N length. If a given poly(A) 
tail contained multiple stretches of consecutive U residues of the same 
length which was longest, then the N length for this tail could not be 
determined and thus discarded from the N length analysis.

The average U length per tail in Fig. 6b is the sum of the number of 
U residues from all the transcripts for a given gene divided by the total 
number of reads for the given gene. The average U length per tail of PDI 
in Fig. 6c is the sum of the number of U residues from all the PDIs for 
a given gene divided by the total number of PDIs for the given gene.

Polyadenylation site calling
To call the PASs for each gene, poly(A)+ transcripts in *.polyA_note.txt 
or *.polyA_note.UMI_uniq.txt files were analyzed via findAPA_v7.1.py 
(https://github.com/Lulab-IGDB/polyA_analysis/blob/main/bin/) fol-
lowing the rules of calling polyadenylation sites in the TAPIS package89. 
In brief, for each gene, the site with the most (≥10) reads in each 5 bp 
upstream and downstream was considered a PAS site, then the site 
with second most (≥10) reads in each 5 bp upstream and downstream 
and not within 20 nt from a called PAS was considered a PAS site, until 
no site with ≥10 reads in each 5 bp upstream and downstream existed. 
For genes with two PASs, the PAS site proximal to the transcription 
start site was called pPAS, and the PAS site distal to the transcription 
start site was called dPAS. The output *.APAsites.csv file contains the 
information of PASs called which can serve as a reference for the fol-
lowing analysis involving PAS.

Polyadenylated intact transcripts and polyadenylated 
degradation intermediates assignment
The PASs called in GV oocytes were used as reference PASs for assigning 
the reads to them. Poly(A)+ reads in the *.polyA_note.txt or *.polyA_note.
UMI_uniq.txt files for each of the stages can then be assigned to the 
PASs called in GV stage as described above using readsOnAPA_v4.py 
(https://github.com/Lulab-IGDB/polyA_analysis/blob/main/bin/). For 
genes with called PASs, one read was assigned to a PAS of the gene if 
it was located within 5 nt around this PAS, and was called a PIT. Reads 
from the gene that ended outside 5 nt of all its PASs and 5ʹ upstream of 
at least one PAS were then considered as polyadenylated degradation 
intermediates (PDIs). For Hela S3, iPSC, and organoid samples, the PASs 
called in PAIso-seq data of GV oocytes were used as reference PASs for 
PDI and PIT analysis. The transcript-level proportion of PDIs was the 
number of PDIs divided by the sum of PDIs and PITs. The gene-level pro-
portion of PDIs of a gene was calculated as the number of PDIs divided 
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by the sum (genes with the sum number at least 20 were included in 
the analysis) of the number of PDIs and PITs for the gene. Note that 
there were a small number of reads that could not be assigned as either 
PDI or PIT, which were discarded in the PDI- and PIT-related analysis. 
Therefore, the number of reads in the PDI- and PIT-related analysis was 
less than total CCS reads.

Gene expression analysis
Gene expression was quantified as counts per million (CPM) accord-
ing to previous studies90,91. CPM was calculated as: CPM = 1,000,000 
× (number of reads assigned to a gene) / (sum of all reads). Differential 
gene expression between negative control and knockdown samples 
were statistically analyzed with Student’s t-test.

Uniform manifold approximation and projection analysis
CCS reads in *.polyA_note.txt for each of the oocyte and embryo 
PAIso-seq data were included in this analysis. The gene count matrix 
for protein-coding genes of these single oocytes or embryos were 
generated across the 73 oocytes or embryos, and cells with fewer than 
600 detected genes were filtered out (the MI-7 sample was excluded 
due to only 41 genes detected). We performed standard preprocessing 
with Seurat_3.2.0 software42 on 72 samples with 13,341 genes, including 
highly variable gene selection and scaling. Top 10 components were 
selected after performing principal component analysis (PCA). Based 
on the top 10 components, we performed UMAP analysis with Seu-
rat_3.2.0 to present the distance of cells. Finally, we added the original 
label of human oocytes and embryos to the UMAP plot.

Visualization of aligned PAIso-seq reads
To prepare files for visualization of poly(A) tails in the IGV genome 
browser, we extracted the CCS reads with at least ten passes87,88 for 
genome browser view. Clean CCS reads with at least 10 passes that 
mapped to the genome was extracted from the minimap2 mapped 
reads in bam format, and data from individual oocytes or embryos 
from the same stage were combined to a single file in bam format 
(these bam files were available in a public data repository, see ‘Data 
availability’ for details). Then, the bam files for each of the stages were 
indexed using samtools to generate the index file in bam.bai format 
($ samtools index input.bam). At this stage, the bam files for each 
of the stages were ready to be loaded into the integrative genomics 
viewer (IGV, https://software.broadinstitute.org/software/igv/) for 
visualization of the poly(A) tails for each of the stages with the human 
hg38 reference genomes.

For the IGV views shown in Fig. 2, to better present the polyade-
nylation events around the last exon of a given gene, the sequences 
from the beginning of the last annotated exon to the end of the clean 
CCS reads for the given gene for each of the stages were extracted and 
realigned to the genome using minimap2 with the same parameters 
as as described in the ‘PAIso-seq sequencing data processing’ section. 
Then, the mapped reads in bam format were indexed using samtools 
to generate the index file in bam.bai format ($ samtools index input.
bam). Next, the bam files for each stage for the given gene were loaded 
into the IGV for visualization of the poly(A) tails for each of the stages 
with the human hg38 reference genomes. The IGV views here used 
the default setting, which would display all reads if there were no 
more than 100 reads or 100 random reads if there were more than 
100. The visualization of reads in this way could represent the pat-
tern of all reads. The sequences that match the reference genome are 
shown in gray (the dispersed colored regions in the mapped genomic 
regions indicated unmatched residues caused by single-nucleotide 
polymorphisms or sequencing errors); the poly(A) tails (soft clip 
sequences) that cannot map to the genome were shown in colors 
(forward strand: A residues, cyan; U residues, magenta; C residues, 
blue; G residues, dark yellow). Note that we combined all replicates 
of each stage for analysis here.

Gene Ontology analysis
GO analysis was performed through the online analysis tool g:Profiler 
(https://biit.cs.ut.ee/gprofiler/gost) using Ensembl gene ID as the input.

Statistics and reproducibility
The number of single oocytes and embryos sequenced by PAIso-seq 
was shown in Fig. 1b, and two replicates were performed for each of 
the PAIso-seq2 samples. The oocytes and embryos were randomly 
assigned to each experimental group. For data collection and analysis, 
researchers were not blinded to the conditions of the experiments. 
For the oocyte and embryo images in Fig. 1a, all the oocytes and 
embryos used were checked under microscope to confirm they had 
correct morphology, and one of them for each stage were photo-
graphed as an example of the oocyte or embryo morphology. MI-7 
in the PAIso-seq dataset was excluded in the analysis of individual 
MI replicates due to low number of reads. One 3′-dA replicate for 
PAIso-seq2 dataset was lost during library preparation and was not 
included in the analysis. Levels of significance were calculated with 
Student’s t-test if not specified otherwise in the figure legend. Levels 
of significance in Extended Data Fig. 5b–d were calculated with the 
χ2 test. The correlation coefficient in Extended Data Fig. 3b,e was 
Pearson’s correlation coefficient. The regression lines in Extended 
Data Fig. 3e are linear regressions.

Data distribution for the statistical tests was assumed to be normal, 
but this was not formally tested.

Genome and gene annotation
The genome sequence used in this study is from the following links: 
http://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/
release_36/GRCh38.primary_assembly.genome.fa.gz. The genome 
annotation used in this study is from the following links: http://ftp.ebi.
ac.uk/pub/databases/gencode/Gencode_human/release_36/gencode.
v36.primary_assembly.annotation.gtf.gz

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The CCS data for human oocytes and embryos in bam format from 
PAIso-seq and PAIso-seq2 are available at Genome Sequence Archive 
for Human (GSA-Human: https://ngdc.cncb.ac.cn/gsa-human/) 
hosted by National Genomics Data Center (PAIso-seq: HRA001288, 
PAIso-seq2: HRA001289). Details for samples in HRA001288 and 
HRA001289 are shown in Supplementary Table 18. The bam files for 
visualization of the mapped reads in IGV are available at GSA-human 
(PAIso-seq: HRA001911, PAIso-seq2: HRA001912). The raw subreads 
data of FLAM-seq of Hela S3 cells, the human iPSCs, and human cerebral 
organoids were kindly provided by the authors of ref. 31.

Code availability
Custom scripts used for data analysis are available in github: https://
github.com/Lulab-IGDB/polyA_analysis.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Knockdown of candidate factors involved in poly(A) 
tail regulation and non-A residue distribution within poly(A) tails. a, b, PAIso-
seq data showing the expression level of TOB1, TOB2, BTG1, BTG2, BTG3, and BTG4 
genes (a), as well as TUT4, TUT7, TENT4A, and TENT4B genes (b) in human oocytes 
and early embryos (Replicates: GV, 5; MI, 6; MII, 7; 1C, 5; 2C, 5; 4C, 6; 8C, 5; MO, 5; 
BL, 5). c, Illustration of siRNA microinjection followed by in vitro maturation and 
fertilization through intracytoplasmic sperm injection (ICSI) to get knockdown 
human 1-cell embryos for PAIso-seq analysis. d, PAIso-seq data showing the 
expression level of BTG4 in siNC (n = 4) and siBTG4 (n = 4) human 1-cell embryos. 
e, f, PAIso-seq data showing the expression level of TENT4A (e) and TENT4B 
(f) in siNC (n = 4) and siTENT4A/B (n = 6) human 1-cell embryos. g, Number of 
differentially expressed genes (DEGs) in siBTG4, siTUT4/7, or siTENT4A/B human 

1-cell embryos as determined by CPM, DESeq2, or edgeR methods (top). The 
same criteria (|log2(fold change)| ≥ 0.5, P < 0.05) are used for calling DEGs for 
all three methods. The P values are calculated by one-tailed Student’s t-test for 
the CPM method, while the P values are from the built-in output for DESeq2 and 
edgeR. Venn diagrams showing the overlap of DEGs determined by CPM, DESeq2, 
or edgeR methods (bottom). h, Gene expression level change in siTUT4/7 (n = 4)  
compares to siNC (n = 4) human 1-cell embryos. The upregulated (361) or 
downregulated (237) genes (|log2(fold change)| ≥ 0.5, P < 0.05) upon TUT4/7 
knockdown are shown in pink or wathet. Data lists for a-b, d-f, h are provided in 
Supplementary Table 4. CPM: counts per million. Error bars indicate the SEM. The 
P values are calculated by one tailed Student’s t-test if not specified.
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Extended Data Fig. 2 | Non-A residues within poly(A) tails measured by PAIso-
seq. a, Distribution patterns of U (top), C (middle), or G (bottom) residues within 
poly(A) tails in human 1-cell (1C), 2-cell (2C), and 4-cell (4C) embryos as measured 
by PAIso-seq. Poly(A) tails with indicated non-A residues of a given length are 
collapsed to one line. The relative abundance of non-A residues at each position 
is calculated and visualized by a color scale. Poly(A) tails with length between 
1–180 nt are included and ranked in the heatmap from 1–180 (top to bottom). b, 
c, Frequency of non-A residues (U, C, or G) of transcripts separated by Internal 
(b) and 3′-end positions (c) in human oocytes and early embryos measured by 

PAIso-seq (GV, 5; MI, 6; MII, 7; 1C, 5; 2C, 5; 4C, 6; 8C, 5; MO, 5; BL, 5). The proportion 
(y axis) shows the number of poly(A) tails containing the non-A residues with 
indicated position divided by the total number of poly(A)+ reads for each stage. 
Reads with pass number at least 10 and poly(A) tail length at least 1 nt are called 
poly(A)+ reads (see Methods). The 3′-end non-A residues refer to non-A residues 
at the 3′ terminal of poly(A) tails. Non-A residues apart from the 3′-end positions 
of poly(A) tails are considered as internal non-A residues. The separation of non-A 
residues based on positions all follow the above rule in this manuscript. Error 
bars indicate the SEM. Data list is shown in Supplementary Table 8.
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Extended Data Fig. 3 | Information about all PAIso-seq2 datasets. a, Numbers 
of human oocytes and early embryos analyzed by PAIso-seq2 for each of the 
replicate at different stages. Numbers are shown on top of columns. NA, not 
applicable. b, Gene expression correlation between two replicates for human 
oocytes and early embryos at different stages measured by PAIso-seq2. Pearson’s 
correlation coefficient (Rp) and number of genes are shown on the top. CPM: 
counts per million. c, rRNA levels in PAIso-seq2 libraries (replicates: GV, 2; MII, 
2; 1C, 2; 2C, 2; 4C, 2; 3′-dA 1C, 1). The proportion (y axis) shows the number of 
rRNA reads divided by the total number of reads for each stage. Nuclear rRNA 
and mitochondrial rRNA are encoded in nuclear and mitochondrial genome 
respectively. Error bars indicate the SEM. d, Saturation curves of PAIso-seq 
(replicates: GV, 5; MII, 7; 1C, 5; 2C, 5; 4C, 6) and PAIso-seq2 (two replicates each) 

data of different stages. The PAIso-seq data use single oocytes or embryos per 
replicate except for GV stage samples (sample 1, 2, 3, and 4 include two oocytes, 
while sample 5 includes a single oocyte). The PAIso-seq2 data use 3–5 oocytes 
or embryos (see a) as input. All annotated coding and non-coding genes with 
≥ 20 reads are used in this analysis. e, Scatterplots showing poly(A) tail length 
(geometric mean) of individual genes measured by PAIso-seq and PAIso-seq2 for 
human oocytes and embryos at different stages. Pearson’s correlation coefficient 
(Rp) and number of genes are shown at the bottom right of each graph. The 
dotted line in red represents linear regression line with the linear regression 
equations on the top. Genes with ≥ 20 poly(A)+ reads in both PAIso-seq and PAIso-
seq2 datasets of the same stage are included. Data lists for b and e are provided in 
Supplementary Table 4 and 16.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Validation of PAIso-seq results by PAIso-seq2. a, Box 
plots showing frequency of U (left), C (middle), or G (right) residues of individual 
genes (GV, 417; MII, 80; 1C, 65; 2C, 198; 4C, 49) separated by the positions 
(Internal, top; 3′-end, bottom) in human oocytes and early embryos. b, Box plots 
of the PDI level of individual genes (GV, 348; MII, 72; 1C, 58; 2C, 149; 4C, 44) in 
human oocytes and early embryos measured by PAIso-seq2. c, Distribution of U 
length of mRNAs in human oocytes and early embryos measured by PAIso-seq2. 
The relative frequency (y axis) is the number of the poly(A) tails with the given 
length of longest consecutive U residues divided by the total number of poly(A) 
tails with U residues for each sample. d, Frequency of U, C, or G residues grouped 

by the non-A length (1, 2–5, and ≥6 for U; 1, 2, and ≥3 for C and G) separated by the 
positions (internal, top; 3′-end, bottom) in poly(A) tails in human oocytes and 
early embryos (2 replicates each) measured by PAIso-seq2. e, Distribution of N 
length of mRNAs separated into U1, U2-5, U≥6 groups in human 1C, 2C, and 4C 
embryos measured by PAIso-seq2. Relative frequency (y axis) is the number of 
reads with the given N length divided by the total number of reads for each group 
(U1, U2-5, U≥6) of each stage. Data lists for a-e are provided in Supplementary 
Table 7–10, 13. For all box plots, the ‘×’ indicates the mean value, the horizontal 
bars show the median value, and the top and bottom of the box represent the 
value of 25th and 75th percentile, respectively.

http://www.nature.com/nsmb


Nature Structural & Molecular Biology

Article https://doi.org/10.1038/s41594-022-00908-2

Extended Data Fig. 5 | See next page for caption.

http://www.nature.com/nsmb


Nature Structural & Molecular Biology

Article https://doi.org/10.1038/s41594-022-00908-2

Extended Data Fig. 5 | Human 1-cell embryos treated with 3′-dA. a, Chemical 
structural formula of 3′-dA and its conversion to 3′-dATP in cells. b, The PDI level 
of mRNAs in Con (n = 2) and 3′-dA (n = 1) human 1-cell embryos measured by 
PAIso-seq2. c, d, Frequency of non-A residues (U, C, or G) of mRNAs in control 
(Con, n = 2) and 3′-dA-treated (3′-dA, n = 1) human 1-cell embryos measured by 
PAIso-seq2 separated by Internal (c) and 3′-end (d) positions. The proportion (y 
axis) shows the number of reads with poly(A) tails containing the non-A residues 
with indicated position divided by the total number of reads with poly(A) tails 
for each sample. The P values are calculated by Chi-squared test. Data lists for 
b-d are provided in Supplementary Table 6 and 8. e, Summary of poly(A) tail 
dynamics during human OET. Left: During the human OET, maternal transcripts 
are gradually degraded (pink-white gradient), zygotic genome activation 

(ZGA, green-white gradient) begins in human late 4C embryos, polyadenylated 
degradation intermediates (PDIs, orange-white gradient) and non-A (U, C, and G)  
residues (dark blue-light blue gradient) are highly dynamic, both of which peak 
at 1C to 4C stages. Right: After BTG4-mediated deadenylation, the maternal 
mRNAs can be decayed by exonuclease (including XRN1 and Exosome). However, 
uridylation can happen to deadenylated maternal mRNAs with very short 
poly(A) tail (I) and 3′-UTR partially degraded maternal mRNAs (II). In addition, 
re-polyadenylation can happen to deadenylated maternal mRNAs with very 
short poly(A) tail (①), the uridylated mRNAs from I (②), 3′-UTR partially degraded 
maternal mRNAs (③), and the uridylated mRNAs from II (④). Inhibition of the 
cytoplasmic polyadenylation (black dotted line) results in the first cleavage 
failure. CNOT, CCR4-NOT complexes; ncPAP, non-canonical poly(A) polymerase.
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