Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

RIBOSOME-TARGETING ANTIBIOTIC MECHANISMS

Putting the antibiotics chloramphenicol and linezolid into context

Growing evidence suggests that many ribosome-targeting antibiotics inhibit protein synthesis context specifically, which has important implications for drug development. New work reveals the structural basis of context-specific action of the classic translation inhibitor chloramphenicol and the oxazolidinones linezolid and radezolid.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanism of action of chloramphenicol and linezolid during protein synthesis.
Fig. 2: Insights into radezolid and chloramphenicol resistance mechanisms.

References

  1. Wilson, D. N. Nat. Rev. Microbiol. 12, 35–48 (2014).

    Article  CAS  Google Scholar 

  2. Marks, J. et al. Proc. Natl Acad. Sci. USA 113, 12150–12155 (2016).

    Article  CAS  Google Scholar 

  3. Choi, J. et al. Nat. Chem. Biol. 16, 310–317 (2020).

    Article  CAS  Google Scholar 

  4. Orelle, C. et al. Antimicrob. Agents Chemother. 57, 5994–6004 (2013).

    Article  CAS  Google Scholar 

  5. Syroegin, E. A. et al. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-022-00720-y (2022).

    Article  PubMed  Google Scholar 

  6. Tsai, K. et al. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-022-00723-9 (2022).

    Article  PubMed  Google Scholar 

  7. Sutcliffe, J. A. Ann. N.Y. Acad. Sci. 1241, 122–152 (2011).

    Article  CAS  Google Scholar 

  8. Long, K., Poehlsgaard, J., Kehrenberg, C., Schwarz, S. & Vester, B. Antimicrob. Agents Chemother. 50, 2500–2505 (2006).

    Article  CAS  Google Scholar 

  9. Mitcheltree, M. J. et al. Nature 599, 507–512 (2021).

    Article  CAS  Google Scholar 

  10. Lovett, P. S. Gene 179, 157–162 (1996).

    Article  CAS  Google Scholar 

  11. Ramu, H., Mankin, A. & Vazquez-Laslop, N. Mol. Microbiol. 71, 811–284 (2009).

    Article  CAS  Google Scholar 

  12. Vazquez-Laslop, N. & Mankin, A. S. Annu. Rev. Microbiol. 72, 185–207 (2018).

    Article  CAS  Google Scholar 

  13. Beckert, B. et al. Nat. Commun. 12, 4466 (2021).

    Article  CAS  Google Scholar 

  14. Arenz, S. et al. Nat. Commun. 7, 12026 (2016).

    Article  CAS  Google Scholar 

  15. Arenz, S. et al. Mol. Cell 56, 446–452 (2014).

    Article  CAS  Google Scholar 

  16. Kannan, K. et al. Proc. Natl Acad. Sci. USA 111, 15958–15963 (2014).

    Article  CAS  Google Scholar 

  17. Polikanov, Y. S., Steitz, T. A. & Innis, C. A. Nat. Struct. Mol. Biol. 21, 787–793 (2014).

    Article  CAS  Google Scholar 

  18. Svetlov, M. S. et al. RNA 25, 600–606 (2019).

    Article  CAS  Google Scholar 

  19. Wilson, D. N. et al. Proc. Natl Acad. Sci. USA 105, 13339–13344 (2008).

    Article  CAS  Google Scholar 

  20. Wilson, D. N. & Beckmann, R. Curr. Opin. Struct. Biol. 21, 1–10 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel N. Wilson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crowe-McAuliffe, C., Wilson, D.N. Putting the antibiotics chloramphenicol and linezolid into context. Nat Struct Mol Biol 29, 79–81 (2022). https://doi.org/10.1038/s41594-022-00725-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-022-00725-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing