Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IMPDH1 retinal variants control filament architecture to tune allosteric regulation

Abstract

Inosine-5′-monophosphate dehydrogenase (IMPDH), a key regulatory enzyme in purine nucleotide biosynthesis, dynamically assembles filaments in response to changes in metabolic demand. Humans have two isoforms: IMPDH2 filaments reduce sensitivity to feedback inhibition, while IMPDH1 assembly remains uncharacterized. IMPDH1 plays a unique role in retinal metabolism, and point mutants cause blindness. Here, in a series of cryogenic-electron microscopy structures we show that human IMPDH1 assembles polymorphic filaments with different assembly interfaces in extended and compressed states. Retina-specific splice variants introduce structural elements that reduce sensitivity to GTP inhibition, including stabilization of the extended filament form. Finally, we show that IMPDH1 disease mutations fall into two classes: one disrupts GTP regulation and the other has no effect on GTP regulation or filament assembly. These findings provide a foundation for understanding the role of IMPDH1 in retinal function and disease and demonstrate the diverse mechanisms by which metabolic enzyme filaments are allosterically regulated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: IMPDH1 assembles filaments and is sensitive to GTP inhibition.
Fig. 2: Structure of extended IMPDH1 filaments (ATP/IMP/NAD+ bound).
Fig. 3: Inhibited IMPDH1 assembles with an alternative filament architecture (GTP/ATP/IMP bound).
Fig. 4: IMPDH1 retinal variants assemble filaments that resist GTP inhibition.
Fig. 5: IMPDH1 retinal variant (595) constrains filament architecture.
Fig. 6: IMPDH1 retinopathy mutations fall into two classes.
Fig. 7: Model of IMPDH1 assembly and filament role in regulation.

Similar content being viewed by others

Data availability

The coordinates are deposited in the PDB with accession codes PDB 7RER (interface-centered extended IMPDH1(514)), PDB 7RES (octamer-centered active IMPDH1(514)), PDB 7RFE (interface-centered compressed IMPDH1(514)), PDB 7RFG (octamer-centered compressed IMPDH1(514)), PDB 7RGL (interface-centered extended IMPDH1(546)), PDB 7RGM (octamer-centered extended IMPDH1(546)), PDB 7RGI (interface-centered compressed IMPDH1(546)), PDB 7RGQ (octamer-centered compressed IMPDH1(546)), PDB 7RFF (interface-centered extended IMPDH1(595)), PDB 7RFH (octamer-centered extended IMPDH1(595)), PDB 7RFI (interface-centered compressed IMPDH1(595)), PDB 7RGD (octamer-centered compressed IMPDH1(595). The cryo-EM maps are deposited in the Electron Microscopy Data Bank (EMDB) with accession codes EMD-24437 (interface-centered extended IMPDH1(514)), EMD-24438 (octamer-centered extended IMPDH1(514)), EMD-24439 (interface-centered compressed IMPDH1(514)), EMD-24441 (octamer-centered compressed IMPDH1(514)), EMD-24451 (interface-centered extended IMPDH1(546)), EMD-24452 (octamer-centered extended IMPDH1(546)), EMD-24450 (interface-centered compressed IMPDH1(546)), EMD-24454 (octamer-centered compressed IMPDH1(546)), EMD-24440 (interface-centered extended IMPDH1(595)), EMD-24442 (octamer-centered extended IMPDH1(595)), EMD-24443 (interface-centered compressed IMPDH1(595)) and EMD-24448 (octamer-centered compressed IMPDH1(595). Source data are provided with this paper.

References

  1. Kennan, A. et al. On the role of IMPDH1 in retinal degeneration. Adv. Exp. Med. Biol. 533, 13–18 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ji, Y., Gu, J., Makhov, A. M., Griffith, J. D. & Mitchell, B. S. Regulation of the interaction of inosine monophosphate dehydrogenase with mycophenolic acid by GTP. J. Biol. Chem. 281, 206–212 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Carcamo, W. C., Calise, S. J., von Mühlen, C. A., Satoh, M. & Chan, E. K. L. Molecular cell biology and immunobiology of mammalian rod/ring structures. Int. Rev. Cell Mol. Biol. 308, 35–74 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Calise, S. J. et al. Glutamine deprivation initiates reversible assembly of mammalian rods and rings. Cell. Mol. Life Sci. 71, 2963–2973 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Jackson, R. C., Weber, G. & Morris, H. P. IMP dehydrogenase, an enzyme linked with proliferation and malignancy. Nature 256, 331–333 (1975).

    Article  CAS  PubMed  Google Scholar 

  6. Senda, M. & Natsumeda, Y. Tissue-differential expression of two distinct genes for human IMP dehydrogenase (E.C.1.1.1.205). Life Sci. 54, 1917–1926 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Carr, S. F., Papp, E., Wu, J. C. & Natsumeda, Y. Characterization of human type I and type II IMP dehydrogenases. J. Biol. Chem. 268, 27286–27290 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Calise, S. J., Abboud, G., Kasahara, H., Morel, L. & Chan, E. K. L. Immune response-dependent assembly of IMP dehydrogenase filaments. Front. Immunol. 9, 2789 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Duong-Ly, K. C. et al. T cell activation triggers reversible inosine-5′-monophosphate dehydrogenase assembly. J. Cell Sci. https://doi.org/10.1242/jcs.223289 (2018).

  10. Johnson, M. C. & Kollman, J. M. Cryo-EM structures demonstrate human IMPDH2 filament assembly tunes allosteric regulation. eLife 9, e53243 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fernández-Justel, D. et al. A nucleotide-dependent conformational switch controls the polymerization of Human IMP dehydrogenases to modulate their catalytic activity. J. Mol. Biol. 431, 956–969 (2019).

    Article  PubMed  Google Scholar 

  12. Hedstrom, L. IMP dehydrogenase-linked retinitis pigmentosa. Nucleosides Nucleotides Nucleic Acids 27, 839–849 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, R. et al. Characteristics and crystal structure of bacterial inosine-5’-monophosphate dehydrogenase. Biochemistry 38, 4691–4700 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Hedstrom, L. IMP dehydrogenase: structure, mechanism, and inhibition. Chem. Rev. 109, 2903–2928 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Buey, R. M. et al. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases. Nat. Commun. 6, 8923 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Fernández-Justel, D., Peláez, R., Revuelta, J. L. & Buey, R. M. The Bateman domain of IMP dehydrogenase is a binding target for dinucleoside polyphosphates. J. Biol. Chem. 294, 14768–14775 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Anthony, S. A. et al. Reconstituted IMPDH polymers accommodate both catalytically active and inactive conformations. Mol. Biol. Cell https://doi.org/10.1091/mbc.E17-04-0263 (2017).

  18. Buey, R. M. et al. A nucleotide-controlled conformational switch modulates the activity of eukaryotic IMP dehydrogenases. Sci. Rep. 7, 2648 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kennan, A., Aherne, A. & Palfi, A. Identification of an IMPDH1 mutation in autosomal dominant retinitis pigmentosa (RP10) revealed following comparative microarray analysis of transcripts derived from retinas of wild-type and Rho(-/-) mice. Hum. Mol. Genet. 11, 547–557 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Bowne, S. J. et al. Mutations in the inosine monophosphate dehydrogenase 1 gene (IMPDH1) cause the RP10 form of autosomal dominant retinitis pigmentosa. Hum. Mol. Genet 11, 559–568 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Grover, S., Fishman, G. A. & Stone, E. M. A novel IMPDH1 mutation (Arg231Pro) in a family with a severe form of autosomal dominant retinitis pigmentosa. Ophthalmology 111, 1910–1916 (2004).

    Article  PubMed  Google Scholar 

  22. Bowne, S. J. et al. Spectrum and frequency of mutations in IMPDH1 associated with autosomal dominant retinitis pigmentosa and Leber congenital amaurosis. Invest. Ophthalmol. Vis. Sci. 47, 34–42 (2006).

    Article  PubMed  Google Scholar 

  23. Labesse, G. et al. MgATP regulates allostery and fiber formation in IMPDHs. Structure 21, 975–985 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Thomas, E. C. et al. Different characteristics and nucleotide binding properties of inosine monophosphate dehydrogenase (IMPDH) isoforms. PLoS ONE 7, e51096 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Plana-Bonamaisó, A. et al. Post-translational regulation of retinal IMPDH1 in vivo to adjust GTP synthesis to illumination conditions. eLife 9, e56418 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mortimer, S. E. et al. IMP dehydrogenase type 1 associates with polyribosomes translating rhodopsin mRNA. J. Biol. Chem. 283, 36354–36360 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sullivan, L. S. et al. Prevalence of disease-causing mutations in families with autosomal dominant retinitis pigmentosa: a screen of known genes in 200 families. Invest. Ophthalmol. Vis. Sci. 47, 3052–3064 (2006).

    Article  PubMed  Google Scholar 

  28. Mortimer, S. E. & Hedstrom, L. Autosomal dominant retinitis pigmentosa mutations in inosine 5′-monophosphate dehydrogenase type I disrupt nucleic acid binding. Biochem. J. 390, 41–47 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aherne, A. et al. On the molecular pathology of neurodegeneration in IMPDH1-based retinitis pigmentosa. Hum. Mol. Genet. 13, 641–650 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Bowne, S. J. et al. Why do mutations in the ubiquitously expressed housekeeping gene IMPDH1 cause retina-specific photoreceptor degeneration? Invest. Ophthalmol. Vis. Sci. 47, 3754–3765 (2006).

    Article  PubMed  Google Scholar 

  31. Wong-Riley, M. T. T. Energy metabolism of the visual system. Eye Brain 2, 99–116 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Country, M. W. Retinal metabolism: a comparative look at energetics in the retina. Brain Res. 1672, 50–57 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Arshavsky, V. Y. & Burns, M. E. Photoreceptor signaling: supporting vision across a wide range of light intensities. J. Biol. Chem. 287, 1620–1626 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Luo, D.-G., Xue, T. & Yau, K.-W. How vision begins: an odyssey. Proc. Natl Acad. Sci. USA 105, 9855–9862 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Palczewski, K. Chemistry and biology of the initial steps in vision: the Friedenwald lecture. Invest. Ophthalmol. Vis. Sci. 55, 6651–6672 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Du, J., An, J., Linton, J. D., Wang, Y. & Hurley, J. B. How excessive cGMP impacts metabolic proteins in retinas at the onset of degeneration. Adv. Exp. Med. Biol. 1074, 289–295 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Charish, J. cAMP and photoreceptor cell death in retinal degeneration. Adv. Exp. Med. Biol. 1185, 301–304 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Spellicy, C. J. et al. Characterization of retinal inosine monophosphate dehydrogenase 1 in several mammalian species. Mol. Vis. 13, 1866–1872 (2007).

  39. Gunter, J. H. et al. Characterisation of inosine monophosphate dehydrogenase expression during retinal development: differences between variants and isoforms. Int. J. Biochem. Cell Biol. 40, 1716–1728 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Andashti, B., Yazdanparast, R., Barzegari, E. & Galehdari, H. The functional impact of the C/N-terminal extensions of the mouse retinal IMPDH1 isoforms: a kinetic evaluation. Mol. Cell. Biochem. 465, 155–164 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Andashti, B., Yazdanparast, R., Motahar, M., Barzegari, E. & Galehdari, H. Terminal peptide extensions augment the retinal IMPDH1 catalytic activity and attenuate the ATP-induced fibrillation events. Cell Biochem. Biophys. 79, 221–229 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Spellicy, C. J. et al. Characterization of retinal inosine monophosphate dehydrogenase 1 in several mammalian species. Mol. Vis. 13, 1866–1872 (2007).

    CAS  PubMed  Google Scholar 

  43. Keppeke, G. D. et al. IMP/GTP balance modulates cytoophidium assembly and IMPDH activity. Cell Div. 13, 5 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Carcamo, W. C. et al. Induction of cytoplasmic rods and rings structures by inhibition of the CTP and GTP synthetic pathway in mammalian cells. PLoS ONE 6, e29690 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Juda, P., Smigová, J., Kováčik, L., Bártová, E. & Raška, I. Ultrastructure of cytoplasmic and nuclear inosine-5’-monophosphate dehydrogenase 2 ‘rods and rings’ inclusions. J. Histochem. Cytochem. 62, 739–750 (2014).

    Article  PubMed  Google Scholar 

  46. Xu, D. et al. Retinal isoforms of inosine 5′-monophosphate dehydrogenase type 1 are poor nucleic acid binding proteins. Arch. Biochem. Biophys. 472, 100–104 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lynch, E. M. & Kollman, J. M. Coupled structural transitions enable highly cooperative regulation of human CTPS2 filaments. Nat. Struct. Mol. Biol. 27, 42–48 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Chang, C., Keppeke, G. D., Sung, L. & Liu, J. Interfilament interaction between IMPDH and CTPS cytoophidia. FEBS J. 285, 3753–3768 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhao, H. et al. Quantitative analysis of purine nucleotides indicates that purinosomes increase de novo purine biosynthesis. J. Biol. Chem. 290, 6705–6713 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hunkeler, M. et al. Structural basis for regulation of human acetyl-CoA carboxylase. Nature 558, 470–474 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Hayward, D. et al. ANKRD9 is a metabolically-controlled regulator of IMPDH2 abundance and macro-assembly. J. Biol. Chem. 294, 14454–14466 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sharma, A. K. & Rohrer, B. Sustained elevation of intracellular cGMP causes oxidative stress triggering calpain-mediated apoptosis in photoreceptor degeneration. Curr. Eye Res. 32, 259–269 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Simonet, J. C., Burrell, A. L., Kollman, J. M. & Peterson, J. R. Freedom of assembly: metabolic enzymes come together. Mol. Biol. Cell 31, 1201–1205 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lynch, E. M., Kollman, J. M. & Webb, B. A. Filament formation by metabolic enzymes—a new twist on regulation. Curr. Opin. Cell Biol. 66, 28–33 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lynch, E. M. et al. Human CTP synthase filament structure reveals the active enzyme conformation. Nat. Struct. Mol. Biol. 24, 507–514 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stoddard, P. R. et al. Polymerization in the actin ATPase clan regulates hexokinase activity in yeast. Science 367, 1039–1042 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hunkeler, M. et al. Citrate-induced acetyl-CoA carboxylase (ACC-Cit) filament at 5.4 A resolution (Protein Data Bank, 2018); https://doi.org/10.2210/pdb6g2d/pdb

  58. Mossessova, E. & Lima, C. D. Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol. Cell 5, 865–876 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Volpe, D. A., Hamed, S. S. & Zhang, L. K. Use of different parameters and equations for calculation of IC50 values in efflux assays: potential sources of variability in IC50 determination. AAPS J. 16, 172–180 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Suloway, C. et al. Fully automated, sequential tilt-series acquisition with Leginon. J. Struct. Biol. 167, 11–18 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, K. GCTF: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Punjani, A. Algorithmic advances in single particle Cryo-EM data processing using CryoSPARC. Microsc. Microanal. 26, 2322–2323 (2020).

    Article  Google Scholar 

  66. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D. Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr D. Struct. Biol. 74, 519–530 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Adams, P. D. et al. in International Tables for Crystallography Vol. F, 539–547 (Wiley, 2012).

  70. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Arnold and Mabel Beckman Cryo-EM Center at the University of Washington for electron microscope use. We thank J. Calise for valuable feedback on the manuscript. This work was supported by the US National Institutes of Health (grant nos. R01GM118396 and R21EY031546 and S10OD032290 to J.M.K., R01GM-083025 to J.R.P., T32 CA-009035 to J.C.S. and F31EY030732 and T32GM008268 to A.L.B.), Universidad de Salamanca (Junta de Castilla y León fellowship to D.F.-J.), and Ministerio de Economía y Competitividad (grant no. BFU2016-79237-P to R.M.B.).

Author information

Authors and Affiliations

Authors

Contributions

A.L.B. performed kinetics assays, protein purification, cryo-EM data collection and image processing, and structure analysis. C.N. optimized kinetics experiment design. M.S. and M.C.J. developed cryo-EM processing approaches and processed cryo-EM data. J.C.S. designed and performed immunofluorescence experiments. D.F.-L. produced WT retinal protein used for cryo-EM. J.Q. optimized cryo-EM sample preparation. R.M.B. and J.R.P. conceptualized experiments. A.L.B. and J.M.K designed experiments, performed data analysis and interpretation and wrote the manuscript.

Corresponding author

Correspondence to Justin M. Kollman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Nature Structural and Molecular Biology thanks Carsten Sachse and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Florian Ullrich was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 IMPDH structure and function.

a, Purine biosynthesis pathway. b, IMPDH monomer (6u9o) has a catalytic domain (green) that binds IMP and NAD+ in the active site, and a regulatory domain (pink) with three allosteric nucleotide binding sites. c, IMPDH is a tetramer in solution and can adopt a flat or bowed conformation. Side view of tetramers are depicted, so that only two monomers are visible. d, ATP (sites 1&2) or GTP (sites 2&3) binding promotes octamer assembly. e, IMPDH2 octamers can assemble into filaments of stacked octamers.

Extended Data Fig. 2 IMPDH1 Sequence Alignment.

Evolutionary conservation of the helix in the N-terminus of the longer retinal splice variant (blue) and the first 12 canonical residues particularly tyrosine 12 (pink).

Extended Data Fig. 3 IMPDH2-WT filament resists GTP inhibition.

a,b, GTP inhibition curves of IMPDH2 or IMPDH1-WT (solid line) and the respective non-assembly Y12A protein (dashed line). Individual data points are shown as diamonds (IMPDH2) or circles (IMPDH1), where filled are WT and empty Y12A. Reactions were performed in triplicate and the average for each concentration is shown as a bold rectangle (filled is WT, empty is Y12A). Error bars are standard deviation calculated from n = 3. Reactions performed with 1 µM protein, 1 mM ATP, 1 mM IMP, 300 µM NAD+, and varying GTP.

Extended Data Fig. 4 Cryo-EM workflow.

Flow chart summarizing data processing strategy for IMPDH1+ ATP/IMP/NAD+.

Extended Data Fig. 5 IMPDH1 active site map and model.

a-f, Cartoon representation of the active site. Side chains around the active site are shown as sticks. Chain A is dark green while the neighboring chain is light green. NAD+ is yellow and IMP red. Density for the ligand(s) is shown as a surface. a, IMPDH1(514) bound to ATP/IMP/NAD+. b, IMPDH1(514) bound to GTP/ATP/IMP. c, IMPDH1(546) bound to ATP/IMP/NAD+. d, IMPDH1(546) bound to GTP/ATP/IMP/NAD+. e, IMPDH1(595) bound to ATP. f, IMPDH1(595) bound to GTP/ATP/IMP/NAD+.

Extended Data Fig. 6 Inhibited IMPDH1-WT tetramer is in a bowed conformation.

a, Comparison of the catalytic tetramers of inhibited IMPDH2 filament (gray; 6u8s) to inhibited IMPDH2 free octamer (6uaj). Aligned on monomers with asterisk, other monomer pair has an alpha carbon RMSD of 2.1 Å. b, Comparison of the catalytic tetramers of inhibited IMPDH2 filament (gray; 6u8s) to inhibited IMPDH1 filament. Aligned on monomers with asterisk, other monomer pair has an alpha carbon RMSD of 3.7 Å.

Extended Data Fig. 7 Y12A non-assembly mutations prevents assembly in IMPDH1 variants.

Negative stain EM of purified human IMPDH1. Non-assembly mutation Y12A breaks both ATP- and GTP-dependent assembly. Scale bar 100 nm. Reactions performed with 1 µM protein, 1 mM ATP if used, 1 mM GTP if used.

Extended Data Fig. 8 IMPDH1 retinal variant (546) is similar to canonical IMPDH1.

a-c, Active IMPDH1(546) filament bound to ATP, IMP, NAD+. a, Low-pass filtered cryo-EM reconstruction b, Interface-focused cryo-EM reconstruction. 8 monomers are colored by catalytic domain (green) and regulatory domain (pink). c, View of the top of an octamer from inside the filament. The surface area buried by the octamer interface is in aqua with the indicated total buried surface area. (Surface representation of the atomic model at the assembly interface, with buried residues in cyan). d-f, Inhibited IMPDH1(546) filament bound to GTP, ATP, IMP, NAD+. d, Low-pass filtered cryo-EM reconstruction e, Interface-focused cryo-EM reconstruction. 8 monomers are colored by catalytic domain (green) and regulatory domain (pink). f, View of the top of an octamer from inside the filament. The surface area buried by the octamer interface is in aqua with the indicated total buried surface area. (Surface representation of the atomic model at the assembly interface, with buried residues in cyan).

Extended Data Fig. 9 IMPDH1 Retinal Variant C-term disrupts interactions.

a, Evolutionary conservation of the C-terminus in canonical IMPDH1 and both retinal splice variants. b, Surface representation of octamer side view. Dotted box indicates the region shown in c-d. c-d, Each chain is a different color green, C-term residues 510–512 in orange, and IMP in purple. c, inhibited canonical IMPDH1. d, Inhibited retinal variant IMPDH1(546).

Extended Data Fig. 10 IMPDH1 disease mutants have a variety of assembly phenotypes.

Negative stain EM of purified human IMPDH1. Scale bar 100 nm. Reactions performed with 1 µM protein, 1 mM ATP, 5 mM GTP, 3 mM IMP, 5 mM NAD+.

Supplementary information

Supplementary Information

Supplementary Tables 1–4.

Reporting Summary

Peer Review Information

Supplementary Video 1.

Comparison between large and small interface IMPDH1 filaments. Morph comparison between large interface of ATP/IMP/NAD+ IMPDH1 filament to small interface in GTP/ATP/IMP IMPDH1 filament.

Supplementary Data 1

Supplementary data for Supplemental Table 1.

Supplementary Data 2

Supplementary data for Supplemental Table 4.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burrell, A.L., Nie, C., Said, M. et al. IMPDH1 retinal variants control filament architecture to tune allosteric regulation. Nat Struct Mol Biol 29, 47–58 (2022). https://doi.org/10.1038/s41594-021-00706-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-021-00706-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing