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High-resolution structures of the SARS-CoV-2
N7-methyltransferase inform therapeutic

development
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Emergence of SARS-CoV-2 coronavirus has led to millions
of deaths globally. We present three high-resolution crystal
structures of the SARS-CoV-2 nsp14 N7-methyltransferase
core bound to S-adenosylmethionine (1.62A),
S-adenosylhomocysteine (1.55 A) and sinefungin (1.41A). We
identify features of the methyltransferase core that are cru-
cial for the development of antivirals and show SAH as the
best scaffold for the design of antivirals against SARS-CoV-2
and other pathogenic coronaviruses.

The SARS-CoV-2 mRNA is capped at the 5'-end by methyltrans-
ferases (MTases) nsp14 and nsp16 (ref. !). Nsp14 methylates the N7
atom of guanosine to generate the M GpppA,,;-RNA structure,
which is then methylated at the 2O atom of the initiating nucleo-
tide by nspl6 to make the "™GpppN,y.-RNA structure’. Both
nspl4 and nspl6 use S-adenosylmethionine (SAM) as the methyl
donor and generate S-adenosylhomocysteine (SAH) as the reaction
byproduct. Nsp14 harbors an exoribonuclease domain (ExoN) at the
N-terminus and the N7-MTase domain at the C-terminus (Fig. 1a)*™.
The nspl4 N7-MTase is an attractive target for the development of
antivirals, but most structure-guided efforts thus far have depended
on crystal structures of nspl4/nspl0 from SARS-CoV?*, solved to
3.2-3.4 A resolution’. Although the SARS-CoV-2 nsp14/nsp10 has
been imaged by cryo-EM, the resolution of these structures is lim-
ited to 2.5-3.9A and they do not capture interactions with SAM,
SAH or sinefungin (SFG)”*. We employ here fusion protein-assisted
crystallization®'* and report high-resolution crystal structures of the
nsp14 N7-MTase-TELSAM fusion (TEL-MTase; Fig. 1b) in complex
with SAM, SAH and SFG (Supplementary Table 1).

The MTase core in the three structures is nearly identical, super-
imposing with root-mean-square deviations (RMSDs) between
0.085 and 0.09A for 187 Ca atoms, showing it to be essentially
invariant when bound to SAM, SAH or SFG (Fig. 1c). The MTase
core consists of an atypical Rossmann fold, composed of a central
five stranded p-sheet (B1’, p2’, B3’, p4’ and p8’) instead of the seven
stranded fB-sheet (B1-p7) typically associated with classI MTases",
including those from most viruses. Helices al’, a2’, a3’ and aC,
B-strands BA and BB, and a Zn?* coordinated substructure are
located on one side of the f-sheet, and two short helices aA and
aB on the other (Fig. 1b). SAM, SAH and SFG are located at the
C-terminal ends of strands p1’, 2’ and p3’, and are cradled by loops
between P1’ and p2’, f2’ and oA, and B3’ and p4’ (Fig. 2a—c).

In the full-length nsp14 structures>”*, a characteristic of the MTase
fold is a ‘hinge’ region composed of a three-stranded p-sheet (f5’,
B6" and B7’; residues 402-433) and an interdomain loop (residues
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, Daniela Sciaky and

288-299) that precedes the MTase core (Extended Data Fig. la—c).
The B-sheet extends from the MTase core and interacts with the
ExoN domain, and flexibility of the hinge has been suggested to allow
for the movement between the MTase core and the ExoN domain'’.
Intriguingly, this B-sheet is disordered in our three structures, sug-
gesting that its interactions with the ExoN domain are required for
its folding and stability (Extended Data Fig. 1a). Excluding the hinge
region, the SARS-CoV-2 and SARS-CoV nspl4 N7-MTase cores
superimpose with a RMSD of 0.67 A for 183 Ca atoms. The most
notable difference is in residues 467-482, which fold into helix aC
and fp-strand pB in SARS-CoV-2 nsp14 (Extended Data Fig. 1d).

The adenine base of SAM, SAH and SFG is ensconced in a cav-
ity formed by the Ala353, Phe367, Tyr368, Cys387 and Val389 side
chains, while the N1 and N6 atoms make hydrogen bonds with the
backbone amide and carboxyl groups of Tyr368, respectively, and the
N3 atom makes a hydrogen bond with the amide group of Ala353
(Fig. 2a-c). The ribose sugar makes direct hydrogen bonds with
the Asp352 side chain, as well as water-mediated interactions with
both the GIn354 side chain and main chain. Asp352 is conserved in
coronaviruses and its mutation to alanine in SARS-CoV has been
shown to abrogate N7-MTase activity>>'*. The tail portion is fixed
by numerous interactions, including direct hydrogen bonds with the
Arg310 side chain and the Gly333 and Trp385 main chain atoms, as
well as intricate water-mediated interactions with GIn313, Asp331
and Asn386 side chains and the Ile332 and Trp385 main chains
(Fig. 2a—c). In addition, the Pro335 ring is involved in van der Waals
contacts with the nonpolar portion (atoms Cp and Cy) of SAM/SAH/
SFG. Arg310, Asp331 and Asn386 are conserved in coronaviruses,
and their mutation to alanine in SARS-CoV has been shown to abol-
ish N7-MTase activity>>". Thus, although Asp331 is not involved in
a direct hydrogen bond with the ligand, its interaction via a water
molecule makes it crucial for N7-MTase activity>’. Indeed, the
entire nsp14 MTase-ligand interface is defined by an unusually large
number of well-ordered water molecules that mediate hydrogen
bonds between the ligand and the protein (Fig. 2a-c). Many of these
are ‘good waters’ in that they bridge the MTase and SAM/SAH/SFG
and can be considered as extensions of the MTase amino acids in the
SAM/SAH/SFG binding pocket. Substitution of these water mol-
ecules will be an important feature to take into account in the design
of SAM competitive inhibitors of the SARS-CoV-2 N7-MTase.

All the amino acids at the interface are conserved in the
SARS-CoV nspl4 N7-MTase. The crystal structure of SARS-CoV
nspl4/nspl0 with SAM captured a subset of the interactions
(Extended Data Fig. 2), but some key interactions, such as between

Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ®e-mail: jithesh.kottur@mssm.edu;

aneel.aggarwal@mssm.edu

850

NATURE STRUCTURAL & MOLECULAR BIOLOGY | VOL 29 | SEPTEMBER 2022 | 850-853 | www.nature.com/nsmb


mailto:jithesh.kottur@mssm.edu
mailto:aneel.aggarwal@mssm.edu
http://orcid.org/0000-0002-8075-3883
http://orcid.org/0000-0003-4270-7242
http://orcid.org/0000-0002-5835-4683
http://orcid.org/0000-0003-4389-0173
http://crossmark.crossref.org/dialog/?doi=10.1038/s41594-022-00828-1&domain=pdf
http://www.nature.com/nsmb

NATURE STRUCTURAL & MOLECULAR BIOLOGY BRIEF COMMUNICATION

a 1 139
nspto N
1 ExoN 291 300 N7-MTase 527
nspi14
Hinge
b -——n

nsp14-N7-MTaseg, ,, domain

e

TELSAM

———————————— ——— —— ]l ———

e
Ly

¥ nsp14 N7-MTasegp,
I nsp14 N7-MTaseg,,
M nsp14 N7-MTasegq

Fig. 1| Overall structure of SARS-CoV-2 N7-MTase. a, Domain organization of SARS-CoV-2 nsp14 and nsp10. b, The overall structure of TELSAM-MTase
fusion in complex with SAM shown in a ribbon representation. The nsp14 N7-MTase domain and TELSAM are colored in cyan and yellow, respectively. The
secondary structure elements for the N7-MTase domain are labeled. The residues not modeled in the structure are shown by dashed lines. A zinc ion (Zn)
is shown as a sphere and colored gray. ¢, C, trace superposition of nsp14 N7-MTasegy, nsp14 N7-MTases,, and nsp14 N7-MTaseq.
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Fig. 2 | Details of SARS-CoV-2 nsp14 N7-MTase bound to ligands. a, Structure of nsp14 MTase domain bound to SAM (left), with a detailed view of the
interactions between them (right). The F, - F_ difference electron density for SAM is shown in a pink mesh and contoured at 3¢ level. Hydrogen bonds
between the MTase domain and SAM are depicted as dashed lines and the water molecules are shown as red spheres. b, Structure of nsp14 MTase bound
to SAH (left), with a detailed view of the interactions between them (right). ¢, Structure of nsp14 MTase domain bound to SFG (left), with a detailed view
of the interactions between them (right).
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Arg310, GIn313, Asn386 and the terminal carboxylate group of
SAM were not observed, possibly because of the moderate resolu-
tion of the structure. Also, the configuration of the bound SAM is
different, wherein the donor methyl group points in the opposite
direction to what we observe here (Extended Data Fig. 2). Most
importantly, the limited resolution of the SARS-CoV structure did
not allow for the observation of water molecules, which form a cru-
cial part of the N7-MTase-SAM interface (Extended Data Fig. 2).

Interestingly, because of the interconnection between the MTase
domain and the ExoN domain (Extended Data Fig. 3), the MTase
activity of the nsp14 is influenced by noncatalytic mutations in the
ExoN domain'*-". To explore this further, we expressed and purified
just the SARS-CoV-2 MTase domain (residues 289-527). We find that
the MTase activity of the isolated MTase domain and the TEL-MTase
fusion is nearly identical, showing that addition of TELSAM to the
MTase domain does not impact its activity (Extended Data Fig. 4).
But, consistent with the previous mutational and deletional analysis
of SARS-CoV nsp14 (ref. *-°), the activity of MTase domain and the
TEL-MTase is reduced in the absence of the ExoN domain (Extended
Data Fig. 4). This is probably due to a stabilizing allosteric effect of
one domain on the other, as mutations in the MTase domain have
also been found to reciprocally effect the ExoN activity".

From isothermal titration calorimetry (ITC) analysis,
SARS-CoV-2 nsp14/nsp10 complex binds SAM and SFG with simi-
lar affinities (K, of 5.7 uM versus 4.4 uM), but binds SAH substan-
tially better (K, of 0.3uM) (Supplementary Table 2 and Extended
Data Fig. 5). The MTase domain and the TEL-MTase fusion bind
SAM/SAH/SFG in a similar pattern, though the absolute affinities
(K, of around 22-25uM for SAM/SFG and K, of 5uM for SAH)
are lower than those observed with full-length nsp14/10 (Extended
Data Fig. 6). This further reinforces the notion that the ExoN
domain has a stabilizing allosteric effect on the MTase domain and
helps to increase its affinity for SAM/SAH/SFG. Importantly, the
residues that interact between the two domains are distant from the
SAM/SAH/SFG binding site (Extended Data Fig. 3).

How to explain the higher affinity of SAH compared with SAM
or SFG? In the nsp14 MTaseg,, structure, the donor methyl group
of SAM (attached to its S& atom) abuts the Asn386 main chain car-
bonyl and seems to displace a water molecule that would normally
be coordinated to the main chain carbonyl (Fig. 2a). Indeed, in the
nspl4 MTases,;; structure, we observe a well-ordered water mol-
ecule coordinated to the Asn386 main chain carbonyl at a position
that would be incompatible with the methyl group of SAM (Fig. 2b).
The entry of this water molecule may provide a partial explanation
for the higher affinity of SAH relative to SAM, particularly the more
favorable enthalpic contribution to binding (Supplementary Table 2
and Extended Data Fig. 5). It is less clear, however, why SAH would
bind better than SFG. The amino group of SFG (attached to its C5)
makes a direct hydrogen bond with the Asn386 main chain carbonyl
and would seem to compensate for the loss of a water molecule (Fig.
2¢). Whether this hydrogen bond is less favorable enthalpically than
a coordinated water molecule to the Asn386 main chain carbonyl is
uncertain at present.

An attractive feature of SARS-CoV-2 N7-MTase as a drug tar-
get is its high conservation of sequence across other coronaviruses
and nearly total conservation of sequence across all the strains of
SARS-CoV-2 (Extended Data Fig. 7a,b). Interestingly, we find that
the affinity of SAH for nsp14 is substantively better than for SAM or
SEG; positing SAH as the scaffold of choice for the design of more
potent SAM competitors. Indeed, when Devkota et al. added a nitrile
group to position 7 of the adenine base of SAH, it further improved its
potency and binding (K, of 0.05 uM)° and a bulky aromatic substituent
at the same place led to single-digit nanomolar inhibitors'®. Notably,
the N7-MTase-SAM/SAH/SFG interface also contains a conserved
cysteine (Cys387) at 3.9 A and 4.6 A from the N7 and N6 atoms of the
adenine base, respectively (Fig. 2), allowing for a suitable ‘warhead’
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on the adenine base to make a covalent bond with the conserved
cysteine. Such covalent inhibitors have been designed previously for
other MTases", including one that forms a covalent bond with Cys449
in the active site of protein arginine methyltransferase 5 (PRMT5)".
Overall, the high-resolution structures of SARS-CoV-2 nspl4
N7-MTase presented here will aid in the development of new anti-
virals against SARS-CoV-2 and other pathogenic coronaviruses.
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Methods

Protein expression and purification. Full-length nsp14/10 complex. For

ITC binding studies, a single pRSFDuet-1 plasmid bearing both C-terminal
6xHis-tagged full-length nsp14 (Ndel and Xhol) and nsp10 (Ncol and NotI) was
transformed into E. coli BL21Gold(DE3) cells (Agilent). The cells were grown at
37°C until the culture reached an optical density ODy,, of around 0.5, after which
the temperature was reduced to 30°C and ZnCl, added at a final concentration

of 20uM. At an ODy, of around 0.8, the temperature was reduced to 15°C and
expression of the complex was induced by addition of 0.5 mM IPTG. The culture
was incubated for 18 h at 180 r.p.m. The cells were harvested by centrifugation and
resuspended in binding buffer (25 mM Tris pH7.5, 250 mM NaCl, 10% glycerol,
0.01% IGEPAL, 25 mM imidazole, 10uM ZnCl, and 10 mM 2-mercaptoethanol).
The cells were lysed by sonication in the presence of EDTA-free Pierce Protease
Inhibitor tablets (Thermo Fisher) and 1 mM PMSE, and the cell debris were clarified
by centrifugation. The filtered supernatant was loaded onto a HisTrap HP affinity
column (GE Healthcare). The column was washed with the binding buffer to
remove the nonspecific proteins bound to the column and the desired complex was
eluted using the binding buffer with 500 mM Imidazole. The fractions containing
the nsp14/nsp10 complex were concentrated and further purified by size exclusion
chromatography using a HiLoad 16/600 Superdex 200 (GE Healthcare) column,
pre-equilibrated with 100 mM KH,PO,/K,HPO, buffer pH 8.0, 100 mM KCl, 0.01%
IGEPAL, 5mM 2-mercaptoethanol and 10% glycerol. The fractions containing pure
nspl4/nsp10 complex were concentrated and used for ITC without freezing.

MTase domain. pGEX-6p-1 plasmid containing N-terminal GST tagged MTase
domain (residues 289-527) was transformed into the E. coli C41(DE3) cells.

The cells were grown at 37 °C until the ODy, reached around 0.8 and then the
temperature was reduced to 18°C and 0.5mM IPTG and 20 uM ZnCl, added. The
cells were harvested 18 h postinduction and resuspended in a GST-binding buffer
(25mM Tris pH 7.5, 500 mM NaCl, 10% glycerol, 0.01% IGEPAL, 10 uM ZnCl, and
2mM DTT). After sonication, the supernatant was incubated with Glutathione
Sepharose 4B beads (GE Healthcare) and washed with the GST-binding buffer

to remove the nonspecific proteins. PreScission Protease was then added to the
column and incubated overnight at 4°C. The released MTase domain was collected
as flowthrough. The fractions containing pure MTase domain were combined and
the protein was further subjected to size exclusion chromatography.

TEL-MTase. Our efforts to crystallize various constructs and mutants of the
nspl4/nsp10 complex and the N7-MTase domain alone (with and without various
expressions tags and protein fusions such as green fluorescent protein (GFP))

were unsuccessful. Reports on the fusion of TELSAM with target proteins to
improve their crystallization®'° motivated us to fuse the nsp14 MTase domain
(residues 300-527) with TELSAM (residues 47-124) with different linkers (A, PA
and PAA) and we carried out expression and protein purification as follows. The
pRSFDuet-1-smt3 plasmids containing N-terminal 6XHis-SUMO-TELSAM-MTase
(TEL-MTase) were transformed into E. coli BL21Gold (DE3) cells. The cells were
grown at 37 °C until ODg,, reached 0.8. The temperature was reduced to 15°C and
IPTG and ZnCl, added to final concentrations of 0.5mM and 20 uM, respectively.
The cells were harvested 18 h postinduction and resuspended in the binding buffer
(25mM Tris pH 7.5, 500 mM NaCl, 10% glycerol, 0.05% IGEPAL, 30 mM imidazole,
10uM ZnCl, and 10 mM 2-mercaptoethanol) in the presence of EDTA-free

Pierce Protease Inhibitor tablets (Thermo Fisher) and 1 mM PMSE. The cells were
lysed by sonication and the filtered supernatant was loaded onto a HisTrap HP
affinity column (GE Healthcare). The column was washed with the binding buffer
containing 1 M NaCl to remove nonspecific proteins bound to the column. The
column was then re-equilibrated with binding buffer and Ulp1-Protease was added
to the column to cleave the 6XHis-SUMO tag. The cleaved protein was eluted and
the fractions containing the 1TEL-MTase fusion protein were diluted to a final
concentration of 50mM NaCl and loaded onto a 5ml HiTrap Q HP anion-exchange
column (GE Healthcare). The protein was eluted in the unbound fractions and was
further purified by size exclusion chromatography on a HiLoad 16/600 Superdex
200 (GE Healthcare) column using 25mM Tris pH 8.3, 200 mM KCl and 2mM
TCEP. All of the purified proteins were concentrated and stored in —80°C. For

ITC studies, the size exclusion buffer was 100 mM KH,PO,/K,HPO, buffer pH 8.0,
100mM KCI, 0.01% IGEPAL, 5mM 2-mercaptoethanol and 10% glycerol.

MTase activity assays. The MTase activity was measured using the MTase-Glo
Methyltransferase bioluminescence assay (Promega)" following the manufacturer’s
instructions. The reaction mix containing 20 mM Tris pH 8.0, 50 mM NaCl, 1 mM
EDTA, 3mM MgCl,, 0.1 mgml™ BSA, 1mM DTT, 20 uM protein (nsp14/10, MTase
domain or TEL-MTase), 20 uM SAM and 0.15mM G(5")ppp(5')A RNA cap analog
(NEB, S1406S) were incubated for 1h at room temperature. The detection solution
from the kit was then added, and the mixture was further incubated for 30 min at
room temperature, before the addition of the developing solution. Luminescence
was measured by using a TECAN infinite 200Pro microplate reader. The averages
and the s.d. of three measurements were plotted as a histogram using Origin v.7.0.

Isothermal titration calorimetry. The titrations were performed on a Microcal
ITC,,, instrument at 25 °C with the standard 10 pcalss™' reference power and at

600 1.p.m. The ligand SAM/SAH/SFG was loaded in the syringe (400 uM) and
titrated into 40 uM of nsp14/nsp10 complex in the cell. For the MTase domain and
TEL-MTase, concentrations of the protein and the ligands were 60 uM and 600 uM,
respectively. Care was taken to ensure buffer match for the ligand and proteins to
eliminate heat production due to the buffer mismatch. The titrations consisted of
15 injections of 2.5 pl ligand solution at a rate of 0.5pls™" at 180s time intervals. An
initial injection of 0.4 ul was made and discarded during data analysis. The data
were fit to a single binding site model using the Origin v.7.0 software, supplied by
MicroCal. All the experiments were repeated twice and average value reported.

Crystallization and structure determination of TEL-MTase with ligands.
Crystallization trials for all the constructs were carried out at 15mgml™ with
fivefold molar excess of the ligand (SAM, SAH and SFG). Initial screens were set
up with Oryx Nano (Douglas Instruments) at 20 °C using commercially available
screens in a sitting drop format with 0.3 pl of protein mixed with equal volume of
reservoir solution. Among the three fusion constructs, only the fusion construct
with a PAA linker produced initial hits. Initial crystals were observed in solutions
containing 15% reagent alcohol, 0.2 M lithium sulfate and 0.1 M sodium citrate
pH 5.5 in 2 days. The crystals were further optimized by varying both concentration
of the reagent alcohol and also the pH of the buffer in hanging drop format using
1 ul protein with 1pl reservoir. The crystals were cryoprotected in a stepwise manner
with reservoir solutions containing 5-30% glycerol and flash-cooled in liquid
nitrogen. X-ray diffraction data were collected at the NSLS-II 17-ID-1 and 17-ID-2
beamlines at the Brookhaven National Laboratory under cryogenic conditions.
The diffraction data were processed using DIALS and AIMLESS in the CCP4
suite”?. The experimental data showed significant anisotropy and an anisotropic
correction was performed using the STARANISO server (https://staraniso.
globalphasing.org/cgi-bin/staraniso.cgi) with a surface threshold of I/5(I) > 1.2.
The structure was solved by molecular replacement with Phaser-MR* using the
MTase domain of SARS-CoV (PDB-5C8T?) and TELSAM domain from PDB-
7N10'" as search models. Subsequent iterative manual building and refinement
were performed with Coot and Phenix Refine, respectively***'. Ligand restraint
file for SFG was generated using eLBOW? from the PHENIX suite. All molecular
graphic figures were prepared using PyMOL (Schrédinger LLC).

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

Atomic coordinates and structure factors for TELSAM-MTase-SAM,
TELSAM-MTase-SAH and TELSAM-MTase-SFG have been deposited in the
Protein Data Bank under the accession codes of 7TW7, 7TW8 and 7TW9,
respectively. Source data are provided with this paper.
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a. SARS-CoV-2 N7-MTase b. SARS-CoV-2 nsp14/nsp10 complex C. SARS-CoV nsp14/nsp10 complex
1.62A (Crystal) 2.5A (Cryo-EM, PDB 7N0OD) 3.33A (Crystal, PDB 5C8S)

[ SARS-CoV-2 N7-MTase
[ SARS-CoV N7-MTase

Extended Data Fig. 1| Structural comparison of nsp14-N7-MTases. a. Structure of SARS-CoV-2 nsp14-N7-MTaseg,, complex. b. Cryo-EM structure of
SARS-CoV-2 nspl4/nspl10 heterodimer (PDB:7NOD, chain H). ¢. Crystal structure of SARS-CoV nsp14,/nsp10g;,,asa cOmMplex (PDB:5C8S, chain B). The
nsp14 MTase core, ExoN domain, and the hinge region are colored cyan, slate blue and orange, respectively. The nsp10 subunit is colored purple. d. Ca
trace superposition of the MTase domains of SARS-CoV-2 (cyan) and SARS-CoV (PDB: 5C8T, chain B, orange). The bound SAM is also shown.
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a. SARS-CoV-2 N7-MTase SARS-CoV N7-MTase (PDB 5C8T) 3.2A

Extended Data Fig. 2 | Comparison of atomic binding details of nsp14-N7-MTase. a. Atomic binding details of SARS-CoV-2 nsp14-N7-MTase core
(left) and previously reported SARS-CoV nsp14/nsp10 (PDB: 5C8T, chain B, right) with bound SAM. Hydrogen bonds are depicted as dashed lines and
water molecules are shown as red spheres. b. Fo-Fc difference density map for SAM in the SARS-Cov-2 N7-MTaseg,, (left) and SARS-CoV nsp14/10s,
structures (right) contoured at 3o level.
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Extended Data Fig. 3 | Interactions between the MTase domain and ExoN domain. The nsp14 MTase core, ExoN domain, and the hinge region are
colored cyan, slate blue and orange, respectively (PDB:7NOD). ExoN stabilizes the MTase domain via polar and non-polar interactions with the hinge and
N7-MTase core.
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Extended Data Fig. 4 | Methyltransferase assay. The methyltransferase activity of the full length nsp14,/10 complex compared with the TEL-MTase fusion
and the MTase domain alone. Data represents the mean + SD of three independent reactions.
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Extended Data Fig. 5 | ITC analysis of nsp14/10 complex with SAM, SAH and SFG. ITC titration data for SAM (left), SAH (middle) and SFG (right)

with the nsp14,/nsp10 complex are shown. The equilibrium dissociation constants (K;,) were derived from the resulting binding isotherms. The chemical
structures of each ligand are also shown.
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Extended Data Fig. 6 | ITC analysis of TEL-MTase and MTase domain with SAM, SAH and SFG. ITC titration data for SAM (left), SAH (middle) and

SFG (right) with the TEL-MTase fusion (a) and the MTase domain alone (b). The equilibrium dissociation constants (K,) were derived from the resulting
binding isotherms.
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Extended Data Fig. 7 | Sequence comparison. a. Sequence alignment of the nsp14 N7-MTase domain from 7 pathogenic coronaviruses. The identical and
similar residues are highlighted in dark gray and light gray, respectively. b. Sequence alignment of the nsp14 N7-MTase domain of SARS-CoV-2 and its
variants. The secondary structure elements are shown above the sequence alignment. Red triangles highlight residues that interact with SAM. Blue circles
highlight residues that coordinate the zinc ion.
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