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Most proteins fold into 3D structures that determine how they function 
and orchestrate the biological processes of the cell. Recent developments 
in computational methods for protein structure predictions have reached 
the accuracy of experimentally determined models. Although this has 
been independently verified, the implementation of these methods across 
structural-biology applications remains to be tested. Here, we evaluate the 
use of AlphaFold2 (AF2) predictions in the study of characteristic structural 
elements; the impact of missense variants; function and ligand binding 
site predictions; modeling of interactions; and modeling of experimental 
structural data. For 11 proteomes, an average of 25% additional residues 
can be confidently modeled when compared with homology modeling, 
identifying structural features rarely seen in the Protein Data Bank. 
AF2-based predictions of protein disorder and complexes surpass dedicated 
tools, and AF2 models can be used across diverse applications equally well 
compared with experimentally determined structures, when the confidence 
metrics are critically considered. In summary, we find that these advances 
are likely to have a transformative impact in structural biology and broader 
life-science research.

Proteins are the key molecules of the cell that are involved in all cellular 
processes. The three-dimensional (3D) shape of a protein provides criti-
cal information that can, among many things, be used to study protein 
interactions, functions and the impact of missense variation. Although 
tremendous progress has been made in experimental approaches to 
determining protein structures, the experimentally determined struc-
tures of ~100,000 proteins1 represent a very small fraction of the size 

and diversity of the universe of proteins. Protein structure prediction 
has been a fundamental challenge in bioinformatics for decades, and 
accurate predictions could accelerate our understanding of protein 
structure–function relationships, with vast impacts on the study of life. 
Since the first blind assessment of prediction methods, much progress 
has been made—including improvements in extracting pair-wise and 
higher order residue distance constraints from multiple sequence 
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We then compared AF2 predictions with those derived for Pfam 
protein domains15 using trRosetta16. As there is only one trRosetta 
representative structure per domain family, we selected one spe-
cies—human—and compared 3,035 AF2 models of 1,464 different Pfam 
domain families with the representative trRosetta model. These two 
approaches generally agree, with around 50% of AF2 domain structures 
having a root-mean-square deviation (r.m.s.d.) < 2 Å from the generic 
trRosetta model (Supplementary Fig. 1a). We observed a correlation 
between the estimated accuracy of the AF2 model (pLDDT) and the 
r.m.s.d. from the trRosetta model (Fig. 1b and Supplementary Fig. 1b,c). 
For AF2 models with an r.m.s.d. below 2 Å from the trRosetta model 
have, more than 90% of their residues, on average, have a pLDDT above 
70 (Fig. 1b). We also examined the variability of domain structure for 
273 domain families with 3 or more instances in the human proteome 
(Supplementary Fig. 2), and observed that 70% of domain instances are 
within one s.d. of the mean r.m.s.d. for their domain family. Together, 
these results indicate that, for at least 50% of human Pfam domains, the 
trRosetta Pfam model was already likely to be accurate.

We assessed the confidence and length of AF2 contiguous regions 
that are not covered in SMR to identify regions that may correspond to 
novel structures of folded domains, rather than short termini or inter-
domain linkers. The distribution of median confidence scores of a frag-
ment versus fragment length shows an enrichment for high-confidence 
predictions with a length of 100–500 residues (Fig. 1c and Supplemen-
tary Fig. 3), consistent with the size of a typical protein domain21. This 
relation can be observed for all species, except Staphylococcus aureus 
(Supplementary Fig. 3). We identified, across the 11 species, 18,429 
contiguous regions that are ‘domain like’ (with a length of 100–500 
residues) with confident predictions (pLDDT > 70) that have no model 
in SMR. The human regions are provided in Supplementary Table 1.

Around half the residues in AF2 predictions of the 11 model spe-
cies are of low confidence, many of which may correspond to regions 
without a well-defined structure in isolation. It has been shown that 
regions with low pLDDT are often intrinsically disordered proteins or 
regions (IDPs/IDRs)13. We benchmarked AF2-derived metrics against 
IUPred2 (ref. 22), a commonly used disorder predictor (Fig. 1c), using 
regions annotated for order/disorder (Supplementary Table 2). In 
addition to using pLDDT, we tested the relative solvent accessible 
surface area (SASA) of each residue and smoothed versions of these 
metrics (Fig. 1d and Supplementary Fig. 4). pLDDT and window aver-
ages of pLDDT or SASA outperformed IUPred2, indicating that AF2’s 
low-confidence predictions are enriched for IDRs. To facilitate the 
study of human IDRs, we provide these predictions for human pro-
teins in Supplementary Dataset 1 and in ProViz23: http://slim.icr.ac.uk/
projects/alphafold?page=alphafold_proviz_homepage.

Characterization of structural elements in AlphaFold2’s 
predicted models across 21 proteomes
The AF2 database is likely to contain structural elements that may not 
have been extensively seen in experimental structures. Owing to the 
presence of low-confidence regions in the AF2 proteins, we first split 
each prediction into smaller high-confidence units (see Methods). We 
then performed a global comparison of structural elements between 
the 365,198 proteins in the AF2 database and 104,323 proteins from the 
CASP12 dataset in the PDB. We applied the Geometricus algorithm24 to 
obtain a description of protein structures as a collection of discrete and 
comparable shape-mers, analogous to k-mers in protein sequences. 
We then obtained a matrix of such shape-mer counts for all proteins, 
which we clustered using non-negative matrix factorization (NMF) (see 
Methods). The clustering identified 250 groups of proteins, dubbed 
‘topics’ (Supplementary Dataset 2), with characteristic combinations 
of shape-mers. These characteristic shape-mers could include small 
structural elements, such as repeats, the specific arrangements of 
ion-binding sites or larger structural elements that could define spe-
cific folds. For visualization, we performed a t-distributed stochastic 

alignments2–5, and an understanding of how this information is even-
tually encoded into a predicted 3D structure6–8. These developments 
have been reviewed recently9 and can be characterized by the increas-
ing use of neural-network models in key aspects of the challenge of 
predicting protein structures from their primary sequence. Along with 
advances in computational methods, there have been large expansions 
of protein sequence and structure databases10,11, which have served 
as key resources for input and training of sophisticated prediction 
methods. These advances have led to the recent leap in performance 
demonstrated by Deepmind at CASP14 (ref. 12). AF2 has been shown 
to be able to predict the structure of protein domains with an accu-
racy matching that of experimental methods. Both the method and 
a database of 365,198 protein models have been released13, enabling 
the scientific community to better understand the accomplishments, 
abilities and limitations of AF2.

The accuracy of AF2 has been independently evaluated in blind 
assessments. Yet many questions remain regarding the extent to 
which these approaches extend our coverage of structural biology, 
and the limitations of the AF2 method or structures derived from AF2 
for applications in biology. Regarding coverage, previous attempts 
to generate ‘proteome-wide’ structural models include those based 
on homology models, such as the SWISS-MODEL Repository (SMR)14, 
and more recently, the modeling of known protein domains in the 
Pfam database15 using trRosetta16. These represent prior bench-
marks of large target coverage that can be a useful comparison for  
AF2’s performance.

With regard to the application of AF2 structures, it is noteworthy 
that the platform provides metrics of uncertainty12 that have been 
shown to reflect confidence in the structural assignment—potentially 
linked to protein disorder—and uncertainty for pair-wise residue dis-
tances. It is therefore important to assess whether AF2 structures and 
confidence metrics can be successfully integrated into and applied 
to critical structural biology tasks, such as functional classification, 
variant effects, binding site prediction and modeling into new experi-
mental data (obtained, for example, from cryogenic electron micros-
copy (cryo-EM)). In addition to the prediction of individual protein 
structures, it has been shown recently that contact predictions can be 
used to simultaneously fold and dock proteins17, and early reports have 
indicated that AF2 can predict the structure of complexes18–20, which it 
was not initially trained to handle.

Here, we provide an evaluation and practical examples of applica-
tions of AF2 predictions across a large number of diverse structural 
biology challenges.

Results
Added structural coverage by AlphaFold2 predictions of 
model proteomes
The AF2 database has released predictions of the canonical protein 
isoforms for 21 model species, covering nearly every residue in 365,198 
proteins. This represents around twice the number of experimental 
structures and six times the number of unique proteins in the Protein 
Data Bank (PDB). It is important to assess the extent to which AF2 predic-
tions extend the structural coverage beyond previous proteome-wide 
structural predictions. We compared the structures of 11 model species 
that were included in both the SMR and AF2 databases and that had an 
average additional coverage of 44% of residues by AF2 (Fig. 1a, residues). 
However, not all of AF2’s residue predictions have high confidence. For 
residues that are not present in the SMR, we observed that an average 
of 49.4% are predicted with confidence by AF2 (predicted local distance 
difference test score (pLDDT) > 70) (Fig. 1a, AF residue confidence). 
With a more stringent cut-off (pLDDT > 90), AF2 predicts, on average, 
25% of residues with very high confidence. In summary, an average of 
around 25% of the residues of the proteomes of the 11 model species are 
covered by AF2 with novel (not present in SRM) and confident (pLDDT 
> 70) predictions.

http://www.nature.com/nsmb
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neighbor embedding (t-SNE) dimensionality reduction in which proteins 
composed of similar shape-mers are expected to group together (Fig. 2).  
In line with this, the shape-mer representation of AF2 proteins can pre-
dict the corresponding PDB protein entries with high accuracy (area 
under the receiver operating characteristic curve of 0.95 using the cosine 
similarity of the shape-mer vector). Additionally, the 20 most common 
superfamilies, predicted from sequence, tend to be placed together.

Out of 250 total groups, we selected 5 examples that were almost 
exclusively (>90%) composed of structures derived from AF2, as well as 
1 example with >80% AF2 structures with a particularly interesting novel 
predicted structural element. We illustrated these with a representative 
structure in Figure 2. Examples include 4,192 proteins annotated as 
G-protein-coupled olfactory or odorant receptors (Pfam PF13853), 97% 
of which are mammalian (Fig. 2a, Topic 88, and Supplementary Fig. 5a);  
a group of primarily (94%) plant proteins, annotated as PCMP-H and 
PCMP-E subfamilies of the pentatricopeptide repeat (PPR) superfamily 
(Fig. 2b, Topic 60, and Supplementary Fig. 5b); a group of heterogene-
ous structures that were mostly (>75%) annotated as ATP or ion binding 
(Fig. 2c, Topic 150, and Supplementary Fig. 5c); groups of proteins with 
leucine-rich repeats (Fig. 2d, Topic 16, and Supplementary Fig. 5d); 
some proteins with uncommon, regular patterns (Fig. 2e, Topic 188, 
and Supplementary Fig. 5e); and long α-helical constructs (Fig. 2f, Topic 
Helix, Supplementary Fig. 5f). For the PCMP-H and PCMP-E subfamilies 
(Fig. 2b), there are no known experimental structures mapped. AF2 
predictions could help elucidate the structural peculiarities of these 
subfamilies, including the mechanism of RNA recognition and binding 
for PCMP-H and PCMP-E proteins.

Studying examples from Mycobacterium tuberculosis in Topic 188 
led us to identify an interesting structure for a tandem repeat. Tandem 

repeat proteins with repetitive units of 6–10 residues predominantly 
have beta-solenoid structures25. Analyzing the AF2 results, we found 
a novel beta-solenoid structure predicted for a large family of pen-
tapeptide repeats26, found in the mycobacterial PPE proteins (Pfam: 
PF01469) (Fig. 2e and Supplementary Fig. 6). This structure represents a 
beta-solenoid, with the shortest possible coil of ten residues (two penta-
peptide repeats) (Supplementary Fig. 6b). Although such a beta-solenoid 
has not yet been resolved, our evaluation of the quality of the atomic 
structure (stereochemistry and contacts) suggests that the AF2 model 
is highly probable. Thus, AF2 may have allowed us to answer the ques-
tion of what is the shortest length of repeat that forms a beta-solenoid.

Finally, we also considered protein groups consisting primarily 
of PDB proteins to study why AF2 proteins are absent from them. In 
some cases, this seemed to be due to the limited number of species 
and proteins covered by the current AF2 database. Topics 209 and 113 
consist of immune response proteins, such as immunoglobulins and 
T-cell receptors, mainly from the PDB. As many of these antibodies 
are under intense study, there are many more PDB structures (based 
on multiple individuals and antibody-drug research) than the actual 
number of such proteins in the respective UniProt proteomes. Topic 38 
consists of short fragments of PDB structures, with an average length 
of 63 residues—there are no AF2 proteins, because AlphaFold models 
the entire structure instead of returning fragments.

Application of AlphaFold2 models for structure-based variant 
effect prediction
A protein structure facilitates the generation of hypotheses regarding 
the impact of missense mutations. Conversely, an agreement between 
the expected and observed impacts of mutations provides confidence 
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Fig. 1 | Additional coverage provided by AF2-predicted models. a, Added 
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confidence of regions not covered by SMR (right) for 11 species included in both 
the AF2 and SMR databases. b, Fraction of confident (pLDDT > 70) residues per 
human AF2 model, binned by r.m.s.d. from the corresponding trRosetta-derived 
domain-level Pfam model; 3,035 AF2 predicted structures of protein regions 
matching one of 1,464 different Pfam domain families were compared with 

the corresponding trRosetta model. c, Median fragment length and median 
pLDDT score of human AF2-only regions. The highlighted area identifies 
high-confidence regions with domain-like length. The bottom, middle line and 
top of the box correspond to the 25th, 50th and 75th percentiles, respectively.  
d, Comparison of AF2 SASA (SASA20, 20-residue smoothing) and pLDDT 
(pLDDT20, 20-residue smoothing) against a disorder prediction method 
(IUpred2).
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in the accuracy of a structural model. We obtained two independent 
compilations of experimentally measured impacts of protein mutations 
on protein function: (1) a compilation of measured changes in stability 
upon mutations27,28; and (2) a compilation of deep mutational scanning 
(DMS) experiments29,30 measuring the outcome of any possible single 
point mutation on most protein positions.

The DMS data were available for 33 proteins with 117,135 mutations; 
we obtained experimentally derived models for 31 of the proteins and 
AF2 models for all 33. We then used three structure-based variant effect 
predictors (FoldX31, Rosetta32 and DynaMut2 (ref. 33)) to compare the 
DMS measurements with predicted impacts. Although the correla-
tion estimates between the experimental and predicted impacts of 
mutations varied across the proteins, those derived from the AF2 
models consistently matched or were better than those derived from 
experimental models (Fig. 3a,b and Supplementary Fig. 7). Regions 
with confidence scores lower than 50 result in lower concordance  

(Fig. 3a), but restriction to protein regions without an experimen-
tal model can still lead to correlations that are comparable to those 
observed in experimental structures (Fig. 3b). Because low AF2 confi-
dence scores are enriched for intrinsically disordered protein regions, 
it is possible that the poor correlation in low-confidence regions is in 
part owing to higher tolerance to protein mutations. In line with this, we 
observed an average higher tolerance to mutations in low-confidence 
regions (Fig. 3c).

The compilation of measured impacts of mutations on protein sta-
bility contains information for 2,648 single-point missense mutations 
over 121 distinct proteins. We compared the accuracy of structure-based 
prediction of stability changes using AF2 structures, experimental 
structures and homology models using different sequence identify 
cut-offs (Fig. 3d and Supplementary Fig. 8; see Methods). Across 11 
well-established methods (Fig. 3d and Supplementary Fig. 8), the pre-
dictions of stability changes based on AF2 models were comparable to 
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Fig. 2 | The space of characteristic structural elements in AF2 structural 
models for 21 species. Visualization of t-SNE dimensionality reduction analysis, 
in which structures with similar structural elements are placed closer together 
and the 20 most common superfamilies are colored. The axes corresponding 
to the t-SNE dimension 1 and t-SNE dimension 2 were omitted. Six shape-mer 
groups (that is, topics) discussed in the text, consisting of mainly AF2 proteins 

as opposed to PDB proteins, are labeled A–F, and a representative structure 
is depicted for each. Residues in the representative structures are colored 
according to their contribution to the topic under consideration—red residues 
have the highest contribution, and blue residues are specific to the example and 
not to the topic.
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those of experimental structures. Homology-model-based predictions 
tended to show substantial decreases in performance for templates 
below 40% sequence identity.

We investigated, as an example, the human Sphingolipid 
delta(4)-desaturase (DEGS1), a 323-residue protein associated with 
leukodystrophy, for which no structure or model was available. All 
but the terminal residues are predicted by AF2 with high confidence. 
The presumed catalytic core is discussed further below. Here we focus 
on disease-associated missense variants. p.A280V has been shown to 
lead to loss of protein stability34 and has a predicted Gibbs free energy 
change (ΔΔG) of 3.7 kcal/mol. Two additional pathogenic variants 
have ΔΔG values of >1.5 kcal/mol, pointing towards loss of stability 
being the mechanism of pathogenicity; the benign variants do not 
substantially affect protein stability, as expected (Fig. 3e). The likely 
pathogenic variant p.R133W is not predicted to affect stability, and 
hence likely has a different mechanism underlying disease. This is 
in line with previous findings that core variant changes in particular 

lead to loss of stability, whereas surface variants are more likely to act 
through other mechanisms30.

Functional characterization of AF2 models by pocket and 
structural motif prediction
High-confidence proteome-wide structural predictions open the door 
for a large expansion of predicted protein pockets35,36. However, the full 
protein models produced by AF2 have to be considered carefully given 
their potential errors, such as the likely incorrect placement of protein 
segments of low confidence or the low confidence in interdomain orien-
tations. To investigate whether these issues may result in the formation 
of spurious pockets, we predicted pockets on a set of 225 proteins with 
known binding sites defined using bound (holo) structures for which 
the corresponding unbound (apo) structures are available37.

Pockets identified from structures have a wider size range than 
do ground-truth binding sites (Fig. 4a). This is also true for pock-
ets predicted from AF2 structures, including a small number of 
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particularly large pockets (Fig. 4a). We divided AF2 pocket predic-
tions into high-quality (mean pLDDT > 90) and low-quality (mean 
pLDDT ≤ 90) subsets (Fig. 4b,c) on the basis of the mean pLDDT of 
pocket-associated residues. Low-quality pockets are larger on average, 
and include particularly large pockets (Fig. 4a, bottom). We then asked 
whether mean pLDDT could be useful as a general metric of prediction 
confidence by quantifying the overlap between known and predicted 
pockets (Fig. 4b and Supplementary Fig. 9). We did not observe a differ-
ence between the performance of high-quality AF2 pockets and pockets 
identified from experimental structures. In contrast, low-confidence 
pockets generally did not overlap with known sites. Although there 
may be bias because high-confidence AF2 regions are more likely to 
have relevant deposited templates, we suggest that the mean pLDDT 
of predicted pockets can be used as an additional criterion for pocket 
selection in AF2 structures.

Conserved local conformations of specific residues can be used 
to identify important functions, such as enzyme activity, ion or ligand 
binding beyond global sequence and fold similarities38. To showcase the 
potential of this application for AF2 models in the future, we focused on 
912 human proteins with no experimental or homology models avail-
able. We found that the prediction score of the highest ranked pocket 
enriched the set for proteins with previous annotations for enzymatic 
activity (Fig. 4c and Supplementary Table 3). Discarding pockets with 
a low mean pLDDT led to slightly improved enrichment. As a specific 
example, we focused on the human sphingolipid delta(4)-desaturase 
(EC 1.14.19.17, DEGS1, UniProt Accession O15121, pocket score rank 57 of 
912), which has a high confidence level (average pLDDT = 96.31) and for 
which there are no previous structural data. A sequence search of the 
323-residue protein against all existing entries in the PDB shows that the 
best sequence match is 23.5%, with PDB entry 1VHB (Bacterial dimeric 
hemoglobin, 9115439), indicating the lack of any structural models 
from homology. A scan of 400 auto-generated 3-residue templates 
from the AF2-predicted structure against representative structures in 
the PDB (reverse template comparison38) yielded a possible 3-residue 
template match: PDB entry 4ZYO (EC 1.14.19.1, human stearoyl-CoA 
desaturase39, Fig. 4d). A close up of the metal-binding center (Fig. 4e) of 
DEGS1 and 4YZO (overall sequence homology, 12.1%) superimposed via 
the 3-residue templates (Fig. 4d) clearly indicates the potential dimetal 
catalytic center for DEGS1. The histidine-coordinating metal center of 
DEGS1, together with data on the bound substrate of 4ZYO, provides a 
foundation for modeling studies that could impact the pharmacology 
of DEGS1 by exploring the details of its catalytic mechanism.

AlphaFold2-based prediction of protein complex structures
Since the first development of direct coupling analysis algorithms, 
co-evolutionary-information-based methods have been used to predict 
protein-protein interactions40. It has been recently reported that several 
deep-learning-based methods, such as trRosetta16 and Raptor-X41, can 
predict the structure of protein complexes. To examine the capacity 
of AF2 to predict protein complex structures, we tested the ability of 
AF2 to fold and ‘dock’ two benchmark sets—a set of proteins known to 
form oligomers42 and the Dockground 4.3 heterodimeric benchmark43.

For oligomerization, we obtained sets of proteins known either 
not to oligomerize or to form oligomers, including dimers, trimers or 
tetramers. We then made AF2 predictions for each protein, attempt-
ing to predict either a monomer or an oligomeric form (see Meth-
ods). Across the set of predictions, higher scores were given to models 
corresponding to the correct oligomerization state, and 71 out of 87 
(82%) predicted top-scoring models corresponded to the correct state 
(Fig. 5a and Supplementary Table 4). Generally, the multimeric state 
scores are well separated from the monomeric state scores (Fig. 5b).  
In 28/30 examples, AF2 was able to correctly predict monomeric pro-
teins as monomers, 29/35 dimers as dimers, 7/9 trimers as trimers 
and 7/13 tetramers as tetramers. Notably, although the failure rate is 
high for tetramer state predictions, the predicted structure for the 

corresponding state was actually correct for 5/6 failures. Examples of 
failure modes for dimers and a tetramer are shown in Figure 5c,d. We 
noted that, for some cases of failed tetramer predictions, we could 
obtain higher confidence of the tetramer predictions by increasing 
the number of recycles.

We next examined the Dockground 4.3 heterodimeric benchmark 
set43. We predicted complex structures using the DeepMind default 
dataset and the small Big Fantastic Database (BFD) database. This 
method does not include any ‘pairing’ of interacting chains, as was used 
in earlier fold-and-dock approaches. The docking quality was evaluated 
using DockQ44,45. Only one model for each target was made, and a maxi-
mum of three recycles were allowed. In Figure 5e, it can be seen that 
the performance is far superior to traditional docking methods, with 
31% of correctly predicted protein complex models, compared with 7% 
using GRAMM, a standard shape-complementarity docking method44.

Finally, we studied examples of complexes containing IDPs/IDRs 
that adopt a stable structure upon binding. IDRs often bind through 
short linear motifs (SLiMs), recognizing folded domains driven by a 
few residues. The longer IDRs can contain arrays of SLiMs and can also 
form stable structures upon binding to other IDRs without a structured 
template. We selected 14 cases of complexes involving IDRs with known 
structures and analyzed their distinguishing features compared with 
the experimental complex (Fig. 5f contains selected examples and Sup-
plementary Figs. 10 and 11 show all examples). In general, AF2 performs 
well at predicting SLiMs that fit into a well-defined binding pocket 
driven by hydrophobic interactions, such as the SUMO interacting 
motif of RanBP2. Longer IDRs, which frequently contain tandem motifs, 
are often challenging, especially if they have a symmetric structure. 
For the RelA–CBP interaction, AF2 correctly finds the binding groove, 
but fits the IDR in a reverse orientation. AF2 also performs well on 
complexes in which IDRs are part of a multi-IDR single folding unit, 
such as the E2F1–DP1–Rb trimer; however, building complexes for 
proteins with highly unusual residue compositions, such as collagen 
triple helices, often fail. We provide a detailed description of the 14 
examples in Supplementary Figures 10 and 11 and Supplementary Table 
5 and detail the factors that enable or hinder successful predictions.

Evaluation of AlphaFold2 models for use in experimental 
model building
The accuracy of AF2 predictions provides opportunities for their use in 
experimental model building: (1) AF2 models could be used for molecu-
lar replacement or docking into cryo-EM density, experimental phasing 
and/or ab initio model building; and (2) they could be used as reference 
points to improve existing low-resolution structures. These use cases 
will typically involve the use of conformational restraints, for example 
to maintain the local geometry of domains while flexibly fitting a large 
multi-domain model, or to restrain the local geometry of an existing 
model of an AF2-derived reference to highlight and correct likely sites 
of error. It is critical to use restraint schemes designed to avoid forcing 
the model into conformations that clearly disagree with the data. Typi-
cally, this is achieved through some form of top-out restraint, for which 
the applied bias drops off at large deviations from the target. Here, 
we take advantage of the fact that AF2 models typically include very 
strong predictions of their own local uncertainty to adjust per-restraint 
weighting of the adaptive restraints recently implemented in ISOLDE46 
(see Methods). For the two case studies discussed below, a comparison 
of validation statistics for the original and revised models is provided 
in Supplementary Table 6.

As an example of the improvement of existing structures, we used 
the eukaryotic translation initiation factor (eIF) 2B bound to substrate 
eIF2 (6O85)47,48. The eIF2B complex is a decamer comprising two cop-
ies each of five unique chains. It displays allosteric communication 
between physically distant substrate-, ligand- and inhibitor-binding 
sites. eIF2 is a heterotrimer of three unique chains. We analyzed a 
0.4-MDa co-complex enzyme-active state captured by cryo-EM at an 
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overall resolution of 3 Å (ref. 49). Rigid-body alignment of AF2 models to 
their corresponding experimental chains (Fig. 6a) showed overall excel-
lent agreement, with the largest deviations corresponding to correctly 
folded domains with flexible connections to their neighbors. Other 
mismatched smaller regions corresponded to either register errors in 
the original model or flexible loops and tails. Each chain was restrained 
to its corresponding AF2 model using ISOLDE’s reference-model dis-
tance and torsion restraints, with each distance restraint adjusted 
according to pLDDT. Future work will explore the use of the predicted 
aligned error (PAE) matrix for this purpose, and weighing of torsion 
restraints according to pLDDT. Simple energy minimization and equili-
bration of the restrained model at 20 K corrected the majority of local 
geometry issues (for example, Fig. 6b,c); a high-confidence prediction 
for the C-terminal domain of chains I and J allowed us to add this into 

previously untraceable low-resolution density (Fig. 6d, left of the 
dashed line). We emphasize that detailed manual inspection remains 
necessary to find and correct larger errors in the experimental model, 
sites of disagreement arising from conformational variability and sites 
where high-confidence predictions are in fact incorrect. An example of 
the latter is the side chain of Trp A111, which, despite its high confidence 
(pLDDT = 86.1), was modeled incorrectly by AF2 (Fig. 6f).

To explore the use of AF2 structures for solving and refining new 
structures, and to map out suitable workflows, we attempted to reca-
pitulate the recent 3.3-Å crystal structure of the Saccharomyces cer-
evisiae Nse5/6 complex (7OGG)50. This was not included in the AF2 
training set, and no existing structures have ≥30% identity to either 
chain. Originally solved using selenomethionine experimental phasing, 
the combination of low-resolution and anisotropy (ΔB = 80 Å2) meant 
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that, although the core of the complex was confidently and correctly 
modeled, only 583 out of 850 total residues were definitively modeled 
by the authors, with a further 65 residues traced as unknown sequence 
and one peripheral 27-residue helix modeled out of register. For testing 
purposes, we discarded this model and used the AF2 predictions for 

molecular replacement (MR). MR requires very close correspondence 
between atom positions in the search model and in the crystal; separa-
tion into individual rigid domains and trimming of flexible loops is a 
necessity. We used the PAE matrix to extract a single rigid core from 
each chain (see Methods) and performed MR in Phaser51, leading to 

a

c

b

d

e

Homo-1-base polymer Homo-2-base polymer Homo-3-base polymer Homo-4-base polymer

Oligomeric state Oligomeric state Oligomeric state Oligomeric state

pT
M

sc
or

e
pT

M
sc

or
e

RanBP2–SUMO1 (PDB: 2LAS) RelA–CBP (PDB: 2LWW) E2F1–DP1–Rb (PDB: 2AZE) Collagen triple helix (PDB: 4DMU)

1 2 3 4
0.2

0.4

0.6

0.8

1.0

n = 28

1 2 3 4

n = 29

1 2 3 4 5

n = 7

1 2 3 4 5

n = 7

1 2 3 4
0.2

0.4

0.6

0.8

1.0

n = 2

1 2 3 4

n = 2

1 2 3 4 5

n = 6n = 6

1 2 3 4 5
0.6 0.7 0.8 0.9 1.0

One-base polymer pTM score

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Xm
er

 p
TM

sc
or

e

One-base polymer
Two-base polymer

Three-base polyme
Four-base polymer

f

DockQ AlphaFold2 versus GRAMM

D
oc

kQ
 G

RA
M

M
 a

ve
ra

ge
 D

oc
kQ

 =
 0

.0
6,

 F
ra

cC
or

re
ct

 =
 7

.0
%

DockQ AlphaFold2 average DockQ = 0.21, FracCorrect = 31.0%

1.0

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1.0

Fig. 5 | Using AF2 to predict homo-oligomeric assemblies and their oligomeric 
state. a, AF2 prediction for each oligomeric state (1–4 for monomers and dimers, 
and 1–5 for trimers and tetramers). Only proteins for which the monomer had 
pLDDT > 90 are shown. For visualization, the predicted successes (top) and 
failures (bottom) were separated into two plots. Success is defined when the peak 
of the homo-oligomeric state scan matches the annotation, or the pTMscore of 
the next oligomer state is substantially lower (−0.1). b, For each of the annotated 
assemblies, the pTMscore of monomeric prediction is compared with the max 
pTMscore of non-monomeric prediction. c, Monomer prediction failure. Two 
monomers were predicted to be homo-dimers. For the first case (PDB: 1BKZ), the 
prediction matched the asymmetric unit (shown as blue/green and prediction 
in white). For the second case (PDB: 1BWZ), the prediction matched one of the 

crystallographic interfaces. d, 3TDT trimer was predicted to be a tetramer. 
Although the interface is technically correct, for this c-symmetric protein, the 
pTMscore was not able to discriminate between 3 and 4 copies. e, Comparison 
of docking quality between AF2 (x axis) and a standard docking tool GRAMM 
(y axis). Comparisons were made using the DockQ score. Models with a DockQ 
score that was higher than 0.23 are assumed to be acceptable according to 
the Critical Assessment for Predicted Interactions (CAPRI) criteria (marked 
outside the shaded area). Black circles indicate the complex was well modeled 
by both methods. The average DockQ score and the number of acceptable or 
better models are shown in the axis labels. It should be noted here that AF2 both 
folds and docks the proteins, whereas GRAMM only docks them. f, Examples of 
AF2-predicted interactions mediated by regions of intrinsic disorder.

http://www.nature.com/nsmb
https://doi.org/10.2210/pdb1BKZ/pdb
https://doi.org/10.2210/pdb1BWZ/pdb
https://doi.org/10.2210/pdb3TDT/pdb


Nature Structural & Molecular Biology | Volume 29 | November 2022 | 1056–1067 1064

Article https://doi.org/10.1038/s41594-022-00849-w

a clear solution with translation function Z-score (TFZ) = 28.2 and 
log-likelihood gain (LLG) = 884 (see Methods).

Currently, a refined MR solution is typically used as the starting 
point for some combination of automatic and manual building of 
missing portions into the density. In many cases, however, it appears 
that AF2 predictions will support a more ‘top-down’ approach, in which 
all residues predicted with at least moderate confidence are present 
in the initial model. To explore this, we trimmed the predicted chains 
to exclude residues with pLDDT ≤ 50 and aligned the result to the MR 
solution, setting the occupancies of all atoms not used for MR to zero. 
This was used as the starting point for rebuilding in ISOLDE; here, 
zero-occupancy atoms do not contribute to structure factor calcula-
tions or bulk solvent masking, but still take part in molecular interac-
tions and are attracted into the map. The model was subjected to three 
rounds of end-to-end inspection and rebuilding interspersed with 

refinement with phenix.refine52. In the initial round, zero-occupancy 
residues fitting the map were reinstated to full occupancy, and resi-
dues that seemed to be truly unresolved were deleted; a small number 
of these were re-introduced in subsequent rounds. The total time 
spent was approximately one working day; the final model (Fig. 6f–h) 
increased the number of modeled, identified residues from 600 to 818, 
slightly improved overall geometry and reduced the Rfree from 0.317 to 
0.295. With few exceptions (primarily at heterodimer and symmetry 
interfaces), rebuilding was limited to minor side chain adjustments.

Discussion
We estimate that AF2 may add, on average, around 25% of confidently 
predicted residues to a given proteome, although this will vary depend-
ing on how much experimental and previous computational approaches 
have already covered. However, even for residues that can be modeled 
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by distant homology, it is possible that the AF2 models are more accu-
rate, increasing their usefulness. Here, the precise accuracy estimates 
at the residue level are extremely useful. In addition, low AF2 predic-
tion scores are enriched for protein disorder, suggesting that regions 
of low-confidence predictions can be hypothesized to be disordered 
segments. However, we note that the protein disordered regions are 
often defined as regions that are not solved by X-ray crystallography. 
As AF2 is trained primarily on X-ray data, the relation between disorder 
and predicted confidence could be a by-product of using this definition 
of disorder. For comparison, we used IUPred2, an easy to deploy tool 
that is a commonly used dedicated protein-disorder prediction, but 
there are other dedicated approaches that outperform IUPred2 (ref. 53).

The AlphaFold database was initially released with >300,000 
proteins modeled with a more recent expansion to over 200 million 
proteins with predicted structures, sampling the universe of pro-
tein sequences and structures. As we show here, even on a relatively 
modest set, we can identify what are likely to correspond to rarely 
explored combinations of structural elements. As an example, we 
have identified to our knowledge the shortest length of repeat that 
forms a beta-solenoid to date. Among other areas, the expansion of 
high-confidence predictions will allow prioritization of experimental 
structure determination of novel folds; the large-scale prediction of 
protein function from structure; the identification of novel enzymes; 
and the study of the evolution of protein structure and function.

We assessed the application of AF2 predictions in diverse struc-
tural biology challenges, including variant effect prediction, pocket 
detection and model building into experimental data. In line with the 
reported high accuracy of the models, we found that AF2-predicted 
structures, on average, tend to give results that are as good as those 
derived from experimental structures. However, Although AF2 returns 
full protein predictions, these can often contain protein segments that 
are placed with uncertainty. This uncertainty can lead to incorrect 
estimations or identification of structural similarity, pockets, variant 
effects or poor model building. Importantly, in all cases, we find that 
it is critical to take into account the confidence metrics provided, and 
that these should be incorporated into the corresponding workflows. 
For model building based on experimental data, we noted examples 
of cases for which details were incorrect in regions where AF2 has high 
confidence, which underlies the need for detailed manual inspection. 
AF2 will not do away with experimental studies, but the combination 
of experimental data collection plus artificial intelligence is likely to 
be a growing trend.

For variant effect prediction, AF2 was used to predict the structure, 
and the impacts of mutations were predicted with other tools that can 
use these or experimental structures. A different approach could have 
been to use AF2 to predict the structure of the reference and mutated 
proteins and to compare these structures to evaluate the impact of 
the mutations. However, some reports have indicated that AF2 does 
not appear to be well suited to predict the structures of mutated pro-
teins54,55. Additionally, the prediction of such large numbers of mutated 
structures would have been computationally time consuming.

Finally, we explored the application of AlphaFold2 for prediction 
of complex structures and found that it outcompetes standard docking 
approaches while not requiring even starting protein structures. We 
have expanded on this analysis in a companion manuscript20 and have 
used this approach to predict complexes of human protein interactions 
on a large scale56. It has already been shown that other distance- and 
contact-prediction methods trained to predict unmodified intra-chain 
contacts can be used to predict inter-chain contact predictions, both 
for homo- and hetero-meric complexes. Therefore, we were not sur-
prised to see that it is possible to use AF2 to fold and dock heterodi-
meric complexes. However, it was unexpected that it was possible to 
use non-matched pairs of alignments for different proteins to predict 
complex structures, indicating that AF2 goes beyond using coevolution 
to predict these structures.

There are many areas for further benchmarking and improvements 
of AF2-related approaches. Although the capacity of AF2 to predict 
the structures of difficult targets has been demonstrated, the extent 
to which AF2 generalizes to truly never before seen folds remains to 
be understood. The generation of a test set with folds that are not rep-
resented in the AF2 training set may not be a trivial task. Other open 
areas for this field of research include the prediction of: structures of 
mutated proteins55; conformation diversity and dynamics; structure 
in the absence of a MSA57; and structures of proteins in complex with 
other biomolecules such as DNA, RNA or metabolites. Another such 
area is the explicit modeling of biophysical parameters.

In summary, we find that AF2 models, when their uncertainty 
is taken into account, can be applied to existing structural biology 
challenges, and their quality is near that of experimental models. The 
application of AF2 to a large representation of the protein universe 
and expansion to the prediction of protein complexes will have a trans-
formative impact in life sciences.
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Methods
Coverage comparison between the SWISS-MODEL repository 
and AlphaFold2 databases
The SMR and AF2 databases were accessed on 24 July 2021. Reference 
proteomes for 11 species shared between AF2 and SMR were down-
loaded from the Uniprot release 2021_03. Only structures correspond-
ing to entries from the reference proteomes were used for the analysis. 
Numpy58, Pandas59, Prody60 and Matplotlib61 Python libraries were used 
for the analysis and the visualization. Structure counters for protein 
domains were extracted from the corresponding InterPro entries62. 
Code and data are available online (https://github.com/aozalevsky/
alphafold2_vs_swissmodel/).

Comparison between human RoseTTAFold Pfam domain and 
AlphaFold2 structures
We used the 17,006 human proteins that were defined as the princi-
pal isoform for their corresponding gene according to APPRIS and 
whose sequences were the same in ENSEMBL and Uniprot. We used 
Pfamscan to identify PFAM domains in the 17,006 protein sequences. 
The database of PFAM-A models was downloaded on 29 June 2021 and 
created on 19 March 2021. We kept only those PFAM domains identi-
fied with an e-value below 1 × 10–8. AF2 models for human proteins 
were downloaded on 23 July 2021 from https://alphafold.ebi.ac.uk. 
We extracted the sequences and compared them with the ENSEMBL 
protein sequences used for the structural analysis. For comparison 
purposes, all the analyses and results presented here are based on the 
subset of 17,006 protein sequences for which the ENSEMBL and Alpha-
Fold protein sequences were identical. We also extracted pLDDT values 
for each residue from the AlphaFold models, as these are stored as if 
they were the B-factor of the protein coordinates file. The RoseTTAFold 
models were downloaded from the EBI website on 27 July 2021, and the 
r.m.s.d. between models from both methods was calculated using the 
function struct.aln from the R package bio3d. All statistical analyses 
were done using R 4.0.2. Graphical plots were created with the pack-
ages ggplot2 (ref. 63), patchwork and reshape2. Molecular graphics and 
analyses performed with UCSF Chimera64, developed by the Resource 
for Biocomputing, Visualization, and Informatics at the University of 
California, San Francisco.

Disorder prediction
Benchmarking data for ordered and disordered protein regions were 
taken from the benchmark set of IUPred2 (ref. 22) and were filtered for 
proteins for which AF2-predicted structures are available in the Alpha-
Fold database. Relative SASA was calculated by determining the abso-
lute SASA using DSSP and then comparing it to the SASA calculated in a 
GGXGG conformation. Receiver operating characteristic (ROC) curves 
plotting the true positive rate as the function of the false positive rate 
were calculated on a per-residue level. Area under the ROC curves are 
single-number measures of the overall predictive performance in the 
range of 0.5 (for random predictions) to 1.0 (for perfect predictions).

Exploration of structural space covered by the AlphaFold 
database compared with the Protein Data Bank
We use the 365,198 proteins from the current AlphaFold database (AF) 
and 104,323 proteins from PDB in 2016 (until CASP12) with a 100% 
sequence identity threshold, removing duplicates. Owing to the pres-
ence of low-confidence regions in the AF proteins, we first performed 
trimming to split each AF protein into smaller high-confidence units 
as follows: a one-dimensional Gaussian filter with a standard devia-
tion σ of 5 is applied to the sequence of pLDDT scores extracted from 
the Cα atoms. The resulting scores are used to split the protein into 
continuous segments of residues with smoothed pLDDT scores > 70. 
Segments with fewer than 50 residues are discarded. This removed 
68,890 AF proteins with too few high-confidence residues for accurate 
structural comparison.

For each AF protein segment, and for each PDB protein, rota-
tion invariant moments O3, O4, O5 and F were calculated for the Cα 
atoms using a k-mer-based approach (with k = 16) and radius-based 
approach (r = 10 Å) using Geometricus24. These were then converted 
into shape-mers using a resolution of four for the k-mer based approach 
and six for the radius-based approach. Shape-mers were counted across 
the whole protein for a PDB protein and across all splits for an AF protein 
to give the shape-mer count vectors. We then created a term frequency 
inverse document frequency (TFIDF) matrix for all PDB and AF proteins, 
in which the terms are shape-mers and each protein is equivalent to a 
document. We performed topic modeling using NMF, which attempts 
to factorize a matrix of size n × m into matrices W of size n × p, and H of 
size p × m. We interpret this as finding p topics (here set to 250), each 
of which consists of a weighted combination of the m shape-mers 
(defined by H). Each of the n proteins can then be seen as a weighted 
combination of these p topics (defined by W).

For topic analysis, we assigned proteins to each topic using 
knee detection with a weight cut-off65. For visualization, we per-
formed t-SNE dimensionality reduction on the W matrix returned 
by NMF. Topic-specific scores were obtained for each residue within 
a shape-mer by multiplying the corresponding topic weight for the 
shape-mer (from H) with an RBF kernel score of the Euclidean distance 
between the residue and the central residue of the shape-mer. These 
were aggregated across all shape-mers within a protein to obtain the 
topic-specific residue scores for the protein.

Code and scripts can be found at: https://github.com/TurtleTools/
alphafold-structural-space

Structure-based variant effect predictions using experimental 
and predicted structures
A subset of experimentally characterized mutations was curated from 
ThermoMutDB27, comprising 2,648 single point missense mutations 
across 132 unique globular proteins. The experimentally measured 
effect of the mutations on protein stability was represented as the dif-
ference in ΔΔG (in kcal/mol) between wild type and mutant. Experimen-
tal structures were obtained from the PDB1. Homology models were 
generated using Modeller66 using the most complete available template 
within each identity threshold range (20% ± 5%, 30% ± 5%, until 90% ± 5%).  
AF2 models were generated locally. These mutations were analyzed by 
computational predictive tools, including the sequence-based predic-
tors I-Mutant67, SAAFEC-SEQ68 and MUpro69, and the structure-based 
predictors mCSM-stability70, DUET71, SDM72, DynaMut73, MAESTRO74, 
ENCoM75, DynaMut2 (ref. 33) and FoldX31. For each method, the perfor-
mance and concordance between the experimental and predicted ΔΔG 
are determined and presented in the corresponding figures as Pearson’s 
correlation values. A larger set of experimentally determined impact of 
missense mutations was derived from a compilation of Deep Mutational 
Scanning (DMS) experiments29 comprising 117,135 total mutations 
in 33 proteins. These were compared against predictions made with 
DynaMut2, FoldX and Rosetta30,32 (see also Supplementary Methods).

Pocket and structural motif prediction
We downloaded structures from the AlphaFold Protein Structure Data-
base76 except for analyses of the LBSp dataset37. In the latter case, we 
used locally modeled structures, as many LBSp structures are from 
species not included in the public database. We detected pockets and 
calculated overlap metrics (F-score, Matthew’s correlation coefficient 
(MCC)) using AutoSite77 from ADFRsuite version 1.0, and OpenBabel78 
was used to prepare PDBQT input for AutoSite (obabel -h -xr–par-
tialcharge gasteiger). For enzyme activity predictions, we selected 
AlphaFold models without corresponding entries in SWISS-MODEL 
2021–11–30, and kept 921 structures with mean pLDDT ≥ 70 and 100–
500 residues. We considered 170 proteins as having known enzymatic 
activity if there was an EC number and/or a catalytic activity annotation 
in the corresponding UniProt records.
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Oligomerization state prediction
To test the ability of AF2 to predict the oligomeric state of 
homo-oligomeric assemblies, we downloaded the dataset from Pon-
stingl et al.42. Since the PDB files were not provided, the dataset was 
filtered to entries for which the oligomeric state was in agreement with 
PISA annotation. Because AF2’s training was done only on single chains, 
we reasoned that examples, even if they overlap with the training set, 
could be used to evaluate AF2’s oligomeric state prediction capabili-
ties. For each PDB entry, the sequence of chain A was extracted, and 
a multiple sequence alignment was generated using the automated 
MMseqs2 webserver through ColabFold. For homo-oligomeric pre-
diction, each MSA was copied, padded with gaps to the total length 
reflecting the number of copies in the assembly and concatenated. 
These concatenated alignments were fed into AF2. No templates were 
used. All five ptm-fine tuned model parameters were used. To test the 
robustness of AF2’s five model parameters to predict homo-oligomeric 
structures, we use the worst of the predicted TMscores for each state.

Fold-and-dock prediction of heterodimeric protein complexes
We used 219 heterodimeric complexes from Dockground benchmark 
4 (ref. 79). This set contains unbound forms of heterodimeric protein 
chains, which share at least 97% sequence identity with the bound forms. 
The dataset consists of 54% eukaryotic proteins, 38% bacterial proteins 
and 8% from mixed kingdoms, for example one bacterial protein inter-
acting with one eukaryotic protein. To evaluate performance, one model 
for each pair was generated with AF2 (using default parameters, except 
that model_2 was used, providing a complementary set of results to 
those derived in ref. 20). To enable docking, we changed only the residue 
number so that both chains are treated as a long chain with a 200-residue 
gap, as in ref. 80. We compared AF2 predictions with models docked with 
GRAMM. The GRAMM models were ranked using the AACE18 scoring 
function81. Docking quality was estimated with DockQ45.

Complex structure predictions for disordered proteins
Predictions were run using the sequences defined in the PDB files (not 
including modified residues and other molecules). Predictions were 
done using the Google Colab notebooks by S. Ovchinnikov; homooli-
gomers were predicted using the notebook accessible at https://colab.
research.google.com/github/sokrypton/ColabFold/blob/main/Alpha-
Fold2.ipynb, and heterooligomers were predicted using the dedicated 
notebook, accessible at https://colab.research.google.com/github/
sokrypton/ColabFold/blob/main/AlphaFold2_complexes.ipynb. In the 
case of dimers, the default settings were used. In case of higher order 
oligomers, one chain was used on its own (usually the IDR if there is 
only one), and the rest of the chains were concatenated using a long 
linker (either several ‘U’s or several repeats of ‘SG’s).

Evaluation of AlphaFold2 models for use in experimental 
model building
AF2 models were used as an aid to rebuilding the existing 6O85 in ISOLDE, 
with a preliminary implementation pLDDT-based weighting of its exist-
ing adaptive distance restraints46. Initial fetching and alignment of the 
relevant AF2 models for each chain used a tool available in pre-release 
versions of ChimeraX 1.3, allowing command-based fetching of predic-
tions from the AlphaFold EBI server by UniProt ID. For existing models 
fetched from the wwPDB, the UniProt ID for each chain is automatically 
parsed from the mmCIF metadata, and each fetched prediction is aligned 
and renamed to match the target chain. ISOLDE’s reference-model dis-
tance restraint scheme has four adjustable parameters controlling the 
restraint potential: kappa (the overall strength); wellHalfWidth (the 
range over which the restraining force is linearly related to distance); 
tolerance (the width of a flat-bottom—that is, zero-force—region close to 
the target); and fallOff (the rate at which the potential tapers at large dis-
tances). With the exception of kappa, each of these terms is expressed as 
a function of the reference interatomic distance: for a given restraint, the 

final harmonic well width, tolerance and fall-off all increase with increas-
ing reference distance. For the purpose of this study, we added terms 
to further adjust kappa, tolerance and fallOff according to the pLDDT 
of the lowest-confidence atom in each restrained pair; all restraints 
where at least one reference atom had a pLDDT < 50 were disabled. For 
each chain in the complex, the working model was restrained against 
the AlphaFold reference using the ‘isolde restrain distances’ command 
with the above modifications enabled but otherwise standard settings. 
Backbone and side chain torsions were also restrained against the refer-
ence model using the ‘isolde restrain torsions’ command with default 
arguments. After energy minimization and equilibration, the model was 
inspected and, where necessary, interactively remodeled; where refer-
ence model restraints clearly disagreed with the model, they were selec-
tively released. Where the AF2 models included previously-unmodeled 
residues supported by the density, they were merged into the working 
model. The final model was refined with phenix.real_space_refine52 using 
settings defined by the ‘isolde write phenixRsr’ command.

For the recapitulation of 7OGG, the AF2 predictions for its two 
chains were fetched in ChimeraX, as above. The rigid core of each chain 
was extracted using a community clustering approach based on the PAE 
matrix; source code for this is available at https://github.com/tristanic/
pae_to_domains. After setting B-factors to a constant value of 50, these 
were used to generate a fresh molecular replacement (MR) solution 
using PHASER51. The original, complete AF2 models were aligned to the 
MR result in ChimeraX, and occupancies for atoms that were not part 
of the MR models were set to zero. The result was used as the starting 
model for rebuilding in ISOLDE. After it was initially settled into the map 
with distance and torsion restraints applied, the model was inspected 
and rebuilt end-to-end. During this initial rebuilding, zero-occupancy 
atoms with clear correspondence to density were reinstated to full 
occupancy, while residues with no associated density were deleted. 
Where there was clear disagreement with the map (primarily at the 
heterodimer interface), the initial distance and torsion restraints were 
selectively released in favor of interactive remodeling. The resulting 
model was refined with phenix.refine 52, using settings defined by the 
‘isolde write phenixRefine’ command. In a second and third round of 
interactive rebuilding in ISOLDE (during which the distance and tor-
sion restraints were fully released) interspersed with phenix.refine, a 
small number of residues deleted in the first step were re-introduced.

In both the above cases, the final coordinates have been shared 
with the original authors.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
Contiguous protein regions of human high-confidence structural pre-
dictions with no previous structural predictions by homology models 
in the SWISS-MODEL Repository are available in Supplementary Table 
1 and in Github: https://github.com/aozalevsky/alphafold2_vs_swiss-
model. The benchmark dataset used for testing of disorder predic-
tions metrics is available in Supplementary Table 2, and predicted 
disordered regions for human proteins are available in Supplementary 
Dataset 1 and are integrated into ProViz22 at http://slim.icr.ac.uk/
projects/alphafold?page=alphafold_proviz_homepage. The grouping 
of proteins by structure similarly using the NMF analysis of structural 
fragments is available as Supplementary Dataset 2, and the pocket pre-
diction scores for 912 human proteins with no previous experimental 
or predicted structural models are available in Supplementary Table 3.

Code availability
Coverage comparison between SMD and AF2: https://github.com/
aozalevsky/alphafold2_vs_swissmodel/. Exploration of structural 
space: https://github.com/TurtleTools/alphafold-structural-space. 
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Pocket predictions: https://github.com/jurgjn/af2_pockets. Protein 
complexes: https://gitlab.com/ElofssonLab/FoldDock, https://colab.
research.google.com/github/sokrypton/ColabFold/blob/main/
AlphaFold2.ipynb. Model building: https://github.com/tristanic/
pae_to_domains.
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