Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Panoramix SUMOylation on chromatin connects the piRNA pathway to the cellular heterochromatin machinery

Abstract

Nuclear Argonaute proteins, guided by small RNAs, mediate sequence-specific heterochromatin formation. The molecular principles that link Argonaute-small RNA complexes to cellular heterochromatin effectors on binding to nascent target RNAs are poorly understood. Here, we explain the mechanism by which the PIWI-interacting RNA (piRNA) pathway connects to the heterochromatin machinery in Drosophila. We find that Panoramix, a corepressor required for piRNA-guided heterochromatin formation, is SUMOylated on chromatin in a Piwi-dependent manner. SUMOylation, together with an amphipathic LxxLL motif in Panoramix’s intrinsically disordered repressor domain, are necessary and sufficient to recruit Small ovary (Sov), a multi-zinc-finger protein essential for general heterochromatin formation and viability. Structure-guided mutations that eliminate the Panoramix–Sov interaction or that prevent SUMOylation of Panoramix uncouple Sov from the piRNA pathway, resulting in viable but sterile flies in which Piwi-targeted transposons are derepressed. Thus, Piwi engages the heterochromatin machinery specifically at transposon loci by coupling recruitment of a corepressor to nascent transcripts with its SUMOylation.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: An amphipathic LxxLL motif in the Panx IDR binds Sov.
Fig. 2: Sov is required for Piwi and Panx-mediated heterochromatin formation.
Fig. 3: Structural basis of the Panx–Sov interaction.
Fig. 4: Panx is SUMOylated.
Fig. 5: A SUMOylation-dependent dual mode interaction between Panx and Sov.
Fig. 6: SUMOylation of Panx at chromatin depends on Piwi.
Fig. 7: Direct SUMOylation of Panx by Ubc9 is independent of Su(var)2-10.

Data availability

Coordinates and structure factors of Sov NTD in complex with the Panx LxxLL peptide were deposited in the Protein Data Bank (PDB accession 7MKK). Sequencing data sets were deposited in the NCBI GEO archive (accession GSE173237). The proteomics data were deposited in the ProteomeXchange Consortium via the PRIDE partner repository (data set PXD025437). The Drosophila melanogaster genome dm6 version was used throughout this work. Source data are provided with this paper.

Code availability

Standard methods were used and are cited and described in the Methods section. Source data are provided with this paper.

References

  1. Fedoroff, N. V. Presidential address. Transposable elements, epigenetics, and genome evolution. Science 338, 758–767 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Janssen, A., Colmenares, S. U. & Karpen, G. H. Heterochromatin: guardian of the genome. Annu. Rev. Cell Dev. Biol. 34, 265–288 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Allshire, R. C. & Madhani, H. D. Ten principles of heterochromatin formation and function. Nat. Rev. Mol. Cell Biol. 19, 229–244 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Yang, P., Wang, Y. & Macfarlan, T. S. The role of KRAB-ZFPs in transposable element repression and mammalian evolution. Trends Genet. 33, 871–881 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Martienssen, R. & Moazed, D. RNAi and heterochromatin assembly. Cold Spring Harb. Perspect. Biol. 7, a019323 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Grewal, S. I. RNAi-dependent formation of heterochromatin and its diverse functions. Curr. Opin. Genet. Dev. 20, 134–141 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ozata, D. M., Gainetdinov, I., Zoch, A., O’Carroll, D. & Zamore, P. D. PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet. 20, 89–108 (2018).

  8. Czech, B. et al. piRNA-guided genome defense: from biogenesis to silencing. Annu. Rev. Genet. 52, 131–157 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Saito, K. et al. Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev. 20, 2214–2222 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vagin, V. V. et al. A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313, 320–324 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 1089–1103 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, S. H. & Elgin, S. C. Drosophila Piwi functions downstream of piRNA production mediating a chromatin-based transposon silencing mechanism in female germ line. Proc. Natl Acad. Sci. USA 108, 21164–21169 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sienski, G., Donertas, D. & Brennecke, J. Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression. Cell 151, 964–980 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Le Thomas, A. et al. Piwi induces piRNA-guided transcriptional silencing and establishment of a repressive chromatin state. Genes Dev. 27, 390–399 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Rozhkov, N. V., Hammell, M. & Hannon, G. J. Multiple roles for Piwi in silencing Drosophila transposons. Genes Dev. 27, 400–412 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Donertas, D., Sienski, G. & Brennecke, J. Drosophila Gtsf1 is an essential component of the Piwi-mediated transcriptional silencing complex. Genes Dev. 27, 1693–1705 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Ohtani, H. et al. DmGTSF1 is necessary for Piwi-piRISC-mediated transcriptional transposon silencing in the Drosophila ovary. Genes Dev. 27, 1656–1661 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Muerdter, F. et al. A Genome-wide RNAi screen draws a genetic framework for transposon control and primary piRNA biogenesis in Drosophila. Mol. Cell 50, 736–748 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu, Y. et al. Panoramix enforces piRNA-dependent cotranscriptional silencing. Science 350, 339–342 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sienski, G. et al. Silencio/CG9754 connects the Piwi-piRNA complex to the cellular heterochromatin machinery. Genes Dev. 29, 2258–2271 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Murano, K. et al. Nuclear RNA export factor variant initiates piRNA-guided co-transcriptional silencing. EMBO J. 38, e102870 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Fabry, M. H. et al. piRNA-guided co-transcriptional silencing coopts nuclear export factors. eLife 8, e47999(2019).

  23. Batki, J. et al. The nascent RNA binding complex SFiNX licenses piRNA-guided heterochromatin formation. Nat. Struct. Mol. Biol. 26, 720–731 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Onishi, R. et al. Piwi suppresses transcription of Brahma-dependent transposons via Maelstrom in ovarian somatic cells. Sci. Adv. https://doi.org/10.1126/sciadv.aaz7420 (2020).

  25. Eastwood, E. L. et al. Dimerisation of the PICTS complex via LC8/Cut-up drives co-transcriptional transposon silencing in Drosophila. eLife 10, e65557 (2021).

  26. Schnabl, J. et al. Molecular principles of Piwi-mediated cotranscriptional silencing through the dimeric SFiNX complex. Genes Dev. 35, 392–409 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ninova, M. et al. Su(var)2-10 and the SUMO pathway link piRNA-guided target recognition to chromatin silencing. Mol. Cell 77, 556–570 e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Mugat, B. et al. The Mi-2 nucleosome remodeler and the Rpd3 histone deacetylase are involved in piRNA-guided heterochromatin formation. Nat. Commun. 11, 2818 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Osumi, K., Sato, K., Murano, K., Siomi, H. & Siomi, M. C. Essential roles of Windei and nuclear monoubiquitination of Eggless/SETDB1 in transposon silencing. EMBO Rep 20, e48296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Iwasaki, Y. W. et al. Piwi modulates chromatin accessibility by regulating multiple factors including histone H1 to repress transposons. Mol. Cell 63, 408–419 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Yang, F. et al. Ovaries absent links dLsd1 to HP1a for local H3K4 demethylation required for heterochromatic gene silencing. eLife 8, e40806 (2019).

  32. Zhao, K. et al. A Pandas complex adapted for piRNA-guided transcriptional silencing and heterochromatin formation. Nat. Cell Biol. 21, 1261–1272 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Jentsch, S. & Psakhye, I. Control of nuclear activities by substrate-selective and protein-group SUMOylation. Annu. Rev. Genet. 47, 167–186 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Gareau, J. R. & Lima, C. D. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat. Rev. Mol. Cell Biol. 11, 861–871 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Geiss-Friedlander, R. & Melchior, F. Concepts in sumoylation: a decade on. Nat. Rev. Mol. Cell Biol. 8, 947–956 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Benner, L. et al. Drosophila heterochromatin stabilization requires the zinc-finger protein small ovary. Genetics 213, 877–895 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jankovics, F. et al. Drosophila small ovary gene is required for transposon silencing and heterochromatin organization, and ensures germline stem cell maintenance and differentiation. Development 145, dev170639 (2018).

  38. Czech, B., Preall, J. B., McGinn, J. & Hannon, G. J. A transcriptome-wide RNAi screen in the Drosophila ovary reveals factors of the germline piRNA pathway. Mol. Cell 50, 749–761 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ninova, M. et al. The SUMO ligase Su(var)2-10 controls hetero- and euchromatic gene expression via establishing H3K9 trimethylation and negative feedback regulation. Mol. Cell 77, 571–585 e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Plevin, M. J., Mills, M. M. & Ikura, M. The LxxLL motif: a multifunctional binding sequence in transcriptional regulation. Trends Biochem. Sci. 30, 66–69 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. De Gregorio, E., Preiss, T. & Hentze, M. W. Translation driven by an eIF4G core domain in vivo. EMBO J. 18, 4865–4874 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pichler, A., Fatouros, C., Lee, H. & Eisenhardt, N. SUMO conjugation—a mechanistic view. Biomol. Concepts 8, 13–36 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Zhao, Q. et al. GPS-SUMO: a tool for the prediction of sumoylation sites and SUMO-interaction motifs. Nucleic Acids Res. 42, W325–W330 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kerscher, O. SUMO junction—what’s your function? New insights through SUMO-interacting motifs. EMBO Rep. 8, 550–555 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miyamoto, R. & Yokoyama, A. Protocol for fractionation-assisted native ChIP (fanChIP) to capture protein–protein/DNA interactions on chromatin. STAR Protoc. 2, 100404 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hari, K. L., Cook, K. R. & Karpen, G. H. The Drosophila Su(var)2-10 locus regulates chromosome structure and function and encodes a member of the PIAS protein family. Genes Dev. 15, 1334–1348 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Johnson, E. S. & Blobel, G. Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J. Biol. Chem. 272, 26799–26802 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Sampson, D. A., Wang, M. & Matunis, M. J. The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J. Biol. Chem. 276, 21664–21669 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Rodriguez, M. S., Dargemont, C. & Hay, R. T. SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J. Biol. Chem. 276, 12654–12659 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Bernier-Villamor, V., Sampson, D. A., Matunis, M. J. & Lima, C. D. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108, 345–356 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Flotho, A. et al. Recombinant reconstitution of sumoylation reactions in vitro. Methods Mol. Biol. 832, 93–110 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Meulmeester, E., Kunze, M., Hsiao, H. H., Urlaub, H. & Melchior, F. Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25. Mol. Cell 30, 610–619 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Lin, D. Y. et al. Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol. Cell 24, 341–354 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Sigler, P. B. Transcriptional activation. Acid blobs and negative noodles. Nature 333, 210–212 (1988).

    Article  CAS  PubMed  Google Scholar 

  55. Tuttle, L. M. et al. Gcn4-mediator specificity is mediated by a large and dynamic fuzzy protein–protein complex. Cell Rep. 22, 3251–3264 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li, C. et al. Quantitative SUMO proteomics identifies PIAS1 substrates involved in cell migration and motility. Nat. Commun. 11, 834 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Doblmann, J. et al. apQuant: accurate label-free quantification by quality filtering. J. Proteome Res. 18, 535–541 (2018).

  58. Ge, D. T., Tipping, C., Brodsky, M. H. & Zamore, P. D. Rapid screening for CRISPR-directed editing of the Drosophila genome using white coconversion. G3 (Bethesda) 6, 3197–3206 (2016).

    Article  CAS  Google Scholar 

  59. Port, F., Chen, H. M., Lee, T. & Bullock, S. L. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc. Natl Acad. Sci. USA 111, E2967–E2976 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dokshin, G. A., Ghanta, K. S., Piscopo, K. M. & Mello, C. C. Robust genome editing with short single-stranded and long, partially single-stranded DNA donors in Caenorhabditis elegans. Genetics 210, 781–787 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gratz, S. J. et al. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194, 1029–1035 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gokcezade, J., Sienski, G. & Duchek, P. Efficient CRISPR/Cas9 plasmids for rapid and versatile genome editing in Drosophila. G3 (Bethesda) 4, 2279–2282 (2014).

  63. Markstein, M., Pitsouli, C., Villalta, C., Celniker, S. E. & Perrimon, N. Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nat. Genet. 40, 476–483 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ni, J. Q. et al. A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nat. Methods 8, 405–407 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Niki, Y., Yamaguchi, T. & Mahowald, A. P. Establishment of stable cell lines of Drosophila germ-line stem cells. Proc. Natl Acad. Sci. USA 103, 16325–16330 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Saito, K. et al. A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila. Nature 461, 1296–1299 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Lee, T. I., Johnstone, S. E. & Young, R. A. Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat. Protoc. 1, 729–748 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Brind’Amour, J. et al. An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations. Nat. Commun. 6, 6033 (2015).

    Article  PubMed  CAS  Google Scholar 

  70. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kent, W. J., Zweig, A. S., Barber, G., Hinrichs, A. S. & Karolchik, D. BigWig and BigBed: enabling browsing of large distributed datasets. Bioinformatics 26, 2204–2207 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shen, L., Shao, N., Liu, X. & Nestler, E. ngs.plot: quick mining and visualization of next-generation sequencing data by integrating genomic databases. BMC Genomics 15, 284 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Skene, P. J., Henikoff, J. G. & Henikoff, S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nat. Protoc. 13, 1006–1019 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS  PubMed  Google Scholar 

  77. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kabsch, W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D. Biol. Crystallogr. 66, 133–144 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Battye, T. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D. Biol. Crystallogr. 67, 271–281 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D. Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  PubMed  CAS  Google Scholar 

  81. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D. Biol. Crystallogr. 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Sonnhammer, E. L. & Ostlund, G. InParanoid 8: orthology analysis between 273 proteomes, mostly eukaryotic. Nucleic Acids Res. 43, D234–D239 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the VBCF core facilities (Protein Technologies, NGS, VDRC) for support and the IMBA Fly House for generating transgenic and CRISPR-edited fly lines. The GMI/IMBA/IMP Scientific Service units, especially the mass spectrometry unit (K. Mechtler and team) provided outstanding support. The Max Perutz Laboratories Monoclonal Antibody facility generated the Sov and Su(var)2-10 hybridoma cell line. We thank the Brennecke laboratory for help throughout this project, and P. Batalski for generating amino acid mapping scripts. C. Lima (MSKCC) and U. Hohmann (IMBA, IMP) gave valuable feedback on the manuscript. Funding statement: this research was funded by the Austrian Academy of Sciences, the European Community (grant no. ERC-2015-CoG-682181) and the Austrian Science Fund (grant nos. F4303 and W1207). For the purpose of Open Access, the author has applied for a CC BY public copyright licence to any Author Accepted Manuscript (AAM) version arising from this submission. X-ray diffraction studies were conducted at the Advanced Photon Source on the Northeastern Collaborative Access Team beamlines, supported by the National Institute of General Medical Sciences, grant no. P30 GM124165 and US Department of Energy grant no. DE-AC02-06CH11357. The Eiger 16M detector on the 24-ID-E beamline is funded by a NIH-ORIP HEI grant (no. S10OD021527). This work was supported in part by the Maloris Foundation (D.J.P.). The Memorial Sloan Kettering Cancer Center structural biology core facility is supported by National Cancer Institute Core grant no. P30-CA008748. C.Y. and M.G. are supported by the VIP2 Post-Doctoral fellowship program as part of the EU Horizon 2020 research and innovation program (Marie Skłodowska-Curie grant no. 847548). L.B. and G.S. were funded by Boehringer Ingelheim PhD fellowships.

Author information

Authors and Affiliations

Authors

Contributions

J.W. undertook X-ray studies on the Sov NTD–Panx LxxLL peptide complex and ITC assays under the supervision of D.J.P. V.I.A. and C.Y. performed all molecular biology experiments, except those where J.S. identified the LxxLL motif and purified recombinant SFiNX complex and J.B., L.T., L.B. and P.D. performed the fly experiments, M.G. performed the H3K9me3 Cut&Run experiments. G.S. generated GRO-seq data. D.H. and C.Y. performed computational analyses. M.N. performed the phylogenetic analysis of the Panx LxxLL peptide. L.B. established sov RNAi lines and characterized the Sov antibody. K.M. generated OSC cell lines. The project was supervised by J.B. and D.J.P. The paper was written by V.I.A., C.Y. and J.B. with input from all authors.

Corresponding author

Correspondence to Julius Brennecke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Structural and Molecular Biology thanks Alla Kalmykova, Phillip Zamore and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Anke Sparmann and Carolina Perdigoto were the primary editors on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1

a, Western blot analysis showing expression levels of indicated Gal4-DBD fusion proteins following transient transfection in OSCs (Ponceau S-levels indicate protein loading; related to Fig. 1b). b, H3K9me3 levels (normalized to heterochromatic light locus) at the reporter locus (amplicon indicated in Fig. 1a) determined by ChIP-qPCR from OSCs expressing indicated Gal4-DBD fusion proteins (data are presented as mean of n = 2 biological replicates). c, Western blot analysis showing expression levels of Gal4-DBD fusion proteins with indicated Panx IDR fragments (amino acid boundaries indicated). Ponceau S levels indicate protein loading; related to Fig. 1d. d, Western blot analysis showing expression levels of Gal4-DBD fusions with indicated WT and LxxLL mutant Panx fragments. Ponceau S levels indicate protein loading; related to Fig. 1e. e, To the left: Boxplots showing GFP reporter levels in OSCs following transfection with plasmids encoding Gal4-DBD fusions of Panx peptides (wildtype versus alanine mutant; numbers indicate median fold repression normalized to control for two biological replicates, boxplots indicate median, first and third quartiles (box), whiskers show 1.5× interquartile range; outliers were omitted; n = 10,000 cells). To the right: Western blot analysis showing expression levels of Gal4-DBD fusion proteins with indicated Panx peptides. Ponceau S levels indicate protein loading.

Source data

Extended Data Fig. 2

a, Confocal image of egg chambers with indicated germline-specific knockdown (GLKD) stained for Sov (greyscale; scale bar: 20 μm). b, H3K9me3 Cut&Run signal from OSCs with indicated knockdowns at indicated transposons (The Doc retroelement serves as a control transposon as it is not targeted by the piRNA pathway in OSCs). c, Sov-GFP ChIP–Seq signal at indicated transposon families from OSCs expressing Sov-GFP or not (control) (The Doc retroelement serves as a control transposon family as it is not targeted by the piRNA pathway in OSCs). d, Western blot analysis showing expression of Gal4-DBD-FLAG-Sov following plasmid transfection in the OSC reporter cell line (related to Fig. 2f,g).

Source data

Extended Data Fig. 3

Coomassie stained SDS-PAGE showing an in vitro pulldown experiment with streptavidin-bound wildtype Panx LxxLL peptide or two mutant peptides (NxxQQ and AxxAA variants) and recombinant GFP-tagged Sov NTD (14-90 aa) fragment as prey (asterisk indicates a background band from Streptavidin beads).

Source data

Extended Data Fig. 4

a, Volcano plot showing fold enrichment of proteins determined by quantitative mass spectrometry in GFP-FLAG-Sov co-immunoprecipitates versus control (n = 3 biological replicates; statistical significance of differentially enriched proteins was derived from a two-sided t-test and p-values were subsequently corrected for multiple testing (Benjamini-Hochberg)). b, Confocal image of egg chamber expressing GFP-Smt3 (greyscale) under the smt3 regulatory control elements (scale bar: 20 μm).

Extended Data Fig. 5

a, Western blot analysis showing expression of indicated GFP-FLAG tagged Sov NTD variants following transient transfection in OSCs (related to Fig. 5a). b, Western blot analysis showing expression levels of Gal4-DBD-FLAG fusions with indicated Panx IDR variants following transient transfection in the OSC reporter line. Staining with Ponceau S serves as loading control (related to Fig. 5b).

Source data

Extended Data Fig. 6

a, GFP-Panx ChIP-Seq signal from OSCs expressing GFP-Panx or not (control) at gypsy (piRNA targeted) or Doc transposons (not targeted). b, Heatmap of GRO-seq signal (left), GFP-Panx ChIP-Seq signal (middle) and chromatin-enriched GFP-Panx ChIP-Seq signal (right) around transcription start sites (TSSs) of expressed genes in OSCs (all heatmaps sorted for maximal GRO-seq signal at the TSS; plots above heatmaps depict the corresponding meta-profiles). c, GFP-Panx ChIP-Seq signal from pre-extracted OSCs expressing GFP-Panx or not (control) at gypsy (piRNA targeted) or Doc transposons (not targeted). d, Heatmap showing GRO-seq signal at genomic regions flanking 381 piRNA-targeted transposon insertions (vertical line) in OSCs depleted for indicated factors.

Extended Data Fig. 7

a, Transcript levels of lwr, measured by RT–qPCR with two amplicons, following siRNA transfection (n = 2 biological replicates; 96 h time point; similar results were obtained after 48 h and 72 h). To the right, panx transcript levels measured by RT-qPCR with two different amplicons (panx-1 and -2; data presented as mean of n = 3 biological replicates, error bars: standard deviation). b, Coomassie-stained SDS-PAGE showing recombinant Drosophila Uba2/His6-Aos1, Lwr and Smt3 used in the in vitro SUMOylation assays. c, Western blot analysis showing endogenous Nxf2 (left) and Panx (right) proteins in OSC whole cell lysate prepared with or without N-ethylmaleimide (NEM). Tubulin and staining with Ponceau S serve as loading control for Panx and Nxf2 blots, respectively. d, Western blot analysis showing impact of increasing concentration of Sov NTD variants lacking SIM1 or SIM2 on the efficiency of Panx IDR in vitro SUMOylation. e, Western blot analysis showing the enhancement of Panx HA-IDR in vitro SUMOylation by the Sov NTD in an LxxLL binding-dependent manner. f, Western blot analysis showing extent of endogenous Panx SUMOylation in OSCs depleted for Sov with two different siRNAs. g, Cartoon model of how the Panx–Sov-NTD interaction enhances Panx SUMOylation. h, Phylogenetic distribution of Sov NTD sequence homologs. Identified Sov NTD homologs belong either to the Sov or to the Med15 ortholog groups in the same database (phylogenetic tree based on NCBI taxonomy using iTOL v.6).

Source data

Supplementary information

Reporting Summary

Peer Review Information

Supplementary Data 1

Mass spectrometry data lists.

Supplementary Data 2

Fly stocks.

Supplementary Data 3

Guide RNA sequences.

Supplementary Data 4

siRNA sequences.

Supplementary Data 5

Antibodies.

Supplementary Data 6

qPCR oligos.

Supplementary Data 7

Next generation sequencing data.

Source data

Source Data Fig. 2

Uncropped image.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Uncropped image.

Source Data Fig. 4

Uncropped image.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Uncropped image.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Uncropped image.

Source Data Fig. 7

Uncropped image.

Source Data Extended Data Fig. 1

Uncropped image.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Uncropped image.

Source Data Extended Data Fig. 3

Uncropped image.

Source Data Extended Data Fig. 5

Uncropped image.

Source Data Extended Data Fig. 7

Uncropped image.

Source Data Extended Data Fig. 7

Statistical source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andreev, V.I., Yu, C., Wang, J. et al. Panoramix SUMOylation on chromatin connects the piRNA pathway to the cellular heterochromatin machinery. Nat Struct Mol Biol 29, 130–142 (2022). https://doi.org/10.1038/s41594-022-00721-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-022-00721-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing