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Most proteins fold into 3D structures that determine how they function

and orchestrate the biological processes of the cell. Recent developments
incomputational methods for protein structure predictions have reached
the accuracy of experimentally determined models. Although this has
beenindependently verified, the implementation of these methods across
structural-biology applications remains to be tested. Here, we evaluate the
use of AlphaFold2 (AF2) predictions in the study of characteristic structural
elements; the impact of missense variants; function and ligand binding

site predictions; modeling of interactions; and modeling of experimental
structural data. For 11 proteomes, an average of 25% additional residues

can be confidently modeled when compared with homology modeling,
identifying structural features rarely seen in the Protein Data Bank.
AF2-based predictions of protein disorder and complexes surpass dedicated
tools, and AF2 models can be used across diverse applications equally well
compared with experimentally determined structures, when the confidence
metrics are critically considered. In summary, we find that these advances
arelikely to have a transformative impactin structural biology and broader
life-science research.

Proteins are the key molecules of the cell that are involved inall cellular
processes. The three-dimensional (3D) shape of a protein provides criti-
calinformation that can,among many things, be used to study protein
interactions, functions and theimpact of missense variation. Although
tremendous progress has been made in experimental approaches to
determining proteinstructures, the experimentally determined struc-
tures of 100,000 proteins' represent a very small fraction of the size

and diversity of the universe of proteins. Protein structure prediction
has been afundamental challenge in bioinformatics for decades, and
accurate predictions could accelerate our understanding of protein
structure-function relationships, with vast impacts on the study of life.
Since thefirst blind assessment of prediction methods, much progress
has been made—including improvements in extracting pair-wise and
higher order residue distance constraints from multiple sequence
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alignments®~, and an understanding of how this information is even-
tually encoded into a predicted 3D structure® . These developments
have beenreviewed recently’ and canbe characterized by the increas-
ing use of neural-network models in key aspects of the challenge of
predicting protein structures from their primary sequence. Along with
advancesin computational methods, there have been large expansions
of protein sequence and structure databases'", which have served
as key resources for input and training of sophisticated prediction
methods. These advances have led to the recent leap in performance
demonstrated by Deepmind at CASP14 (ref. ?). AF2 has been shown
to be able to predict the structure of protein domains with an accu-
racy matching that of experimental methods. Both the method and
a database of 365,198 protein models have been released’, enabling
the scientific community to better understand the accomplishments,
abilities and limitations of AF2.

Theaccuracy of AF2 has beenindependently evaluated in blind
assessments. Yet many questions remain regarding the extent to
which these approaches extend our coverage of structural biology,
and the limitations of the AF2 method or structures derived from AF2
forapplicationsinbiology. Regarding coverage, previous attempts
to generate ‘proteome-wide’ structural models include those based
onhomology models, such as the SWISS-MODEL Repository (SMR)",
and more recently, the modeling of known protein domains in the
Pfam database® using trRosetta'. These represent prior bench-
marks of large target coverage that can be a useful comparison for
AF2’s performance.

Withregardtotheapplication of AF2 structures, it is noteworthy
that the platform provides metrics of uncertainty” that have been
showntoreflect confidenceinthe structural assignment—potentially
linked to protein disorder—and uncertainty for pair-wise residue dis-
tances. Itisthereforeimportant to assess whether AF2 structures and
confidence metrics can be successfully integrated into and applied
to critical structural biology tasks, such as functional classification,
variant effects, binding site prediction and modeling into new experi-
mental data (obtained, for example, from cryogenic electron micros-
copy (cryo-EM)). In addition to the prediction of individual protein
structures, it has been shown recently that contact predictions canbe
used to simultaneously fold and dock proteins”, and early reports have
indicated that AF2 can predict the structure of complexes'°, whichit
was not initially trained to handle.

Here, we provide an evaluation and practical examples of applica-
tions of AF2 predictions across a large number of diverse structural
biology challenges.

Results

Added structural coverage by AlphaFold2 predictions of
model proteomes

The AF2 database has released predictions of the canonical protein
isoforms for 21 model species, covering nearly every residuein 365,198
proteins. This represents around twice the number of experimental
structures and six times the number of unique proteins in the Protein
DataBank (PDB). Itisimportantto assess the extent to which AF2 predic-
tions extend the structural coverage beyond previous proteome-wide
structural predictions. We compared the structures of 11 model species
thatwereincludedinboth the SMR and AF2 databases and thathad an
average additional coverage of 44% of residues by AF2 (Fig. 1a, residues).
However, not all of AF2’s residue predictions have high confidence. For
residues that are not presentin the SMR, we observed that an average
of49.4% are predicted with confidence by AF2 (predicted local distance
difference test score (pLDDT) > 70) (Fig. 1a, AF residue confidence).
With amore stringent cut-off (pLDDT >90), AF2 predicts, on average,
25% of residues with very high confidence. In summary, an average of
around 25% of the residues of the proteomes of the 11 model species are
covered by AF2 with novel (not presentin SRM) and confident (pLDDT
>70) predictions.

We then compared AF2 predictions with those derived for Pfam
protein domains® using trRosetta'. As there is only one trRosetta
representative structure per domain family, we selected one spe-
cies—human—and compared 3,035 AF2 models of 1,464 different Pfam
domain families with the representative trRosetta model. These two
approachesgenerally agree, with around 50% of AF2 domain structures
having aroot-mean-square deviation (r.m.s.d.) <2 A from the generic
trRosetta model (Supplementary Fig. 1a). We observed a correlation
between the estimated accuracy of the AF2 model (pLDDT) and the
r.m.s.d.fromthe trRosettamodel (Fig. 1b and Supplementary Fig. 1b,c).
For AF2 models with an r.m.s.d. below 2 A from the trRosetta model
have, more than 90% of their residues, on average, have a pLDDT above
70 (Fig. 1b). We also examined the variability of domain structure for
273 domain families with 3 or more instances in the human proteome
(Supplementary Fig. 2),and observed that 70% of domaininstances are
withinones.d. of the meanr.m.s.d. for their domain family. Together,
these resultsindicate that, for at least 50% of human Pfam domains, the
trRosetta Pfam model was already likely to be accurate.

We assessed the confidence and length of AF2 contiguous regions
thatare not covered in SMR to identify regions that may correspond to
novelstructures of folded domains, rather than short termini or inter-
domainlinkers. The distribution of median confidence scores of afrag-
ment versus fragment length shows anenrichment for high-confidence
predictions withalength of100-500 residues (Fig.1c and Supplemen-
tary Fig. 3), consistent with the size of a typical protein domain®. This
relation can be observed for all species, except Staphylococcus aureus
(Supplementary Fig. 3). We identified, across the 11 species, 18,429
contiguous regions that are ‘domain like’ (with a length of 100-500
residues) with confident predictions (pLDDT >70) that have no model
in SMR. The human regions are provided in Supplementary Table 1.

Around half the residues in AF2 predictions of the 11 model spe-
cies are of low confidence, many of which may correspond to regions
without a well-defined structure in isolation. It has been shown that
regions with low pLDDT are oftenintrinsically disordered proteins or
regions (IDPs/IDRs)". We benchmarked AF2-derived metrics against
IUPred2 (ref. *), a commonly used disorder predictor (Fig. 1c), using
regions annotated for order/disorder (Supplementary Table 2). In
addition to using pLDDT, we tested the relative solvent accessible
surface area (SASA) of each residue and smoothed versions of these
metrics (Fig. 1d and Supplementary Fig. 4). pLDDT and window aver-
ages of pLDDT or SASA outperformed IUPred2, indicating that AF2’s
low-confidence predictions are enriched for IDRs. To facilitate the
study of human IDRs, we provide these predictions for human pro-
teinsin Supplementary Dataset 1and in ProViz**: http://slim.icr.ac.uk/
projects/alphafold?page=alphafold_proviz_homepage.

Characterization of structural elements in AlphaFold2’s
predicted models across 21 proteomes

The AF2 database is likely to contain structural elements that may not
have been extensively seen in experimental structures. Owing to the
presence of low-confidence regions in the AF2 proteins, we first split
each predictioninto smaller high-confidence units (see Methods). We
then performed a global comparison of structural elements between
the 365,198 proteinsinthe AF2 database and 104,323 proteins from the
CASP12 datasetinthe PDB. We applied the Geometricus algorithm* to
obtainadescription of protein structures as acollection of discrete and
comparable shape-mers, analogous to k-mers in protein sequences.
We then obtained a matrix of such shape-mer counts for all proteins,
whichwe clustered using non-negative matrix factorization (NMF) (see
Methods). The clustering identified 250 groups of proteins, dubbed
‘topics’ (Supplementary Dataset 2), with characteristic combinations
of shape-mers. These characteristic shape-mers could include small
structural elements, such as repeats, the specific arrangements of
ion-binding sites or larger structural elements that could define spe-
cific folds. For visualization, we performed a ¢-distributed stochastic
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Fig.1| Additional coverage provided by AF2-predicted models. a, Added
structural coverage (per-protein, left; per-residue, middle) and per-residue
confidence of regions not covered by SMR (right) for 11 species included in both
the AF2 and SMR databases. b, Fraction of confident (pLDDT > 70) residues per
human AF2 model, binned by r.m.s.d. from the corresponding trRosetta-derived
domain-level Pfam model; 3,035 AF2 predicted structures of protein regions
matching one of 1,464 different Pfam domain families were compared with

the corresponding trRosetta model. ¢, Median fragment length and median
pLDDT score of human AF2-only regions. The highlighted areaidentifies
high-confidence regions with domain-like length. The bottom, middle line and
top of the box correspond to the 25th, 50th and 75th percentiles, respectively.
d, Comparison of AF2 SASA (SASA,,, 20-residue smoothing) and pLDDT
(pLDDT,,, 20-residue smoothing) against a disorder prediction method
(IUpred2).

neighborembedding (¢-SNE) dimensionality reductionin which proteins
composed of similar shape-mers are expected to group together (Fig. 2).
Inline with this, the shape-mer representation of AF2 proteins can pre-
dict the corresponding PDB protein entries with high accuracy (area
underthereceiver operating characteristic curve of 0.95 using the cosine
similarity of the shape-mer vector). Additionally, the 20 most common
superfamilies, predicted from sequence, tend to be placed together.

Outof 250 total groups, we selected 5 examples that were almost
exclusively (>90%) composed of structures derived from AF2, as well as
lexample with >80% AF2 structures withaparticularly interesting novel
predicted structural element. Weillustrated these with arepresentative
structure in Figure 2. Examples include 4,192 proteins annotated as
G-protein-coupled olfactory or odorant receptors (Pfam PF13853), 97%
of which are mammalian (Fig. 2a, Topic 88, and Supplementary Fig. 5a);
a group of primarily (94%) plant proteins, annotated as PCMP-H and
PCMP-E subfamilies of the pentatricopeptide repeat (PPR) superfamily
(Fig. 2b, Topic 60, and Supplementary Fig. 5b); agroup of heterogene-
ousstructures that were mostly (>75%) annotated as ATP or ion binding
(Fig.2c, Topic150, and Supplementary Fig. 5¢); groups of proteins with
leucine-rich repeats (Fig. 2d, Topic 16, and Supplementary Fig. 5d);
some proteins with uncommon, regular patterns (Fig. 2e, Topic 188,
and Supplementary Fig. 5e); and long a-helical constructs (Fig. 2f, Topic
Helix, Supplementary Fig. 5f). For the PCMP-H and PCMP-E subfamilies
(Fig. 2b), there are no known experimental structures mapped. AF2
predictions could help elucidate the structural peculiarities of these
subfamilies, including the mechanism of RNA recognition and binding
for PCMP-H and PCMP-E proteins.

Studying examples from Mycobacterium tuberculosis in Topic 188
led us to identify an interesting structure for atandem repeat. Tandem

repeat proteins with repetitive units of 6-10 residues predominantly
have beta-solenoid structures®. Analyzing the AF2 results, we found
anovel beta-solenoid structure predicted for a large family of pen-
tapeptide repeats®, found in the mycobacterial PPE proteins (Pfam:
PF01469) (Fig. 2e and Supplementary Fig. 6). This structure representsa
beta-solenoid, with the shortest possible coil of ten residues (two penta-
peptiderepeats) (Supplementary Fig. 6b). Although such abeta-solenoid
has not yet been resolved, our evaluation of the quality of the atomic
structure (stereochemistry and contacts) suggests that the AF2 model
is highly probable. Thus, AF2 may have allowed us to answer the ques-
tion of what is the shortest length of repeat that forms a beta-solenoid.

Finally, we also considered protein groups consisting primarily
of PDB proteins to study why AF2 proteins are absent from them. In
some cases, this seemed to be due to the limited number of species
and proteins covered by the current AF2 database. Topics 209 and 113
consist of immune response proteins, such asimmunoglobulins and
T-cell receptors, mainly from the PDB. As many of these antibodies
are under intense study, there are many more PDB structures (based
on multiple individuals and antibody-drug research) than the actual
number of such proteinsintherespective UniProt proteomes. Topic 38
consists of short fragments of PDB structures, with an average length
of 63 residues—there are no AF2 proteins, because AlphaFold models
the entire structure instead of returning fragments.

Application of AlphaFold2 models for structure-based variant
effect prediction

Aproteinstructure facilitates the generation of hypotheses regarding
theimpact of missense mutations. Conversely, an agreement between
the expected and observed impacts of mutations provides confidence
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Fig.2| The space of characteristic structural elements in AF2 structural
models for 21 species. Visualization of t-SNE dimensionality reduction analysis,
inwhich structures with similar structural elements are placed closer together
and the 20 most common superfamilies are colored. The axes corresponding

to the t-SNE dimension 1and ¢-SNE dimension 2 were omitted. Six shape-mer
groups (thatis, topics) discussed in the text, consisting of mainly AF2 proteins
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is depicted for each. Residues in the representative structures are colored
according to their contribution to the topic under consideration—red residues
have the highest contribution, and blue residues are specific to the example and
nottothetopic.

in the accuracy of a structural model. We obtained two independent
compilations of experimentally measured impacts of protein mutations
on protein function: (1) acompilation of measured changes in stability
upon mutations”?%; and (2) acompilation of deep mutational scanning
(DMS) experiments®”*° measuring the outcome of any possible single
point mutation on most protein positions.

The DMS datawere available for 33 proteins with 117,135 mutations;
we obtained experimentally derived models for 31 of the proteins and
AF2modelsforall 33. We then used three structure-based variant effect
predictors (FoldX®, Rosetta* and DynaMut2 (ref. **)) to compare the
DMS measurements with predicted impacts. Although the correla-
tion estimates between the experimental and predicted impacts of
mutations varied across the proteins, those derived from the AF2
models consistently matched or were better than those derived from
experimental models (Fig. 3a,b and Supplementary Fig. 7). Regions
with confidence scores lower than 50 result in lower concordance

(Fig. 3a), but restriction to protein regions without an experimen-
tal model can still lead to correlations that are comparable to those
observed inexperimental structures (Fig. 3b). Because low AF2 confi-
dencescoresareenriched forintrinsically disordered proteinregions,
it is possible that the poor correlation in low-confidence regions is in
partowing to higher tolerance to protein mutations. Inline with this, we
observed an average higher tolerance to mutationsin low-confidence
regions (Fig. 3c).

The compilation of measured impacts of mutations on protein sta-
bility containsinformation for 2,648 single-point missense mutations
over121distinct proteins. We compared the accuracy of structure-based
prediction of stability changes using AF2 structures, experimental
structures and homology models using different sequence identify
cut-offs (Fig. 3d and Supplementary Fig. 8; see Methods). Across 11
well-established methods (Fig. 3d and Supplementary Fig. 8), the pre-
dictions of stability changes based on AF2 models were comparable to
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Fig.3| Comparing structure-based prediction ofimpact of protein missense
mutations using experimental and AF2-derived models. a, Relationship
between the predicted AAG for mutations with measured experimental impact of
the mutation from deep mutational scanning data (-1 x Pearson correlation). The
predicted change in stability was determined using one of three structure-based
methods, using structures from AF2 or available experimental models. The
bottom, middle line and top of the box correspond to the 25th, 50th and 75th
percentiles, respectively. The lines extend to 1.5 X IQR (interquartile range). A
total of 117,135 mutations were used in the analysis. b, Correlations based on the
FoldX predictions asin a, but subsetting the positions in AF2 models according
to confidence and whether the position is present in an experimental structure.
Data are presented as mean values + the confidence intervals calculated via
fisher’s Ztransform (R’s cor.test function). ¢, The meanimpact of a mutation,

calculated as the enrichment ratio (ER) score, from DMS data for positions in AF2
models with different degrees of confidence. A total of 117,135 mutations were
used in the analysis. d, Comparative performance of methods for predicting
stability changes upon mutation using AF2 and experimental and homology
models based on protein structure templates of different identity cut-offs.
Experimental measurements of stability are for 2,648 single-point missense
mutations over 121 proteins. The bottom, middle line and top of the box
correspond to the 25th, 50th and 75th percentiles, respectively. The lines extend
to1.5xIQR. e, Example application for structure-based prediction of stability
impact of known disease mutations for ahuman protein with little structural
coverage prior to AF2. AAG stability changes were predicted using Rosetta, and a
substantial impact was considered for AAG > 1.5 kcal/mol.

those of experimental structures. Homology-model-based predictions
tended to show substantial decreases in performance for templates
below 40% sequence identity.

We investigated, as an example, the human Sphingolipid
delta(4)-desaturase (DEGS1), a 323-residue protein associated with
leukodystrophy, for which no structure or model was available. All
but the terminal residues are predicted by AF2 with high confidence.
The presumed catalytic coreis discussed further below. Here we focus
on disease-associated missense variants. p.A280V has been shown to
lead toloss of protein stability** and has a predicted Gibbs free energy
change (AAG) of 3.7 kcal/mol. Two additional pathogenic variants
have AAG values of >1.5 kcal/mol, pointing towards loss of stability
being the mechanism of pathogenicity; the benign variants do not
substantially affect protein stability, as expected (Fig. 3e). The likely
pathogenic variant p.R133W is not predicted to affect stability, and
hence likely has a different mechanism underlying disease. This is
in line with previous findings that core variant changes in particular

lead toloss of stability, whereas surface variants are more likely to act
through other mechanisms®.

Functional characterization of AF2 models by pocket and
structural motif prediction
High-confidence proteome-wide structural predictions open the door
foralarge expansion of predicted protein pockets**°. However, the full
protein models produced by AF2 have to be considered carefully given
their potential errors, such as the likely incorrect placement of protein
segments of low confidence or the low confidence ininterdomain orien-
tations. Toinvestigate whether these issues may resultin the formation
of spurious pockets, we predicted pockets onaset of 225 proteins with
known binding sites defined using bound (holo) structures for which
the corresponding unbound (apo) structures are available™.

Pockets identified from structures have a wider size range than
do ground-truth binding sites (Fig. 4a). This is also true for pock-
ets predicted from AF2 structures, including a small number of
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particularly large pockets (Fig. 4a). We divided AF2 pocket predic-
tions into high-quality (mean pLDDT > 90) and low-quality (mean
pLDDT < 90) subsets (Fig. 4b,c) on the basis of the mean pLDDT of
pocket-associated residues. Low-quality pockets are larger on average,
andinclude particularly large pockets (Fig. 4a, bottom). We then asked
whether mean pLDDT could be useful as a general metric of prediction
confidence by quantifying the overlap between known and predicted
pockets (Fig.4b and Supplementary Fig. 9). We did not observe a differ-
encebetween the performance of high-quality AF2 pockets and pockets
identified from experimental structures. In contrast, low-confidence
pockets generally did not overlap with known sites. Although there
may be bias because high-confidence AF2 regions are more likely to
have relevant deposited templates, we suggest that the mean pLDDT
of predicted pockets can be used as an additional criterion for pocket
selectionin AF2 structures.

Conserved local conformations of specific residues can be used
toidentify important functions, such as enzyme activity, ion or ligand
binding beyond global sequence and fold similarities®. To showcase the
potential of this application for AF2 modelsin the future, we focused on
912 human proteins with no experimental or homology models avail-
able. We found that the prediction score of the highest ranked pocket
enriched the set for proteins with previous annotations for enzymatic
activity (Fig.4cand Supplementary Table 3). Discarding pockets with
alow mean pLDDT led to slightly improved enrichment. As a specific
example, we focused on the human sphingolipid delta(4)-desaturase
(EC1.14.19.17, DEGS], UniProt Accession 015121, pocket score rank 57 of
912), which has a high confidence level (average pLDDT =96.31) and for
which there are no previous structural data. A sequence search of the
323-residue proteinagainstall existing entriesin the PDB shows that the
bestsequence matchis23.5%, with PDB entry 1VHB (Bacterial dimeric
hemoglobin, 9115439), indicating the lack of any structural models
from homology. A scan of 400 auto-generated 3-residue templates
fromthe AF2-predicted structure against representative structuresin
the PDB (reverse template comparison®®) yielded a possible 3-residue
template match: PDB entry 4ZYO (EC 1.14.19.1, human stearoyl-CoA
desaturase®, Fig. 4d). A close up of the metal-binding center (Fig. 4¢) of
DEGS1and4YZO (overall sequence homology, 12.1%) superimposed via
the 3-residue templates (Fig. 4d) clearly indicates the potential dimetal
catalytic center for DEGSI. The histidine-coordinating metal center of
DEGS], together with data on the bound substrate of 4ZYO, provides a
foundation for modeling studies that could impact the pharmacology
of DEGS1 by exploring the details of its catalytic mechanism.

AlphaFold2-based prediction of protein complex structures
Since the first development of direct coupling analysis algorithms,
co-evolutionary-information-based methods have been used to predict
protein-proteininteractions*. It hasbeen recently reported that several
deep-learning-based methods, such as trRosetta' and Raptor-X*, can
predict the structure of protein complexes. To examine the capacity
of AF2 to predict protein complex structures, we tested the ability of
AF2tofold and ‘dock’ two benchmark sets—aset of proteins known to
formoligomers**and the Dockground 4.3 heterodimeric benchmark®.
For oligomerization, we obtained sets of proteins known either
not to oligomerize or to form oligomers, including dimers, trimers or
tetramers. We then made AF2 predictions for each protein, attempt-
ing to predict either a monomer or an oligomeric form (see Meth-
ods). Across the set of predictions, higher scores were given to models
corresponding to the correct oligomerization state, and 71 out of 87
(82%) predicted top-scoring models corresponded to the correct state
(Fig. 5a and Supplementary Table 4). Generally, the multimeric state
scores are well separated from the monomeric state scores (Fig. 5b).
In28/30 examples, AF2 was able to correctly predict monomeric pro-
teins as monomers, 29/35 dimers as dimers, 7/9 trimers as trimers
and 7/13 tetramers as tetramers. Notably, although the failure rate is
high for tetramer state predictions, the predicted structure for the

corresponding state was actually correct for 5/6 failures. Examples of
failure modes for dimers and a tetramer are shown in Figure 5c,d. We
noted that, for some cases of failed tetramer predictions, we could
obtain higher confidence of the tetramer predictions by increasing
the number of recycles.

We next examined the Dockground 4.3 heterodimeric benchmark
set®. We predicted complex structures using the DeepMind default
dataset and the small Big Fantastic Database (BFD) database. This
method doesnotinclude any ‘pairing’ of interacting chains, as was used
inearlier fold-and-dock approaches. The docking quality was evaluated
using DockQ***. Only one model for each target was made, and a maxi-
mum of three recycles were allowed. In Figure Se, it can be seen that
the performance is far superior to traditional docking methods, with
31% of correctly predicted protein complex models, compared with 7%
using GRAMM, astandard shape-complementarity docking method*.

Finally, we studied examples of complexes containing IDPs/IDRs
that adopt a stable structure upon binding. IDRs often bind through
short linear motifs (SLiMs), recognizing folded domains driven by a
fewresidues. Thelonger IDRs can contain arrays of SLiMs and can also
formstable structures upon binding to other IDRs without a structured
template. We selected 14 cases of complexes involving IDRs with known
structures and analyzed their distinguishing features compared with
the experimental complex (Fig. 5f contains selected examples and Sup-
plementary Figs.10 and 11 show all examples). Ingeneral, AF2 performs
well at predicting SLiMs that fit into a well-defined binding pocket
driven by hydrophobic interactions, such as the SUMO interacting
motif of RanBP2. Longer IDRs, which frequently contain tandem motif's,
are often challenging, especially if they have a symmetric structure.
For the RelA-CBPinteraction, AF2 correctly finds the binding groove,
but fits the IDR in a reverse orientation. AF2 also performs well on
complexes in which IDRs are part of a multi-IDR single folding unit,
such as the E2F1-DP1-Rb trimer; however, building complexes for
proteins with highly unusual residue compositions, such as collagen
triple helices, often fail. We provide a detailed description of the 14
examplesinSupplementary Figures10 and 11and Supplementary Table
5and detail the factors that enable or hinder successful predictions.

Evaluation of AlphaFold2 models for use in experimental
model building

Theaccuracy of AF2 predictions provides opportunities for their usein
experimental model building: (1) AF2 models could be used for molecu-
lar replacement or docking into cryo-EM density, experimental phasing
and/or abinitio model building; and (2) they could be used as reference
points toimprove existing low-resolution structures. These use cases
will typically involve the use of conformational restraints, for example
to maintain the local geometry of domains while flexibly fitting alarge
multi-domain model, or to restrain the local geometry of an existing
model of an AF2-derived reference to highlight and correct likely sites
of error.Itis critical to use restraint schemes designed to avoid forcing
the modelinto conformations that clearly disagree with the data. Typi-
cally, thisis achieved through some form of top-out restraint, for which
the applied bias drops off at large deviations from the target. Here,
we take advantage of the fact that AF2 models typically include very
strong predictions of their own local uncertainty to adjust per-restraint
weighting of the adaptive restraints recently implemented in ISOLDE*
(see Methods). For the two case studies discussed below, acomparison
of validation statistics for the original and revised models is provided
inSupplementary Table 6.

As anexample of theimprovement of existing structures, we used
the eukaryotic translationinitiation factor (elF) 2B bound to substrate
elF2 (6085)*%, The elF2B complex is adecamer comprising two cop-
ies each of five unique chains. It displays allosteric communication
between physically distant substrate-, ligand- and inhibitor-binding
sites. elF2 is a heterotrimer of three unique chains. We analyzed a
0.4-MDa co-complex enzyme-active state captured by cryo-EM at an
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Thelines extend to 1.5 x IQR. b, Distribution of overlap between known binding
sites and top predicted pockets for holo, apo and AF2 structures. The bottom,
middle line and top of the box correspond to the 25th, 50th and 75th percentiles,
respectively. The lines extend to 1.5 x IQR (interquartile range). ¢, Enzymatic

b

Holo
structures

Apo
structures

AF2

AF2
mean
pLDDT > 90
AF2
mean
pLDDT < 90
I T T T T
0 0.2 0.4 0.6 0.8 1.

UBS overlap (F-score)

(o]
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rate.d, Superposition of the AF2 model of DEGS1 (015121) with PDB entry 4ZYO.
Orange: ribbon representation of AF2 predicted structure for DEGSL. Cyan:
ribbon representation of 4ZYO. Zinc atoms (light blue spheres) and bound
substrate (dark blue ball and stick) as observed in the structure of 4ZYO are also
shown. e, Close up of the metal-binding center of 4ZYO. Ribbon representation
of the protein and metal chelators for DEGS1and 4ZYO are shown in orange and
cyan, respectively. The zinc atoms observed in 4ZYO are shown as light blue
spheres. Metal-chelating residues for DEGS1 are clearly identifiable.

overallresolution of 3 A (ref. ). Rigid-body alignment of AF2 models to
their corresponding experimental chains (Fig. 6a) showed overall excel-
lent agreement, with the largest deviations correspondingto correctly
folded domains with flexible connections to their neighbors. Other
mismatched smaller regions corresponded to either register errorsin
the original model or flexible loops and tails. Each chain was restrained
toits corresponding AF2 model using ISOLDE's reference-model dis-
tance and torsion restraints, with each distance restraint adjusted
according to pLDDT. Future work will explore the use of the predicted
aligned error (PAE) matrix for this purpose, and weighing of torsion
restraints according to pLDDT. Simple energy minimization and equili-
bration of the restrained model at 20 K corrected the majority of local
geometry issues (for example, Fig. 6b,c); a high-confidence prediction
for the C-terminal domain of chains I and J allowed us to add this into

previously untraceable low-resolution density (Fig. 6d, left of the
dashed line). We emphasize that detailed manual inspection remains
necessary to find and correct larger errors in the experimental model,
sites of disagreement arising from conformational variability and sites
where high-confidence predictions areinfactincorrect. An example of
thelatteristhe side chain of Trp Alll, which, despiteiits high confidence
(pLDDT =86.1), was modeled incorrectly by AF2 (Fig. 6f).

To explore the use of AF2 structures for solving and refining new
structures, and to map out suitable workflows, we attempted to reca-
pitulate the recent 3.3-A crystal structure of the Saccharomyces cer-
evisiae Nse5/6 complex (70GG)*. This was not included in the AF2
training set, and no existing structures have >30% identity to either
chain. Originally solved using selenomethionine experimental phasing,
the combination of low-resolution and anisotropy (AB = 80 A?) meant
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the next oligomer state is substantially lower (-0.1). b, For each of the annotated
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monomers were predicted to be homo-dimers. For the first case (PDB: 1BKZ), the
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crystallographicinterfaces.d,3TDT trimer was predicted to be atetramer.
Although the interfaceis technically correct, for this c-symmetric protein, the
pTMscore was not able to discriminate between 3 and 4 copies. e, Comparison
of docking quality between AF2 (x axis) and a standard docking tool GRAMM
(yaxis). Comparisons were made using the DockQ score. Models witha DockQ
score that was higher than 0.23 are assumed to be acceptable according to

the Critical Assessment for Predicted Interactions (CAPRI) criteria (marked
outside the shaded area). Black circles indicate the complex was well modeled
by both methods. The average DockQ score and the number of acceptable or
better models are shown in the axis labels. It should be noted here that AF2 both
folds and docks the proteins, whereas GRAMM only docks them. f, Examples of
AF2-predicted interactions mediated by regions of intrinsic disorder.

that, although the core of the complex was confidently and correctly
modeled, only 583 out of 850 total residues were definitively modeled
by the authors, withafurther 65 residues traced as unknown sequence
and one peripheral 27-residue helixmodeled out of register. For testing
purposes, we discarded this model and used the AF2 predictions for

molecular replacement (MR). MRrequires very close correspondence
between atom positionsin the search model andin the crystal; separa-
tion into individual rigid domains and trimming of flexible loops is a
necessity. We used the PAE matrix to extract a single rigid core from
each chain (see Methods) and performed MR in Phaser*, leading to
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Fig. 6 | Application of AF2 predictions to modeling into cryo-EM or
crystallographicdata. a, AF2 predictions for individual chainsin 6085,
aligned to the original model and colored by Ca-Ca distance, with the map
(EMD-0651) contoured at 6.5 0. Red domains at the bottom were correctly
folded but misplaced owing to flexibility; smaller regions of red correspond
either to flexible tails or register errors in the original model. b,¢, Use of
adaptive distance and torsion restraints to correct problematic geometry in
the original model. The models before (b) and after (c) refitting are shown;
satisfied distance restraints are hidden for clarity. d, Owing to very poor local
resolution and lack of homologs, the carboxy-terminal domain in chainJ (left
ofthe dashed line) was previously left unmodeled. This domain was predicted
with high confidence by AF2 (mean pLDDT = 83.0), and fit readily into the
available density. e, High-confidence regions may still contain subtle errors that
aredifficult orimpossible to detect in the absence of experimental data. The
side chain of Trp A111 (pLDDT = 86.1) was modeled backwards (blue), forming

Previously $nmodeledl

Glu A81

an H-bond with Asp A77; the final model fitted to the map (gray) instead forms
an H-bond with Glu A81. f, Rebuilding the recent 3.3-A crystal structure 70GG,
starting from molecular replacement with AF2 models, dramatically improved
model completeness. Blue, residues identified in original model; yellow sticks,
residues modeled as unknown in the original model; red, residues identified
inrebuilt model. g, Helix modeled as unknown (residues 558-573 of chainR,
red), surrounded by unmodeled density (3 c mFo-DFc, green(+), red(-); +2 0
sharpened 2mFo-DFc, cyan surface; +1.5 o unsharpened 2mFo-DFc difference
map (Fo and Fc are the experimentally measured and model-based amplitudes,
Dis the Sigma-A weighting factor and mis the figure of merit), cyan wireframe;
+5 o anomalous difference map, purple surface and arrows). h, Final model, with
anomalous difference blobs corresponding to selenomethionine residues 213
and 217 of chain Q and with the previously unmodeled density filled; this region
was predicted with an average pLDDT of 88, and required only minor side chain
corrections to fit the density.

a clear solution with translation function Z-score (TFZ) =28.2 and
log-likelihood gain (LLG) = 884 (see Methods).

Currently, a refined MR solution is typically used as the starting
point for some combination of automatic and manual building of
missing portions into the density. In many cases, however, it appears
that AF2 predictions will supportamore ‘top-down’ approach, inwhich
all residues predicted with at least moderate confidence are present
inthe initial model. To explore this, we trimmed the predicted chains
to exclude residues with pLDDT < 50 and aligned the result to the MR
solution, setting the occupancies of all atoms not used for MR to zero.
This was used as the starting point for rebuilding in ISOLDE; here,
zero-occupancy atoms do not contribute to structure factor calcula-
tions or bulk solvent masking, but still take part in molecular interac-
tions and are attracted into the map. The model was subjected to three
rounds of end-to-end inspection and rebuilding interspersed with

refinement with phenix.refine®. In the initial round, zero-occupancy
residues fitting the map were reinstated to full occupancy, and resi-
duesthatseemed to be truly unresolved were deleted; asmall number
of these were re-introduced in subsequent rounds. The total time
spent was approximately one working day; the final model (Fig. 6f-h)
increased the number of modeled, identified residues from 600 to 818,
slightlyimproved overallgeometry and reduced the R;,.. from 0.317 to
0.295. With few exceptions (primarily at heterodimer and symmetry
interfaces), rebuilding was limited to minor side chain adjustments.

Discussion

We estimate that AF2 may add, on average, around 25% of confidently
predictedresiduesto agiven proteome, although this will vary depend-
ingonhow muchexperimental and previous computational approaches
have already covered. However, even for residues that can be modeled
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by distanthomology, itis possible that the AF2 models are more accu-
rate, increasing their usefulness. Here, the precise accuracy estimates
at theresidue level are extremely useful. In addition, low AF2 predic-
tionscores are enriched for protein disorder, suggesting that regions
of low-confidence predictions can be hypothesized to be disordered
segments. However, we note that the protein disordered regions are
often defined as regions that are not solved by X-ray crystallography.
As AF2istrained primarily on X-ray data, the relation between disorder
and predicted confidence could be aby-product of using this definition
of disorder. For comparison, we used IUPred2, an easy to deploy tool
that is acommonly used dedicated protein-disorder prediction, but
thereare other dedicated approaches that outperform IUPred2 (ref. ).

The AlphaFold database was initially released with >300,000
proteins modeled with a more recent expansion to over 200 million
proteins with predicted structures, sampling the universe of pro-
tein sequences and structures. As we show here, even on a relatively
modest set, we can identify what are likely to correspond to rarely
explored combinations of structural elements. As an example, we
have identified to our knowledge the shortest length of repeat that
forms a beta-solenoid to date. Among other areas, the expansion of
high-confidence predictions will allow prioritization of experimental
structure determination of novel folds; the large-scale prediction of
protein function from structure; the identification of novel enzymes;
and the study of the evolution of protein structure and function.

We assessed the application of AF2 predictions in diverse struc-
tural biology challenges, including variant effect prediction, pocket
detection and model building into experimental data. In line with the
reported high accuracy of the models, we found that AF2-predicted
structures, on average, tend to give results that are as good as those
derived from experimental structures. However, Although AF2 returns
full protein predictions, these can often contain protein segments that
are placed with uncertainty. This uncertainty can lead to incorrect
estimations or identification of structural similarity, pockets, variant
effects or poor model building. Importantly, in all cases, we find that
itiscritical to take into account the confidence metrics provided, and
that these should beincorporatedinto the corresponding workflows.
For model building based on experimental data, we noted examples
of cases for which details wereincorrectinregions where AF2 has high
confidence, whichunderlies the need for detailed manual inspection.
AF2 will not do away with experimental studies, but the combination
of experimental data collection plus artificial intelligence is likely to
beagrowingtrend.

Forvarianteffect prediction, AF2 was used to predict the structure,
and theimpacts of mutations were predicted with other tools that can
use these or experimental structures. A different approach could have
beentouse AF2to predict the structure of the reference and mutated
proteins and to compare these structures to evaluate the impact of
the mutations. However, some reports have indicated that AF2 does
not appear to be well suited to predict the structures of mutated pro-
teins®**. Additionally, the prediction of such large numbers of mutated
structures would have been computationally time consuming.

Finally, we explored the application of AlphaFold2 for prediction
of complexstructures and found thatit outcompetes standard docking
approaches while not requiring even starting protein structures. We
have expanded on this analysis in acompanion manuscript®® and have
used thisapproachto predict complexes of human proteininteractions
on a large scale®. It has already been shown that other distance- and
contact-prediction methods trained to predict unmodified intra-chain
contacts can be used to predict inter-chain contact predictions, both
for homo- and hetero-meric complexes. Therefore, we were not sur-
prised to see that it is possible to use AF2 to fold and dock heterodi-
meric complexes. However, it was unexpected that it was possible to
use non-matched pairs of alignments for different proteins to predict
complexstructures, indicating that AF2 goes beyond using coevolution
to predict these structures.

There are many areas for further benchmarking and improvements
of AF2-related approaches. Although the capacity of AF2 to predict
the structures of difficult targets has been demonstrated, the extent
to which AF2 generalizes to truly never before seen folds remains to
beunderstood. The generation of atest set with folds that are not rep-
resented in the AF2 training set may not be a trivial task. Other open
areas for this field of research include the prediction of: structures of
mutated proteins®; conformation diversity and dynamics; structure
in the absence of a MSA®”’; and structures of proteins in complex with
other biomolecules such as DNA, RNA or metabolites. Another such
areais the explicit modeling of biophysical parameters.

In summary, we find that AF2 models, when their uncertainty
is taken into account, can be applied to existing structural biology
challenges, and their quality is near that of experimental models. The
application of AF2 to a large representation of the protein universe
and expansion to the prediction of protein complexes will have a trans-
formative impactin life sciences.

Online content

Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41594-022-00849-w.
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Methods

Coverage comparison between the SWISS-MODEL repository
and AlphaFold2 databases

The SMR and AF2 databases were accessed on 24 July 2021. Reference
proteomes for 11 species shared between AF2 and SMR were down-
loaded from the Uniprot release 2021_03. Only structures correspond-
ingto entries fromthereference proteomes were used for the analysis.
Numpy*®, Pandas®, Prody®® and Matplotlib® Python libraries were used
for the analysis and the visualization. Structure counters for protein
domains were extracted from the corresponding InterPro entries®.
Code and data are available online (https://github.com/aozalevsky/
alphafold2_vs_swissmodel/).

Comparison between human RoseTTAFold Pfam domainand
AlphaFold2 structures

We used the 17,006 human proteins that were defined as the princi-
pal isoform for their corresponding gene according to APPRIS and
whose sequences were the same in ENSEMBL and Uniprot. We used
Pfamscan to identify PFAM domains in the 17,006 protein sequences.
The database of PFAM-A models was downloaded on 29 June 2021 and
created on 19 March 2021. We kept only those PFAM domains identi-
fied with an e-value below 1 x 1078, AF2 models for human proteins
were downloaded on 23 July 2021 from https://alphafold.ebi.ac.uk.
We extracted the sequences and compared them with the ENSEMBL
protein sequences used for the structural analysis. For comparison
purposes, allthe analyses and results presented here are based on the
subset 0f 17,006 protein sequences for which the ENSEMBL and Alpha-
Fold protein sequences were identical. We also extracted pLDDT values
for each residue from the AlphaFold models, as these are stored as if
they were the B-factor of the protein coordinates file. The RoseTTAFold
models were downloaded from the EBIwebsite on 27 July 2021, and the
r.m.s.d.between models from both methods was calculated using the
function struct.aln from the R package bio3d. All statistical analyses
were done using R 4.0.2. Graphical plots were created with the pack-
ages ggplot2 (ref.®®), patchwork and reshape2. Molecular graphics and
analyses performed with UCSF Chimera®*, developed by the Resource
for Biocomputing, Visualization, and Informatics at the University of
California, San Francisco.

Disorder prediction

Benchmarking datafor ordered and disordered protein regions were
taken from the benchmark set of IUPred2 (ref. %) and were filtered for
proteins for which AF2-predicted structures are available in the Alpha-
Fold database. Relative SASA was calculated by determining the abso-
lute SASA using DSSP and then comparingit to the SASA calculatedina
GGXGG conformation. Receiver operating characteristic (ROC) curves
plotting the true positive rate as the function of the false positive rate
were calculated on a per-residue level. Areaunder the ROC curves are
single-number measures of the overall predictive performance in the
range of 0.5 (for random predictions) to 1.0 (for perfect predictions).

Exploration of structural space covered by the AlphaFold
database compared with the Protein Data Bank

We use the 365,198 proteins from the current AlphaFold database (AF)
and 104,323 proteins from PDB in 2016 (until CASP12) with a 100%
sequenceidentity threshold, removing duplicates. Owingto the pres-
ence of low-confidenceregionsin the AF proteins, we first performed
trimming to split each AF protein into smaller high-confidence units
as follows: a one-dimensional Gaussian filter with a standard devia-
tion gof 5is applied to the sequence of pLDDT scores extracted from
the Ca atoms. The resulting scores are used to split the protein into
continuous segments of residues with smoothed pLDDT scores > 70.
Segments with fewer than 50 residues are discarded. This removed
68,890 AF proteins with too few high-confidence residues for accurate
structural comparison.

For each AF protein segment, and for each PDB protein, rota-
tion invariant moments 03, 04, O5 and F were calculated for the Ca
atoms using a k-mer-based approach (with k=16) and radius-based
approach (r=10 A) using Geometricus®. These were then converted
into shape-mersusingaresolution of four for the k-mer based approach
andsix for the radius-based approach. Shape-merswere counted across
thewhole protein foraPDB protein and across all splits for an AF protein
to give the shape-mer count vectors. We then created aterm frequency
inverse document frequency (TFIDF) matrix for all PDB and AF proteins,
inwhich the terms are shape-mers and each proteinis equivalenttoa
document. We performed topic modeling using NMF, which attempts
tofactorize amatrix of size n x minto matrices Wof'size n x p,and H of
size p x m. We interpret this as finding p topics (here set to 250), each
of which consists of a weighted combination of the m shape-mers
(defined by H). Each of the n proteins can then be seen as a weighted
combination of these p topics (defined by W).

For topic analysis, we assigned proteins to each topic using
knee detection with a weight cut-off®. For visualization, we per-
formed ¢-SNE dimensionality reduction on the W matrix returned
by NMF. Topic-specific scores were obtained for each residue within
a shape-mer by multiplying the corresponding topic weight for the
shape-mer (from H) with an RBF kernel score of the Euclidean distance
between the residue and the central residue of the shape-mer. These
were aggregated across all shape-mers within a protein to obtain the
topic-specific residue scores for the protein.

Code and scripts can be found at: https://github.com/TurtleTools/
alphafold-structural-space

Structure-based variant effect predictions using experimental
and predicted structures

Asubset of experimentally characterized mutations was curated from
ThermoMutDB%, comprising 2,648 single point missense mutations
across 132 unique globular proteins. The experimentally measured
effect of the mutations on protein stability was represented as the dif-
ferencein AAG (in kcal/mol) between wild type and mutant. Experimen-
tal structures were obtained from the PDB'. Homology models were
generated using Modeller® using the most complete available template
within eachidentity threshold range (20% + 5%, 30%+ 5%, until 90% + 5%).
AF2models were generated locally. These mutations were analyzed by
computational predictive tools, including the sequence-based predic-
tors I-Mutant®, SAAFEC-SEQ®® and MUpro®’, and the structure-based
predictors mCSM-stability’”®, DUET”', SDM”?, DynaMut”>, MAESTRO",
ENCoM?”, DynaMut2 (ref.**) and FoldX*. For each method, the perfor-
mance and concordance between the experimental and predicted AAG
aredetermined and presentedinthe corresponding figures as Pearson’s
correlationvalues. A larger set of experimentally determined impact of
missense mutations was derived from a compilation of Deep Mutational
Scanning (DMS) experiments? comprising 117,135 total mutations
in 33 proteins. These were compared against predictions made with
DynaMut2, FoldX and Rosetta®*** (see also Supplementary Methods).

Pocket and structural motif prediction

We downloaded structures from the AlphaFold Protein Structure Data-
base’ except for analyses of the LBSp dataset”. In the latter case, we
used locally modeled structures, as many LBSp structures are from
species notincludedinthe public database. We detected pockets and
calculated overlap metrics (F-score, Matthew’s correlation coefficient
(MCC)) using AutoSite”” from ADFRsuite version 1.0, and OpenBabel™
was used to prepare PDBQT input for AutoSite (obabel -h -xr—par-
tialcharge gasteiger). For enzyme activity predictions, we selected
AlphaFold models without corresponding entries in SWISS-MODEL
2021-11-30, and kept 921 structures with mean pLDDT =70 and 100-
500 residues. We considered 170 proteins as having known enzymatic
activity if there was an EC number and/or a catalytic activity annotation
inthe corresponding UniProt records.
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Oligomerization state prediction

To test the ability of AF2 to predict the oligomeric state of
homo-oligomeric assemblies, we downloaded the dataset from Pon-
stingl et al.*%. Since the PDB files were not provided, the dataset was
filtered to entries for which the oligomeric state wasin agreement with
PISA annotation. Because AF2’s training was done only on single chains,
we reasoned that examples, even if they overlap with the training set,
could be used to evaluate AF2’s oligomeric state prediction capabili-
ties. For each PDB entry, the sequence of chain A was extracted, and
amultiple sequence alignment was generated using the automated
MMseqs2 webserver through ColabFold. For homo-oligomeric pre-
diction, each MSA was copied, padded with gaps to the total length
reflecting the number of copies in the assembly and concatenated.
These concatenated alignments were fed into AF2. No templates were
used. All five ptm-fine tuned model parameters were used. To test the
robustness of AF2’s five model parameters to predict homo-oligomeric
structures, we use the worst of the predicted TMscores for each state.

Fold-and-dock prediction of heterodimeric protein complexes
We used 219 heterodimeric complexes from Dockground benchmark
4 (ref.”®). This set contains unbound forms of heterodimeric protein
chains, whichshare atleast 97% sequence identity with the bound forms.
The dataset consists of 54% eukaryotic proteins, 38% bacterial proteins
and 8% from mixed kingdoms, for example one bacterial proteininter-
acting with one eukaryotic protein. To evaluate performance, one model
for each pair was generated with AF2 (using default parameters, except
that model_2 was used, providing a complementary set of results to
those derived inref. ). To enable docking, we changed only the residue
number sothatboth chainsare treated asalong chainwitha200-residue
gap, asinref.®, We compared AF2 predictions with models docked with
GRAMM. The GRAMM models were ranked using the AACE18 scoring
function®. Docking quality was estimated with DockQ®.

Complex structure predictions for disordered proteins
Predictions were run using the sequences defined in the PDB files (not
including modified residues and other molecules). Predictions were
done using the Google Colab notebooks by S. Ovchinnikov; homooli-
gomers were predicted using the notebook accessible at https://colab.
research.google.com/github/sokrypton/ColabFold/blob/main/Alpha-
Fold2.ipynb, and heterooligomers were predicted using the dedicated
notebook, accessible at https://colab.research.google.com/github/
sokrypton/ColabFold/blob/main/AlphaFold2_complexes.ipynb.Inthe
case of dimers, the default settings were used. In case of higher order
oligomers, one chain was used on its own (usually the IDR if there is
only one), and the rest of the chains were concatenated using a long
linker (either several ‘U’s or several repeats of ‘SG’s).

Evaluation of AlphaFold2 models for use in experimental
model building

AF2modelswereused asanaid torebuilding the existing 6085in ISOLDE,
witha preliminary implementation pLDDT-based weighting of its exist-
ing adaptive distance restraints*. Initial fetching and alignment of the
relevant AF2 models for each chain used a tool available in pre-release
versions of ChimeraX1.3, allowing command-based fetching of predic-
tions from the AlphaFold EBI server by UniProt ID. For existing models
fetched from the wwPDB, the UniProt ID for each chainis automatically
parsed from the mmCIF metadata, and each fetched predictionisaligned
and renamed to match the target chain. ISOLDE’s reference-model dis-
tance restraint scheme has four adjustable parameters controlling the
restraint potential: kappa (the overall strength); wellHalfWidth (the
range over which the restraining force is linearly related to distance);
tolerance (the width of aflat-bottom—thatis, zero-force—region close to
the target); and fallOff (the rate at which the potential tapers at large dis-
tances). With the exception of kappa, each of these termsis expressed as
afunction ofthe reference interatomic distance: for agivenrestraint, the

finalharmonic well width, tolerance and fall-off allincrease withincreas-
ing reference distance. For the purpose of this study, we added terms
to further adjust kappa, tolerance and fallOff according to the pLDDT
of the lowest-confidence atom in each restrained pair; all restraints
where atleast one reference atom had a pLDDT < 50 were disabled. For
each chain in the complex, the working model was restrained against
the AlphaFold reference using the ‘isolde restrain distances’ command
withthe above modifications enabled but otherwise standard settings.
Backbone andside chaintorsions were also restrained against the refer-
ence model using the ‘isolde restrain torsions’ command with default
arguments. After energy minimizationand equilibration, the model was
inspected and, where necessary, interactively remodeled; where refer-
ence modelrestraints clearly disagreed with the model, they were selec-
tively released. Where the AF2 models included previously-unmodeled
residues supported by the density, they were merged into the working
model. The final model was refined with phenix.real_space_refine’ using
settings defined by the ‘isolde write phenixRsr’ command.

For the recapitulation of 70GG, the AF2 predictions for its two
chains were fetched in ChimeraX, as above. Therigid core of each chain
was extracted usingacommunity clustering approach based onthe PAE
matrix; source code for thisis available at https://github.com/tristanic/
pae_to_domains. After setting B-factors to a constant value of 50, these
were used to generate a fresh molecular replacement (MR) solution
using PHASER®. The original, complete AF2 models were aligned to the
MR resultin ChimeraX, and occupancies for atoms that were not part
of the MR models were set to zero. The result was used as the starting
modelforrebuilding in ISOLDE. After it was initially settled into the map
with distance and torsion restraints applied, the model was inspected
andrebuiltend-to-end. During thisinitial rebuilding, zero-occupancy
atoms with clear correspondence to density were reinstated to full
occupancy, while residues with no associated density were deleted.
Where there was clear disagreement with the map (primarily at the
heterodimer interface), theinitial distance and torsion restraints were
selectively released in favor of interactive remodeling. The resulting
model was refined with phenix.refine 2, using settings defined by the
‘isolde write phenixRefine’ command. In a second and third round of
interactive rebuilding in ISOLDE (during which the distance and tor-
sion restraints were fully released) interspersed with phenix.refine, a
small number of residues deleted in the first step were re-introduced.

In both the above cases, the final coordinates have been shared
with the original authors.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Contiguous protein regions of human high-confidence structural pre-
dictions with no previous structural predictions by homology models
inthe SWISS-MODEL Repository are available in Supplementary Table
1and in Github: https://github.com/aozalevsky/alphafold2_vs_swiss-
model. The benchmark dataset used for testing of disorder predic-
tions metrics is available in Supplementary Table 2, and predicted
disordered regions for human proteins are availablein Supplementary
Dataset 1and are integrated into ProViz22 at http://slim.icr.ac.uk/
projects/alphafold?page=alphafold_proviz_homepage. The grouping
of proteins by structure similarly using the NMF analysis of structural
fragmentsisavailable as Supplementary Dataset 2, and the pocket pre-
dictionscores for 912 human proteins with no previous experimental
or predicted structural models are available in Supplementary Table 3.

Code availability

Coverage comparison between SMD and AF2: https://github.com/
aozalevsky/alphafold2_vs_swissmodel/. Exploration of structural
space: https://github.com/TurtleTools/alphafold-structural-space.
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Pocket predictions: https://github.com/jurgjn/af2_pockets. Protein
complexes: https://gitlab.com/ElofssonLab/FoldDock, https://colab.
research.google.com/github/sokrypton/ColabFold/blob/main/
AlphaFold2.ipynb. Model building: https://github.com/tristanic/
pae_to_domains.
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