Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The coupling mechanism of mammalian mitochondrial complex I

Abstract

Mammalian respiratory complex I (CI) is a 45-subunit, redox-driven proton pump that generates an electrochemical gradient across the mitochondrial inner membrane to power ATP synthesis in mitochondria. In the present study, we report cryo-electron microscopy structures of CI from Sus scrofa in six treatment conditions at a resolution of 2.4–3.5 Å, in which CI structures of each condition can be classified into two biochemical classes (active or deactive), with a notably higher proportion of active CI particles. These structures illuminate how hydrophobic ubiquinone-10 (Q10) with its long isoprenoid tail is bound and reduced in a narrow Q chamber comprising four different Q10-binding sites. Structural comparisons of active CI structures from our decylubiquinone–NADH and rotenone–NADH datasets reveal that Q10 reduction at site 1 is not coupled to proton pumping in the membrane arm, which might instead be coupled to Q10 oxidation at site 2. Our data overturn the widely accepted previous proposal about the coupling mechanism of CI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structures of two classes of CIs.
Fig. 2: Binding sites of Qs and rotenone in the Q chamber of active CI.
Fig. 3: Conformational changes of the β1–β2S2 loop at site 1 of active CI during Q reduction.
Fig. 4: Polar residues and water molecules related to proton translocation within the membrane core subunits and NDUFS2 of active CI.
Fig. 5: A Q-binding pocket in the NDUFA9 C-terminal domain of active CI.
Fig. 6: Proposed catalytic model for mammalian respiratory CI.

Similar content being viewed by others

Data availability

The atomic coordinates of the CI in six distinct states have been deposited in the worldwide Protein Data Bank (PDB) with the following accession codes nos.: 7V2C, 7VXP, 7VXS, 7VZV, 7VZW, 7V2D, 7VXU, 7VY1, 7W00 and 7W0H (Q10 dataset); 7V2E, 7VY8, 7VY9, 7W0R, 7W0Y, 7V2F, 7VYA, 7VYE, 7W1O and 7W1P (Q10–NADH dataset); 7V2H, 7VB7, 7VBL, 7W2R, 7W2U, 7W2Y, 7V2K, 7VBN, 7VBP, 7W31, 7W32 and 7W35 (DQ–NADH dataset); 7V2R, 7VYN, 7VYS, 7W4C, 7W4D, 7W4E, 7W4F, 7W4G, 7V30, 7VZ1, 7VZ8, 7W4J, 7W4K, 7W4L, 7W4M, 7W4N and 7W4Q (Q1–NADH dataset); 7V31, 7VYF, 7VYG, 7W1T, 7W1U, 7V32, 7VYH and 7VYI (rotenone dataset); and 7V33, 7VBZ, 7VC0, 7W1V, 7W1Z, 7W20, 7V3M, 7VWJ, 7VWL, 7W2K and 7W2L (rotenone–NADH dataset). The corresponding maps have been deposited in the Electron Microscopy Data Bank (EMDB) with the accession nos.: EMD-31640, EMD-32186, EMD-32187, EMD-32230, EMD-32231, EMD-31641, EMD-32188, EMD-32191, EMD-32232 and EMD-32242 (Q10 dataset); EMD-31643, EMD-32196, EMD-32197, EMD-32248, EMD-32249, EMD-31644, EMD-32198, EMD-32202, EMD-32253 and EMD-32254 (Q10–NADH dataset); EMD-31645, EMD-31874, EMD-31881, EMD-32265, EMD-32266, EMD-32267, EMD-31646, EMD-31883, EMD-31884, EMD-32269, EMD-32270 and EMD-32271 (DQ–NADH dataset);http://www.ebi.ac.uk/pdbe/entry/emdb/EMD-31648EMD-31647, EMD-32210, EMD-32214, EMD-32300, EMD-32301, EMD-32302, EMD-32303, EMD-32304, EMD-31648, EMD-32218, EMD-32222, EMD-32305, EMD-32306, EMD-32307, EMD-32308, EMD-32309 and EMD-32312 (Q1–NADH dataset); EMD-31649, EMD-32203, EMD-32204, EMD-32255, EMD-32256, EMD-31650, EMD-32205 and EMD-32206 (rotenone dataset); and EMD-31651, EMD-31886, EMD-31887, EMD-32257, EMD-32259, EMD-32260, EMD-31652, EMD-32154, EMD-32155, EMD-32263 and EMD-32264 (rotenone–NADH dataset). Source data are provided with this paper.

References

  1. Hirst, J. Why does mitochondrial complex I have so many subunits? Biochem. J. 437, e1–e3 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Stroud, D. A. et al. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature 538, 123–126 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Vinothkumar, K. R., Zhu, J. & Hirst, J. Architecture of mammalian respiratory complex I. Nature 515, 80–84 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baradaran, R., Berrisford, J. M., Minhas, G. S. & Sazanov, L. A. Crystal structure of the entire respiratory complex I. Nature 494, 443–448 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Efremov, R. G. & Sazanov, L. A. Structure of the membrane domain of respiratory complex I. Nature 476, 414–420 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Efremov, R. G., Baradaran, R. & Sazanov, L. A. The architecture of respiratory complex I. Nature 465, 441–445 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Wu, M., Gu, J., Guo, R., Huang, Y. & Yang, M. Structure of mammalian respiratory supercomplex I1III2IV1. Cell 167, 1598–1609.e1510 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Sazanov, L. A. & Hinchliffe, P. Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311, 1430–1436 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Jones, A. J., Blaza, J. N., Varghese, F. & Hirst, J. Respiratory complex I in Bos taurus and Paracoccus denitrificans pumps four protons across the membrane for every NADH oxidized. J. Biol. Chem. 292, 4987–4995 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Galkin, A. S., Grivennikova, V. G. & Vinogradov, A. D. –>H+/2e stoichiometry in NADH-quinone reductase reactions catalyzed by bovine heart submitochondrial particles. FEBS Lett. 451, 157–161 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Fiedorczuk, K. et al. Atomic structure of the entire mammalian mitochondrial complex I. Nature 538, 406–410 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Agip, A. A. et al. Cryo-EM structures of complex I from mouse heart mitochondria in two biochemically defined states. Nat. Struct. Mol. Biol. 25, 548–556 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kaila, V. R. I. Long-range proton-coupled electron transfer in biological energy conversion: towards mechanistic understanding of respiratory complex I. J. R. Soc. Interface https://doi.org/10.1098/rsif.2017.0916 (2018).

  14. Sazanov, L. A. A giant molecular proton pump: structure and mechanism of respiratory complex I. Nat. Rev. Mol. Cell Biol. 16, 375–388 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Pryde, K. R. & Hirst, J. Superoxide is produced by the reduced flavin in mitochondrial complex I: a single, unified mechanism that applies during both forward and reverse electron transfer. J. Biol. Chem. 286, 18056–18065 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Treberg, J. R., Quinlan, C. L. & Brand, M. D. Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I). J. Biol. Chem. 286, 27103–27110 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blaza, J. N., Vinothkumar, K. R. & Hirst, J. Structure of the deactive state of mammalian respiratory complex I. Structure 26, 312–319.e313 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guo, R., Zong, S., Wu, M., Gu, J. & Yang, M. Architecture of human mitochondrial respiratory megacomplex I2III2IV2. Cell 170, 1247–1257.e1212 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Zhu, J., Vinothkumar, K. R. & Hirst, J. Structure of mammalian respiratory complex I. Nature 536, 354–358 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Parey, K. et al. High-resolution cryo-EM structures of respiratory complex I: mechanism, assembly, and disease. Sci. Adv. 5, eaax9484 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kampjut, D. & Sazanov, L. A. The coupling mechanism of mammalian respiratory complex I. Science https://doi.org/10.1126/science.abc4209 (2020).

  22. Grba, D. N. & Hirst, J. Mitochondrial complex I structure reveals ordered water molecules for catalysis and proton translocation. Nat. Struct. Mol. Biol. 27, 892–900 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Letts, J. A., Fiedorczuk, K., Degliesposti, G., Skehel, M. & Sazanov, L. A. Structures of respiratory supercomplex I+III2 reveal functional and conformational crosstalk. Mol. Cell 75, 1131–1146.e1136 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Di Luca, A., Gamiz-Hernandez, A. P. & Kaila, V. R. I. Symmetry-related proton transfer pathways in respiratory complex I. Proc. Natl Acad. Sci. USA 114, E6314–E6321 (2017).

    PubMed  PubMed Central  Google Scholar 

  25. Wikstrom, M., Sharma, V., Kaila, V. R., Hosler, J. P. & Hummer, G. New perspectives on proton pumping in cellular respiration. Chem. Rev. 115, 2196–2221 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Shinzawa-Itoh, K. et al. Bovine heart NADH-ubiquinone oxidoreductase contains one molecule of ubiquinone with ten isoprene units as one of the cofactors. Biochemistry 49, 487–492 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Davies, K. M., Blum, T. B. & Kuhlbrandt, W. Conserved in situ arrangement of complex I and III2 in mitochondrial respiratory chain supercomplexes of mammals, yeast, and plants. Proc. Natl Acad. Sci. USA 115, 3024–3029 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schagger, H. & Pfeiffer, K. The ratio of oxidative phosphorylation complexes I–V in bovine heart mitochondria and the composition of respiratory chain supercomplexes. J. Biol. Chem. 276, 37861–37867 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Vercellino, I. & Sazanov, L. A. Structure and assembly of the mammalian mitochondrial supercomplex CIII2CIV. Nature 598, 364–367 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Galkin, A. et al. Identification of the mitochondrial ND3 subunit as a structural component involved in the active/deactive enzyme transition of respiratory complex I. J. Biol. Chem. 283, 20907–20913 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Babot, M. et al. ND3, ND1 and 39kDa subunits are more exposed in the de-active form of bovine mitochondrial complex I. Biochim. Biophys. Acta 1837, 929–939 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kashani-Poor, N., Zwicker, K., Kerscher, S. & Brandt, U. A central functional role for the 49-kDa subunit within the catalytic core of mitochondrial complex I. J. Biol. Chem. 276, 24082–24087 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Grgic, L., Zwicker, K., Kashani-Poor, N., Kerscher, S. & Brandt, U. Functional significance of conserved histidines and arginines in the 49-kDa subunit of mitochondrial complex I. J. Biol. Chem. 279, 21193–21199 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Tocilescu, M. A. et al. The role of a conserved tyrosine in the 49-kDa subunit of complex I for ubiquinone binding and reduction. Biochim. Biophys. Acta 1797, 625–632 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Sharma, V. et al. Redox-induced activation of the proton pump in the respiratory complex I. Proc. Natl Acad. Sci. USA 112, 11571–11576 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tocilescu, M. A., Fendel, U., Zwicker, K., Kerscher, S. & Brandt, U. Exploring the ubiquinone binding cavity of respiratory complex I. J. Biol. Chem. 282, 29514–29520 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Fendel, U., Tocilescu, M. A., Kerscher, S. & Brandt, U. Exploring the inhibitor binding pocket of respiratory complex I. Biochim. Biophys. Acta 1777, 660–665 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Angerer, H. et al. Tracing the tail of ubiquinone in mitochondrial complex I. Biochim. Biophys. Acta 1817, 1776–1784 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Fedor, J. G., Jones, A. J. Y., Di Luca, A., Kaila, V. R. I. & Hirst, J. Correlating kinetic and structural data on ubiquinone binding and reduction by respiratory complex I. Proc. Natl Acad. Sci. USA 114, 12737–12742 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Warnau, J. et al. Redox-coupled quinone dynamics in the respiratory complex I. Proc. Natl Acad. Sci. USA 115, E8413–E8420 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Haapanen, O., Djurabekova, A. & Sharma, V. Role of second quinone binding site in proton pumping by respiratory complex I. Front. Chem. 7, 221 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Heinz, S. et al. Mechanistic investigations of the mitochondrial complex I inhibitor rotenone in the context of pharmacological and safety evaluation. Sci. Rep. 7, 45465 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hoias Teixeira, M. & Menegon Arantes, G. Balanced internal hydration discriminates substrate binding to respiratory complex I. Biochim. Biophys. Acta Bioenerg. 1860, 541–548 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Bridges, H. R. et al. Structure of inhibitor-bound mammalian complex I. Nat. Commun. 11, 5261 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Masuya, T., Murai, M., Morisaka, H. & Miyoshi, H. Pinpoint chemical modification of Asp160 in the 49 kDa subunit of bovine mitochondrial complex I via a combination of ligand-directed tosyl chemistry and click chemistry. Biochemistry 53, 7816–7823 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Masuya, T. et al. Pinpoint chemical modification of the quinone-access channel of mitochondrial complex I via a two-step conjugation reaction. Biochemistry 56, 4279–4287 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Murai, M. Exploring the binding pocket of quinone/inhibitors in mitochondrial respiratory complex I by chemical biology approaches. Biosci. Biotechnol. Biochem. 84, 1322–1331 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Abdrakhmanova, A., Zwicker, K., Kerscher, S., Zickermann, V. & Brandt, U. Tight binding of NADPH to the 39-kDa subunit of complex I is not required for catalytic activity but stabilizes the multiprotein complex. Biochim. Biophys. Acta 1757, 1676–1682 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Baertling, F. et al. NDUFA9 point mutations cause a variable mitochondrial complex I assembly defect. Clin. Genet. 93, 111–118 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Stroud, D. A., Formosa, L. E., Wijeyeratne, X. W., Nguyen, T. N. & Ryan, M. T. Gene knockout using transcription activator-like effector nucleases (TALENs) reveals that human NDUFA9 protein is essential for stabilizing the junction between membrane and matrix arms of complex I. J. Biol. Chem. 288, 1685–1690 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Uno, S., Kimura, H., Murai, M. & Miyoshi, H. Exploring the quinone/inhibitor-binding pocket in mitochondrial respiratory complex I by chemical biology approaches. J. Biol. Chem. 294, 679–696 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Galkin, A., Abramov, A. Y., Frakich, N., Duchen, M. R. & Moncada, S. Lack of oxygen deactivates mitochondrial complex I: implications for ischemic injury? J. Biol. Chem. 284, 36055–36061 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kotlyar, A. B. & Vinogradov, A. D. Slow active/inactive transition of the mitochondrial NADH–ubiquinone reductase. Biochim. Biophys. Acta 1019, 151–158 (1990).

    Article  CAS  PubMed  Google Scholar 

  54. Galemou Yoga, E. et al. Mutations in a conserved loop in the PSST subunit of respiratory complex I affect ubiquinone binding and dynamics. Biochim. Biophys. Acta Bioenerg 1860, 573–581 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Haapanen, O., Reidelbach, M. & Sharma, V. Coupling of quinone dynamics to proton pumping in respiratory complex I. Biochim. Biophys. Acta Bioenerg. 1861, 148287 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Le Breton, N. et al. Using hyperfine electron paramagnetic resonance spectroscopy to define the proton-coupled electron transfer reaction at Fe-S cluster N2 in respiratory complex I. J. Am. Chem. Soc. 139, 16319–16326 (2017).

    Article  PubMed  Google Scholar 

  57. Verkhovskaya, M. & Bloch, D. A. Energy-converting respiratory complex I: on the way to the molecular mechanism of the proton pump. Int. J. Biochem. Cell Biol. 45, 491–511 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Feng, Y. et al. Structural insight into the type-II mitochondrial NADH dehydrogenases. Nature 491, 478–482 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Wu, K. et al. Temperature-dependent ESR and computational studies on antiferromagnetic electron transfer in the yeast NADH dehydrogenase Ndi1. Phys. Chem. Chem. Phys. 19, 4849–4854 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Kern, J. et al. Structures of the intermediates of Kok’s photosynthetic water oxidation clock. Nature 563, 421–425 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Uno, S. et al. Oversized ubiquinones as molecular probes for structural dynamics of the ubiquinone reaction site in mitochondrial respiratory complex I. J. Biol. Chem. 295, 2449–2463 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Grivennikova, V. G., Kapustin, A. N. & Vinogradov, A. D. Catalytic activity of NADH-ubiquinone oxidoreductase (complex I) in intact mitochondria. evidence for the slow active/inactive transition. J. Biol. Chem. 276, 9038–9044 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Maklashina, E. O., Sled, V. D. & Vinogradov, A. D. Hysteresis behavior of complex I from bovine heart mitochondria: kinetic and thermodynamic parameters of retarded reverse transition from the inactive to active state. Biokhimiia 59, 946–957 (1994).

    CAS  PubMed  Google Scholar 

  64. Gu, J. et al. The architecture of the mammalian respirasome. Nature 537, 639–643 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Wittig, I., Braun, H. P. & Schagger, H. Blue native PAGE. Nat. Protoc. 1, 418–428 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Kuonen, D. R., Roberts, P. J. & Cottingham, I. R. Purification and analysis of mitochondrial membrane proteins on nondenaturing gradient polyacrylamide gels. Anal. Biochem. 153, 221–226 (1986).

    Article  CAS  PubMed  Google Scholar 

  67. Lei, J. & Frank, J. Automated acquisition of cryo-electron micrographs for single particle reconstruction on an FEI Tecnai electron microscope. J. Struct. Biol. 150, 69–80 (2005).

    Article  PubMed  Google Scholar 

  68. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife https://doi.org/10.7554/eLife.42166 (2018).

  71. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  72. Moriarty, N. W., Grosse-Kunstleve, R. W. & Adams, P. D. electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr. D Biol. Crystallogr. 65, 1074–1080 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chovancova, E. et al. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol. 8, e1002708 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Scheres, S. H. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9, 853–854 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Cryo-EM Facility Center of Tsinghua University Branch of China National Center for Protein Sciences (Beijing) for providing the facility support, and J. Lei, X. Li and F. Yang for technical support in EM data acquisition. The computation was completed on the Yanglab GPU workstation. This work was supported by funds from the National Key R&D Program of China (nos. 2017YFA0504600 and 2016YFA0501100 to M.Y.), the National Science Fund for Distinguished Young Scholars (no. 31625008 to M.Y.), the National Natural Science Foundation of China (nos. 32030056, 21532004 and 31570733 to M.Y., and 31800620 to J.G.) and the China Postdoctoral Science Foundation (nos. 2017M620040 and 2018T110091 to J.G.).

Author information

Authors and Affiliations

Authors

Contributions

M.Y. directed the study. J.G. did the protein purification and detergent screening, and performed EM sample preparation. J.G. and T.L. performed data collection and structural determination, and built the atomic models. J.G., T.L., R.G., L.Z. and M.Y. analyzed the data, drew the figures and wrote the manuscript. All authors contributed to the discussion of the data and editing the manuscript.

Corresponding author

Correspondence to Maojun Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural and Molecular Biology thanks Georgios Skiniotis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer review reports are available. Florian Ullrich was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Biochemical characterization and cryo-EM analyses of SCI1III2IV1.

a, A representative trace of size-exclusion chromatography of the respiratory chain SCI1III2IV1. b, Fractions of size-exclusion chromatography were analyzed by bule native PAGE and in-gel NBT staining. Each experiment was repeated three times independently with similar results. c, A representative cryo-EM micrograph from 5,490 micrographs of Q10 dataset. Scale bar: 100nm. d, Power-spectrum of the micrograph in panel c. The white circle indicates the 2.5-Å frequency. Source Data for b are available online.

Source data

Extended Data Fig. 2 Image processing work flow of a representative dataset.

In the calculation of the porcine CI of Q1-NADH dataset, 7,064 micrographs were collected, obtaining 1,150k particles in total. 871k particles were kept after 2D classification and were subject to a 3D classification of SCI1III2IV1. 657k particles were selected to perform CI-centered particle re-extraction. Through a no-alignment 3D classification, 302k and 209k intact CI particles were categorized as ‘Class 1’ (active state) and ‘Class 2’ (deactive state), while broken particles with a low population were excluded. Different reconstructions were performed, and detailed procedures were described in Methods.

Extended Data Fig. 3 Statistics of the final density maps.

a, Local resolution estimation of the active state CI, matrix arm and membrane arm maps from the Q1-NADH dataset. Viewed along the inner membrane. The color scale from 2.2-3.1 Å is shown in left. b, Particle orientation distributions in the last iteration of the active state CI structural refinement from the Q1-NADH dataset. Red cylinders mean more particles on these orientations. Heights of cylinders represent the relative numbers of particles. c, Gold-standard Fourier Shell Correlation (FSC=0.143) curve of the final density maps. The final resolution of active and deactive CI maps from Q10, Q10-NADH, DQ-NADH, Q1-NADH, Rotenone and Rotenone-NADH datasets are 2.9 Å, 3.3 Å, 2.8 Å, 3.1 Å, 2.5 Å, 2.7 Å, 2.6 Å, 2.7 Å, 2.9 Å, 3.2 Å, 2.5 Å and 2.8 Å, respectively. d, Cross-validation with maps used in panel c and corresponding models. The reported resolution (FSC=0.5) of active and deactive CI maps from Q10, Q10-NADH, DQ-NADH, Q1-NADH, Rotenone and Rotenone-NADH datasets are 3.0 Å, 3.4 Å, 2.9 Å, 3.1 Å, 2.6 Å, 2.8 Å, 2.6 Å, 2.8 Å, 3.0 Å, 3.2 Å, 2.6 Å and 2.9 Å, respectively.

Extended Data Fig. 4 Characteristics of Q-chamber, E-channel, and NADH-binding site.

a, The connection between Q-chamber and E-channel. The red dashed lines represent hydrogen bonds (H-bonds). b, Representative NADH-binding site. Key residues of NDUFV1 that interact with NADH are shown as sticks. Density for NADH is contoured at 3 σ. This figure is generated by CIDQN structure. c, The size of Q10 headgroup. The lengths of Q10 headgroup in two axes are indicated by dashed arrows and shown. d, The size of the Q-chamber bottleneck at the exit point. Q10 and residues of the bottleneck are shown as sticks. Distances between two atoms are indicated by black dashed lines and shown. AH1, amphipathic helix 1; TMH, transmembrane helix. e, Cryo-EM map of the CIR Q-chamber. NDUFS2, NDUFS7 and ND1, forming the Q-chamber, are colored and labeled with texts in the same color. N2 FeS cluster, rotenone and Q10 are shown in surface representation for clarity. Distance between Q10 at site 2 and N2 FeS Cluster is indicated and shown.

Extended Data Fig. 5 Structural features of the Q-binding site 3.

a, Cryo-EM map of the CIQD Q-chamber. NDUFS2, NDUFS7 and ND1, forming the Q-chamber, are colored and labeled with texts in the same color. N2 FeS cluster and Q10 are shown in surface representation for clarity. Distance between Q10 at site 3 and N2 FeS cluster is indicated and shown. AH1, amphipathic helix 1; TMH, transmembrane helix. b, Density for Q10 bound at site 3 of the CIQD Q-chamber (at 2 σ contour level). c, Q10 binding site 3 in the Q-chamber of CIQD. Residues participating in Q10 binding at site 3 are shown as sticks and labeled with texts. The H-bonds are shown as red dashed lines.

Extended Data Fig. 6 Conformational changes between the CIQ and CIQD.

a, Superposition of CIQ and CIQD structures aligned against the NDUFV1 subunit. Gray and blue schematic diagrams illustrate the angles between matrix arm and membrane arm of CIQ and CIQD. b, Superposition of CIQ and CIQD structures aligned against the ND5 subunit. Schematic diagram illustrates the angles between the two matrix arms of CIQ and CIQD structures viewed from ND5 to ND1 along the membrane. c, Conformational changes of NDUFS7 between CIQ and CIQD. Residues involved in Q10 binding at site 1 are shown as sticks and labeled with text. Loop 1 between helices 1 and 2 (LoopH1-H2, red text) turns into a β-strand in CIQD. And loop 2 between helix-2 and β1 (LoopH2-β1; red text) undergoes an obvious conformational change between CIQ and CIQD. H, helix. d, Superposition of NDUFS2 structures between CIQ and CIQD. Residues involved in Q10 binding at site 1 are shown as sticks and are labeled. The disordered β1-β2S2 loop in CIQD is indicated by a black arrow. e, Superposition of ND1 structures from CIQ and CIQD. The disordered loop between TMHs 5 and 6 (LoopTMHs5-6) in CIQD is indicated by a black arrow. TMH, transmembrane helix; AH1, amphipathic helix 1.

Extended Data Fig. 7 Conformational changes in the Q-chamber and E-channel during the transition between active state and deactive state.

a, The H-bond network around the Q-chamber in CIQ formed by loops of NDUFS2, NDUFS7, NDUFA9, ND1, ND3, and ND6. Residues involved in the H-bond network are shown as sticks and labeled by texts. The red dashed lines represent H-bonds. b, Conformational changes of the E-channel between CIQ and CIQD. These two structures are superposed by ND4L. Polar residues and transmembrane helices undergoing conformational changes are highlighted by red text. c-f, A close-up comparison of TMH3ND6, TMH3ND1, TMH4ND1, and TMHs1-2ND3 between CIQ and CIQD. Residues undergoing conformational changes are shown as sticks and labeled by texts.

Extended Data Fig. 8 Structural comparison of polar residues and water molecules between CIDQN and CIDQND.

a-b, Side-by-side comparison of the E-channels between CIDQN (a) and CIDQND (b). Polar residues and water molecules on the central hydrophilic axis of E-channel from DQ-NADH dataset are shown as sticks and spheres, respectively. Residues and transmembrane helices undergoing conformational changes are highlighted by red texts. The gray spheres in panel a represent water molecules missing in CIDQND (b). H-bonds are shown as black dashed lines. c, Comparison of the three antiporter-like subunits between CIDQN and CIDQND. Conserved polar residues and water molecules on the central hydrophilic axis of ND2, ND4 and ND5 from DQ-NADH dataset are shown as sticks and spheres, respectively. d, The H-bond network formed between ordered water molecules and polar residues within NDUFS2 of CIDQND. e, The H-bond network formed between ordered water molecules and polar residues at the interface of ND1 and NDUFS2 of CIDQND.

Extended Data Fig. 9 Structural comparison between porcine CI in SCI1III2IV1 and ovine CI in free form.

a, Superposition of CIQ and CIClosed structures aligned against the ND5 subunit. Left panel: gray and green schematic diagrams illustrate the angles between matrix arm and membrane arm of CIQ and CIClosed, respectively. Right panel: schematic diagram illustrates the angles between the two matrix arms of CIQ and CIClosed structures viewed from ND1 to ND5 along the membrane. CIClosed, ovine closed state CI structure in free form from native dataset (PDB: 6ZKO). b, Superposition of CIQD and CIOpen structures aligned against the ND5 subunit. Left panel: blue and wheat schematic diagrams illustrate the angles between matrix arm and membrane arm of CIQD and CIOpen, respectively. Right panel: schematic diagram illustrates the angles between the two matrix arms of CIQD and CIOpen structures viewed from ND1 to ND5 along the membrane. CIOpen, ovine open state CI structure in free form from native dataset (PDB: 6ZKP).

Supplementary information

Supplementary Information

Supplementary text.

Reporting Summary

Peer Review Information

Supplementary Table 1

Statistics for CI density maps of six distinct datasets.

Supplementary Table 2

NADH- and Q-binding sites of CI from different datasets.

Supplementary Table 3

All the subunits of porcine active state CI.

Supplementary Table 4

All the subunits of porcine deactive state CI.

Source data

Source Data Extended Data Fig. 1

Unprocessed NBT staining blue native PAGE gel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, J., Liu, T., Guo, R. et al. The coupling mechanism of mammalian mitochondrial complex I. Nat Struct Mol Biol 29, 172–182 (2022). https://doi.org/10.1038/s41594-022-00722-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-022-00722-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing