Iboxamycin (IBX) is a new oxepanoprolinamide antibiotic based on clindamycin. Crystal structures of IBX in complex with bacterial ribosomes uncover the structural mechanism of its activity against multidrug-resistant pathogens and reveal key interactions with tRNAs and 23S rRNA, including resistance-conferring rRNA methylations.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout

References
United Nations Interagency Coordination Group on Antimicrobial Resistance. No Time to Wait: Securing the Future from Drug-Resistant Infections (UN, 2019).
Wright, P. M., Seiple, I. B. & Myers, A. G. Angew. Chem. Intl Edn. Engl. 53, 8840–8869 (2014).
Simpkin, V. L., Renwick, M. J., Kelly, R. & Mossialos, E. J. Antibiot. 70, 1087–1096 (2017).
Spellberg, B. Crit. Care 18, 228 (2014).
Santajit, S. & Indrawattana, N. Mechanisms of Antimicrobial Resistance in ESKAPE. Pathogens. Biomed. Res. Intl. 2016, 2475067 (2016).
Long, K. S., Poehlsgaard, J., Kehrenberg, C., Schwarz, S. & Vester, B. Antimicrob. Agents Chemother. 50, 2500–2505 (2006).
Smith, L. K. & Mankin, A. S. Antimicrob. Agents Chemother. 52, 1703–1712 (2008).
Leclercq, R. Clin. Infect. Dis. 34, 482–492 (2002).
Mitcheltree, M. J. et al. Nature https://doi.org/10.1038/s41586-021-04045-6 (2021).
Seiple, I. B. et al. Nature 533, 338–345 (2016).
Charest, M. G., Lerner, C. D., Brubaker, J. D., Siegel, D. R. & Myers, A. G. Science 308, 395–398 (2005).
Li, Q. et al. Nature 586, 145–150 (2020).
Spížek, J. & Řezanka, T. Biochem. Pharmacol. 133, 20–28 (2017).
Tenson, T., Lovmar, M. & Ehrenberg, M. J. Mol. Biol. 330, 1005–1014 (2003).
Marks, J. et al. Proc. Natl Acad. Sci. USA 113, 12150 (2016).
Acknowledgements
We thank Dunham lab members P. Srinivas and H.A. Nguyen for their comments. Research in the Dunham lab is funded by US National Institutes of Health grants GM093278, AI088025 and GM121650 and by the Burroughs Wellcome Fund (Investigator in the Pathogenesis of Infectious Diseases Awardee).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Rights and permissions
About this article
Cite this article
Mattingly, J.M., Dunham, C.M. ESKAPE velocity: total synthesis platforms promise to increase the pace and diversity of antibiotic development. Nat Struct Mol Biol 29, 3–4 (2022). https://doi.org/10.1038/s41594-021-00708-0
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41594-021-00708-0