Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.


Reeling it in: how DNA topology drives loop extrusion by condensin

Structural maintenance of chromosomes (SMC) complexes such as condensin regulate chromosome organization by extruding loops. A new study uses single-molecule imaging of condensin on supercoiled DNA to understand how condensins navigate the under- and overwound DNA states common throughout the genome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Condensin induces and coalesces positively supercoiled DNA, which acts as a binding site for additional condensins.


  1. Kim, Y., Shi, Z., Zhang, H., Finkelstein, I. J. & Yu, H. Science 366, 1345–1349 (2019).

    Article  CAS  Google Scholar 

  2. Golfier, S., Quail, T., Kimura, H. & Brugués, J. eLife 9, e53885 (2020).

    Article  Google Scholar 

  3. Davidson, I. F. et al. Science 366, 1338–1345 (2019).

    Article  CAS  Google Scholar 

  4. Ganji, M. et al. Science 360, 102–105 (2018).

    Article  CAS  Google Scholar 

  5. Yu, H. & Dröge, P. Trends Biochem. Sci. 39, 219–220 (2014).

    Article  CAS  Google Scholar 

  6. Naughton, C. et al. Nat. Struct. Mol. Biol. 20, 387–395 (2013).

    Article  CAS  Google Scholar 

  7. Teves, S. S. & Henikoff, S. Nat. Struct. Mol. Biol. 21, 88–94 (2014).

    Article  CAS  Google Scholar 

  8. Kim, E., Gonzalez, A. M., Pradhan, B., van der Torre, J. & Dekker, C. Nat. Struct. Mol. Biol. (2022).

    Article  PubMed  Google Scholar 

  9. Hirota, T., Gerlich, D., Koch, B., Ellenberg, J. & Peters, J.-M. J. Cell Sci. 117, 6435–6445 (2004).

    Article  CAS  Google Scholar 

  10. Sun, M., Nishino, T. & Marko, J. F. Nucleic Acids Res. 41, 6149–6160 (2013).

    Article  CAS  Google Scholar 

  11. Eeftens, J. M. et al. EMBO J. 36, 3448–3457 (2017).

    Article  CAS  Google Scholar 

  12. Bazett-Jones, D. P., Kimura, K. & Hirano, T. Mol. Cell 9, 1183–1190 (2002).

    Article  CAS  Google Scholar 

  13. Kimura, K. & Hirano, T. Cell 90, 625–634 (1997).

    Article  CAS  Google Scholar 

  14. Tokunaga, M., Imamoto, N. & Sakata-Sogawa, K. Nat. Methods 5, 159–161 (2008).

    Article  CAS  Google Scholar 

  15. Gabriele, M. et al. Science 376, 496–501 (2022).

    Article  CAS  Google Scholar 

Download references


We thank S. Vos and S. Nemsick for insightful comments on this piece. D.N.N. and A.S.H. are supported by the Broad Institute of MIT and Harvard. A.S.H. additionally acknowledges support from US National Institutes of Health grants R00GM130896, DP2GM140938, R33CA257878 and UM1HG011536, National Science Foundation grant 2036037, the Mathers Foundation and a Pew-Stewart Cancer Research Scholar grant.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Anders S. Hansen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narducci, D.N., Hansen, A.S. Reeling it in: how DNA topology drives loop extrusion by condensin. Nat Struct Mol Biol 29, 623–625 (2022).

Download citation

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing