Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the human cone photoreceptor cyclic nucleotide-gated channel

Abstract

Cyclic nucleotide-gated (CNG) channels transduce light-induced chemical signals into electrical signals in retinal cone and rod photoreceptors. Structures of native CNG channels, which are heterotetramers formed by CNGA and CNGB subunits, have not been obtained. In the present study, we report a high-resolution cryo-electron microscopy structure of the human cone CNG channel in the apo closed state. The channel contains three CNGA3 and one CNGB3 subunits. Arg403 in the pore helix of CNGB3 projects into an asymmetric selectivity filter and forms hydrogen bonds with two pore-lining backbone carbonyl oxygens. Arg442 in S6 of CNGB3 protrudes into and occludes the pore below the hydrophobic cavity gate previously observed in homotetrameric CNGA channels. It is interesting that Arg403Gln is a disease mutation, and Arg442 is replaced by glutamine in some animal species with dichromatic or monochromatic vision. These and other unique structural features and the disease link conferred by CNGB3 indicate a critical role of CNGB3 in shaping cone photoresponses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cryo-EM structure of apo human A3/B3.
Fig. 2: Comparison of A3 and B3 structures.
Fig. 3: The ion conduction pathway.
Fig. 4: The cavity gate and inner gate.
Fig. 5: The SF.
Fig. 6: The C-linker and CNBD.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of the present study are available within the paper. The cryo-EM density map has been deposited in the Electron Microscopy Data Bank under accession no. EMD-24468. The coordinates of the atomic model have been deposited in the PDB under accession no. 7RHS. Several structural coordinates in the PDB database were used in the present study, which can be located under accession nos. 6WEJ and 7LFT. Source data are provided with this paper.

References

  1. Yau, K. W. & Hardie, R. C. Phototransduction motifs and variations. Cell 139, 246–264 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fesenko, E. E., Kolesnikov, S. S. & Lyubarsky, A. L. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 313, 310–313 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. Yau, K. W. & Baylor, D. A. Cyclic GMP-activated conductance of retinal photoreceptor cells. Annu. Rev. Neurosci. 12, 289–327 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Kaupp, U. B. & Seifert, R. Cyclic nucleotide-gated ion channels. Physiol. Rev. 82, 769–824 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Masland, R. H. The neuronal organization of the retina. Neuron 76, 266–280 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kaupp, U. B. et al. Primary structure and functional expression from complementary DNA of the rod photoreceptor cyclic GMP-gated channel. Nature 342, 762–766 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Zagotta, W. N. & Siegelbaum, S. A. Structure and function of cyclic nucleotide-gated channels. Annu. Rev. Neurosci. 19, 235–263 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Varnum, M. D. & Dai, G. in The Handbook of Ion Channels (eds Zheng, J. & Trudeau, M. C.) 361–382 (CRC Press, 2015).

  9. Dhallan, R. S., Yau, K. W., Schrader, K. A. & Reed, R. R. Primary structure and functional expression of a cyclic nucleotide-activated channel from olfactory neurons. Nature 347, 184–187 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Nakamura, T. & Gold, G. H. A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature 325, 442–444 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Goulding, E. H., Tibbs, G. R., Liu, D. & Siegelbaum, S. A. Role of H5 domain in determining pore diameter and ion permeation through cyclic nucleotide-gated channels. Nature 364, 61–64 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Eismann, E., Muller, F., Heinemann, S. H. & Kaupp, U. B. A single negative charge within the pore region of a cGMP-gated channel controls rectification, Ca2+ blockage, and ionic selectivity. Proc. Natl Acad. Sci. USA 91, 1109–1113 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Root, M. J. & MacKinnon, R. Identification of an external divalent cation-binding site in the pore of a cGMP-activated channel. Neuron 11, 459–466 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Morrill, J. A. & MacKinnon, R. Isolation of a single carboxyl-carboxylate proton binding site in the pore of a cyclic nucleotide-gated channel. J. Gen. Physiol. 114, 71–83 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Park, C. S. & MacKinnon, R. Divalent cation selectivity in a cyclic nucleotide-gated ion channel. Biochemistry 34, 13328–13333 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Kaupp, U. B. Olfactory signalling in vertebrates and insects: differences and commonalities. Nat. Rev. Neurosci. 11, 188–200 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Biel, M. & Michalakis, S. Cyclic nucleotide-gated channels. Handb. Exp. Pharmacol. 191, 111–136 (2009).

  18. Michalakis, S., Becirovic, E. & Biel, M. Retinal cyclic nucleotide-gated channels: from pathophysiology to therapy. Int. J. Mol. Sci. 19, 749 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  19. Korschen, H. G. et al. A 240 kDa protein represents the complete beta subunit of the cyclic nucleotide-gated channel from rod photoreceptor. Neuron 15, 627–636 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Chen, T. Y. et al. A new subunit of the cyclic nucleotide-gated cation channel in retinal rods. Nature 362, 764–767 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Gerstner, A., Zong, X., Hofmann, F. & Biel, M. Molecular cloning and functional characterization of a new modulatory cyclic nucleotide-gated channel subunit from mouse retina. J. Neurosci. 20, 1324–1332 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Peng, C., Rich, E. D. & Varnum, M. D. Achromatopsia-associated mutation in the human cone photoreceptor cyclic nucleotide-gated channel CNGB3 subunit alters the ligand sensitivity and pore properties of heteromeric channels. J. Biol. Chem. 278, 34533–34540 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Peng, C., Rich, E. D., Thor, C. A. & Varnum, M. D. Functionally important calmodulin-binding sites in both NH2- and COOH-terminal regions of the cone photoreceptor cyclic nucleotide-gated channel CNGB3 subunit. J. Biol. Chem. 278, 24617–24623 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, T. Y. et al. Subunit 2 (or beta) of retinal rod cGMP-gated cation channel is a component of the 240-kDa channel-associated protein and mediates Ca2+–calmodulin modulation. Proc. Natl Acad. Sci. USA 91, 11757–11761 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brady, J. D. et al. Interplay between PIP3 and calmodulin regulation of olfactory cyclic nucleotide-gated channels. Proc. Natl Acad. Sci. USA 103, 15635–15640 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bright, S. R., Rich, E. D. & Varnum, M. D. Regulation of human cone cyclic nucleotide-gated channels by endogenous phospholipids and exogenously applied phosphatidylinositol 3,4,5-trisphosphate. Mol. Pharmacol. 71, 176–183 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Meighan, P. C., Meighan, S. E., Rich, E. D., Brown, R. L. & Varnum, M. D. Matrix metalloproteinase-9 and -2 enhance the ligand sensitivity of photoreceptor cyclic nucleotide-gated channels. Channels 6, 181–196 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rebrik, T. I., Botchkina, I., Arshavsky, V. Y., Craft, C. M. & Korenbrot, J. I. CNG-modulin: a novel Ca-dependent modulator of ligand sensitivity in cone photoreceptor cGMP-gated ion channels. J. Neurosci. 32, 3142–3153 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kohl, S. et al. CNGB3 mutations account for 50% of all cases with autosomal recessive achromatopsia. Eur. J. Hum. Genet. 13, 302–308 (2004).

    Article  CAS  Google Scholar 

  30. Biel, M. & Michalakis, S. Function and dysfunction of CNG channels: insights from channelopathies and mouse models. Mol. Neurobiol. 35, 266–277 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Kohl, S. et al. Total colourblindness is caused by mutations in the gene encoding the alpha-subunit of the cone photoreceptor cGMP-gated cation channel. Nat. Genet. 19, 257–259 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Kohl, S. et al. Mutations in the CNGB3 gene encoding the beta-subunit of the cone photoreceptor cGMP-gated channel are responsible for achromatopsia (ACHM3) linked to chromosome 8q21. Hum. Mol. Genet. 9, 2107–2116 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Wissinger, B. et al. CNGA3 mutations in hereditary cone photoreceptor disorders. Am. J. Hum. Genet. 69, 722–737 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Johnson, S. et al. Achromatopsia caused by novel mutations in both CNGA3 and CNGB3. J. Med Genet. 41, e20 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Remmer, M. H., Rastogi, N., Ranka, M. P. & Ceisler, E. J. Achromatopsia: a review. Curr. Opin. Ophthalmol. 26, 333–340 (2015).

    Article  PubMed  Google Scholar 

  36. Kohl, S. et al. CNGB3 mutations account for 50% of all cases with autosomal recessive achromatopsia. Eur. J. Hum. Genet 13, 302–308 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Mayer, A. K. et al. CNGB3 mutation spectrum including copy number variations in 552 achromatopsia patients. Hum. Mutat. 38, 1579–1591 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Dryja, T. P. et al. Mutations in the gene encoding the alpha subunit of the rod cGMP-gated channel in autosomal recessive retinitis pigmentosa. Proc. Natl Acad. Sci. USA 92, 10177–10181 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zheng, X. D. et al. Mechanism of ligand activation of a eukaryotic cyclic nucleotide-gated channel. Nat. Struct. Mol. Biol. 27, 625 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, M. H. et al. Structure of a eukaryotic cyclic-nucleotide-gated channel. Nature 542, 60–65 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xue, J., Han, Y., Zeng, W., Wang, Y. & Jiang, Y. Structural mechanisms of gating and selectivity of human rod CNGA1 channel. Neuron 109, 1302–1313 e4 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Haynes, L. W. Block of the cyclic GMP-gated channel of vertebrate rod and cone photoreceptors by l-cis-diltiazem. J. Gen. Physiol. 100, 783–801 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Zhong, H., Molday, L. L., Molday, R. S. & Yau, K. W. The heteromeric cyclic nucleotide-gated channel adopts a 3A:1B stoichiometry. Nature 420, 193–198 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Weitz, D., Ficek, N., Kremmer, E., Bauer, P. J. & Kaupp, U. B. Subunit stoichiometry of the CNG channel of rod photoreceptors. Neuron 36, 881–889 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Zheng, J., Trudeau, M. C. & Zagotta, W. N. Rod cyclic nucleotide-gated channels have a stoichiometry of three CNGA1 subunits and one CNGB1 subunit. Neuron 36, 891–896 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Shuart, N. G., Haitin, Y., Camp, S. S., Black, K. D. & Zagotta, W. N. Molecular mechanism for 3:1 subunit stoichiometry of rod cyclic nucleotide-gated ion channels. Nat. Commun. 2, 457 (2011).

    Article  PubMed  CAS  Google Scholar 

  47. Peng, C., Rich, E. D. & Varnum, M. D. Subunit configuration of heteromeric cone cyclic nucleotide-gated channels. Neuron 42, 401–410 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Ding, X. Q., Matveev, A., Singh, A., Komori, N. & Matsumoto, H. Biochemical characterization of cone cyclic nucleotide-gated (CNG) channel using the infrared fluorescence detection system. Adv. Exp. Med. Biol. 723, 769–775 (2012).

  49. Meighan, S. E., Meighan, P. C., Rich, E. D., Brown, R. L. & Varnum, M. D. Cyclic nucleotide-gated channel subunit glycosylation regulates matrix metalloproteinase-dependent changes in channel gating. Biochemistry 52, 8352–8362 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Thoreson, W. B. & Dacey, D. M. Diverse cell types, circuits, and mechanisms for color vision in the vertebrate retina. Physiol. Rev. 99, 1527–1573 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nache, V. et al. Differential regulation by cyclic nucleotides of the CNGA4 and CNGB1b subunits in olfactory cyclic nucleotide-gated channels. Sci. Signal 5, ra48 (2012).

    Article  PubMed  CAS  Google Scholar 

  52. Bright, S. R., Brown, T. E. & Varnum, M. D. Disease-associated mutations in CNGB3 produce gain of function alterations in cone cyclic nucleotide-gated channels. Mol. Vis. 11, 1141–1150 (2005).

    CAS  PubMed  Google Scholar 

  53. Meighan, P. C., Peng, C. & Varnum, M. D. Inherited macular degeneration-associated mutations in CNGB3 increase the ligand sensitivity and spontaneous open probability of cone cyclic nucleotide-gated channels. Front. Physiol. 6, 177 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Liu, C., Sherpa, T. & Varnum, M. D. Disease-associated mutations in CNGB3 promote cytotoxicity in photoreceptor-derived cells. Mol. Vis. 19, 1268–1281 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Dai, G. & Varnum, M. D. CNGA3 achromatopsia-associated mutation potentiates the phosphoinositide sensitivity of cone photoreceptor CNG channels by altering intersubunit interactions. Am. J. Physiol. Cell Physiol. 305, C147–C159 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Michaelides, M. et al. Progressive cone dystrophy associated with mutation in CNGB3. Invest. Ophthalmol. Vis. Sci. 45, 1975–1982 (2004).

    Article  PubMed  Google Scholar 

  57. Nishiguchi, K. M., Sandberg, M. A., Gorji, N., Berson, E. L. & Dryja, T. P. Cone cGMP-gated channel mutations and clinical findings in patients with achromatopsia, macular degeneration, and other hereditary cone diseases. Hum. Mutat. 25, 248–258 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Khan, N. W., Wissinger, B., Kohl, S. & Sieving, P. A. CNGB3 achromatopsia with progressive loss of residual cone function and impaired rod-mediated function. Invest. Ophthalmol. Vis. Sci. 48, 3864–3871 (2007).

    Article  PubMed  Google Scholar 

  59. Wiszniewski, W., Lewis, R. A. & Lupski, J. R. Achromatopsia: the CNGB3 p.T383fsX mutation results from a founder effect and is responsible for the visual phenotype in the original report of uniparental disomy 14. Hum. Genet 121, 433–439 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Thiadens, A. A. et al. Comprehensive analysis of the achromatopsia genes CNGA3 and CNGB3 in progressive cone dystrophy. Ophthalmology 117, 825–30 e1 (2010).

    Article  PubMed  Google Scholar 

  61. Burkard, M. et al. Accessory heterozygous mutations in cone photoreceptor CNGA3 exacerbate CNG channel-associated retinopathy. J. Clin. Invest. 128, 5663–5675 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zagotta, W. N. et al. Structural basis for modulation and agonist specificity of HCN pacemaker channels. Nature 425, 200–205 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Gordon, S. E. & Zagotta, W. N. A histidine residue associated with the gate of the cyclic nucleotide-activated channels in rod photoreceptors. Neuron 14, 177–183 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. Gordon, S. E. & Zagotta, W. N. Localization of regions affecting an allosteric transition in cyclic nucleotide-activated channels. Neuron 14, 857–864 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Brown, R. L., Snow, S. D. & Haley, T. L. Movement of gating machinery during the activation of rod cyclic nucleotide-gated channels. Biophys. J. 75, 825–833 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zong, X., Zucker, H., Hofmann, F. & Biel, M. Three amino acids in the C-linker are major determinants of gating in cyclic nucleotide-gated channels. EMBO J. 17, 353–362 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhou, L., Olivier, N. B., Yao, H., Young, E. C. & Siegelbaum, S. A. A conserved tripeptide in CNG and HCN channels regulates ligand gating by controlling C-terminal oligomerization. Neuron 44, 823–834 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Paoletti, P., Young, E. C. & Siegelbaum, S. A. C-Linker of cyclic nucleotide-gated channels controls coupling of ligand binding to channel gating. J. Gen. Physiol. 113, 17–34 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Morales-Perez, C. L., Noviello, C. M. & Hibbs, R. E. Manipulation of subunit stoichiometry in heteromeric membrane proteins. Structure 24, 797–805 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. The PyMOL Molecular Graphics System v.2.3. (Schrödinger, LLC, 2019).

  78. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Amunts, A. et al. Structure of the yeast mitochondrial large ribosomal subunit. Science 343, 1485–1489 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph 14, 354–360 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Institutes of Health (NIH) (grant nos. RO1EY027800 and RO1GM085234 to J.Y.). Some of this work was performed at the Columbia University Cryo-Electron Microscopy Center (CUCEC) and the Simons Electron Microscopy Center and National Resource for Automated Molecular Microscopy located at New York Structural Biology Center (NYSBC), supported by grants from the Simons Foundation (grant no. SF349247), NYSTAR and the NIH National Institute of General Medical Sciences (grant no. GM103310) with additional support from Agouron Institute (grant no. F00316) and NIH (grant no. OD019994). Some cryo-EM work was performed at the National Center for CryoEM Access and Training (NCCAT), supported by the NIH Common Fund Transformative High Resolution Cryo-Electron Microscopy program (U24 GM129539). We thank members of CUCEC, NYSBC and NCCAT for support and assistance in cryo-EM grid screening and data acquisition. We thank members of our laboratory for discussion during the course of this work.

Author information

Authors and Affiliations

Authors

Contributions

X.Z. and J.Y. conceived the project. X.Z. designed and performed biochemical and cryo-EM experiments, built the atomic models and analyzed the results. Z.H. and H.L. performed and analyzed the liposome recordings. J.Y. analyzed the results and wrote the paper with X.Z. and Z.H.

Corresponding author

Correspondence to Jian Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Nature Structural & Molecular Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Florian Ullrich was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Cryo-EM single-particle analysis of apo A3/B3.

a, Gel filtration profile of heterotetrameric A3/B3 sample. b, SDS-PAGE of A3/B3 sample used for cryo-EM. c, A representative motion-corrected micrograph. Scale bar: 100 nm. d, Gallery of typical averages from 2D classification. e, Flow chart of cryo-EM image processing. f, FSC curve of the final 3D reconstructions. FSC threshold: 0.143. g, Euler angle distribution of particles used in the final 3D reconstruction. h, Local resolution of the final density map. i, FSC curves for cross-validation between maps and model. Black, model versus the summed map. Blue, model versus the half map that was used for model refinement (called ‘work’). Red, model versus another half map that was not used for model refinement (called ‘free’). FSC threshold: 0.143. Uncropped image for panel b is available as source data.

Source data

Extended Data Fig. 2 Cryo-EM density maps and fitting of atomic models of selected key regions in all four subunits of A3/B3.

All maps were low-pass filtered to 2.93 Å, sharpened with a temperature factor of −103 Å2 and contoured at 4σ. NAG: N-acetyl-beta-D-glucosamine.

Extended Data Fig. 3 Liposome recordings of purified A3/B3 channel proteins.

a, Single-channel currents of purified A3/B3 activated by 10 µM cGMP. A total of 29 patches were recorded. Of them, 17 showed no cGMP activity and 12 showed cGMP-activated activity. b, Continuous trace of A3/B3 single-channel current showing inhibition by L-cis-diltiazem (DTZ). c, Amplitude histogram of cGMP-induced currents at + 80 mV from one patch. d, Single-channel conductance of cGMP-induced currents. Data were presented as mean ± SD. e, Continuous trace of the same patch as in (b) showing a preference of cGMP over cAMP. f, Single-channel open probability of currents evoked by 10 μM cGMP or 10 μM cAMP. Data were presented as mean ± SD.

Source data

Extended Data Fig. 4 Alternative projections of F392 in S6 of A3I.

a, b, Close-up view of F392 in S6 of A3I from the extracellular side (a) and parallel to the membrane (b). Cryo-EM densities are shown as blue mesh and are contoured at 3σ. The dash line marks the pore axis.

Extended Data Fig. 5 Interactions between A’B’ and C’D’ helices of the gating ring.

Side-chains of residues involved in A’B’/C’D’ interactions between A3I and A3II (a), A3II and A3III (b), A3III and B3 (c), and B3 and A3I (d) are shown as sticks. Hydrogen bonds and salt bridges are shown as yellow and purple dash lines, respectively.

Supplementary information

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Hu, Z., Li, H. et al. Structure of the human cone photoreceptor cyclic nucleotide-gated channel. Nat Struct Mol Biol 29, 40–46 (2022). https://doi.org/10.1038/s41594-021-00699-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-021-00699-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing