Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

CNG CHANNELS

Symmetry breaking in photoreceptor cyclic nucleotide-gated channels

Retinal photoreceptor cyclic nucleotide-gated (CNG) ion channels convert light signals to electrical signals in the eye. Their structures have been solved at ~3 Å resolution by cryo-EM; the asymmetric subunit assembly of heteromeric CNG channels produces a unique ion-permeation pathway with an unusual gating apparatus that indicates distinct subunit contributions for ligand-dependent channel activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Architecture of the permeation pore of human CNGA1+CNGB1 channel.

References

  1. Hille, B. Ion Channels of Excitable Membranes (Sinauer Associates, 2001).

  2. Kaupp, U. B. & Seifert, R. Physiol. Rev. 82, 769–824 (2002).

    Article  CAS  Google Scholar 

  3. Li, M. et al. Nature 542, 60–65 (2017).

    Article  CAS  Google Scholar 

  4. Rheinberger, J., Gao, X., Schmidpeter, P. A. & Nimigean, C. M. Elife 7, e39775 (2018).

    Article  Google Scholar 

  5. James, Z. M. et al. Proc. Natl Acad. Sci. USA 114, 4430–4435 (2017).

    Article  CAS  Google Scholar 

  6. Xue, J., Han, Y., Zeng, W., Wang, Y. & Jiang, Y. Neuron 109, 1302–1313 (2021).

    Article  CAS  Google Scholar 

  7. Xue, J., Han, Y., Zeng, W. & Jiang, Y. Neuron https://doi.org/10.1016/j.neuron.2021.10.006 (2021).

  8. Barret, D. C. A., Schertler, G. F. X., Kaupp, U. B. & Marino, J. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-021-00700-8 (2021).

  9. Zheng, X., Hu, Z., Li, H. & Yang, J. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-021-00699-y (2021).

  10. Arrigoni, C. et al. Cell 164, 922–936 (2016).

    Article  CAS  Google Scholar 

  11. Sun, J. & MacKinnon, R. Cell 169, 1042–1050 e9 (2017).

    Article  CAS  Google Scholar 

  12. Zhong, H., Molday, L. L., Molday, R. S. & Yau, K. W. Nature 420, 193–198 (2002).

    Article  CAS  Google Scholar 

  13. Shuart, N. G., Haitin, Y., Camp, S. S., Black, K. D. & Zagotta, W. N. Nat. Commun. 2, 457 (2011).

    Article  Google Scholar 

  14. Zheng, J., Trudeau, M. C. & Zagotta, W. N. Neuron 36, 891–896 (2002).

    Article  CAS  Google Scholar 

  15. Zheng, J. & Zagotta, W. N. Neuron 42, 411–421 (2004).

    Article  CAS  Google Scholar 

  16. Yu, Y. et al. Proc. Natl Acad. Sci. USA 106, 11558–11563 (2009).

    Article  CAS  Google Scholar 

  17. Su, Q. et al. Science 361, eaat9819 (2018).

    Article  Google Scholar 

  18. Flynn, G. E. & Zagotta, W. N. Neuron 30, 689–698 (2001).

    Article  CAS  Google Scholar 

  19. Contreras, J. E., Srikumar, D. & Holmgren, M. Proc. Natl Acad. Sci. USA 105, 3310–3314 (2008).

    Article  CAS  Google Scholar 

  20. Aryal, P., Sansom, M. S. & Tucker, S. J. J. Mol. Biol. 427, 121–130 (2015).

    Article  CAS  Google Scholar 

  21. Hackos, D. H. & Korenbrot, J. I. J. Gen. Physiol. 113, 799–818 (1999).

    Article  CAS  Google Scholar 

  22. Dai, G., Peng, C., Rich, E. D. & Varnum, M. D. Biophys. J. 104, 278a (2013).

    Article  Google Scholar 

  23. Varnum, M. D., Black, K. D. & Zagotta, W. N. Neuron 15, 619–625 (1995).

    Article  CAS  Google Scholar 

  24. Sommer, B., Kohler, M., Sprengel, R. & Seeburg, P. Cell 67, 11–19 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks J.C. Eissenberg and E. Di Cera for critically reading of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gucan Dai.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, G. Symmetry breaking in photoreceptor cyclic nucleotide-gated channels. Nat Struct Mol Biol 29, 7–9 (2022). https://doi.org/10.1038/s41594-021-00711-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-021-00711-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing