Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

HISTONE VARIANTS

MacroH2A1.1 has evolved to let PARP1 do more by loosening its grip on PAR

This article has been updated

New work from Guberovic et al. sheds light on the evolution of the histone variant macroH2A1.1 and its relationship with the NAD+-using poly(ADP-ribose) polymerase PARP1. Their study shows that macroH2A1.1 has been a nuclear regulator of NAD+ flux as far back evolutionarily as pre-metazoan protists, but has been loosening the reins on PARP1, thus expanding PARP1’s cellular roles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ancestral eukaryotic macroH2A1.1 served as a potent regulator of nuclear NAD+ by tightly capping PAR chains.

BioRender.com.

Change history

  • 22 December 2021

    In the version of this article initially published, there was a typo in the last citation to the work of Guberovic et al. which has been corrected in the file as of 22 December 2021.

References

  1. Chakravarthy, S. et al. Mol. Cell. Biol. 25, 7616–7624 (2005).

    Article  CAS  Google Scholar 

  2. Karras, G. I. et al. EMBO J. 24, 1911–1920 (2005).

    Article  CAS  Google Scholar 

  3. MarjanoviĆ, M. P. et al. Nat. Struct. Mol. Biol. 24, 902–910 (2017).

    Article  Google Scholar 

  4. Guberovic, I. et al. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-021-00692-5 (2021).

  5. Gray, M. W. Cold Spring Harb. Perspect. Biol. 4, a011403 (2012).

    Article  Google Scholar 

  6. Quirós, P. M., Mottis, A. & Auwerx, J. Nat. Rev. Mol. Cell Biol. 17, 213–226 (2016).

    Article  Google Scholar 

  7. Menzies, K.J. & Auwerx, J. Cell Metab. https://doi.org/10.1016/j.cmet.2015.05.023 (2015).

  8. Wellen, K. E. & Thompson, C. B. Nat. Rev. Mol. Cell Biol. 13, 270–276 (2012).

    Article  CAS  Google Scholar 

  9. Martínez-Reyes, I. & Chandel, N. S. Nat. Commun. 11, 102 (2020).

    Article  Google Scholar 

  10. Rivera-Casas, C., Gonzalez-Romero, R., Cheema, M. S., Ausió, J. & Eirín-López, J. M. Epigenetics 11, 415–425 (2016).

    Article  Google Scholar 

  11. Citarelli, M., Teotia, S. & Lamb, R. S. BMC Evol. Biol. 10, 308 (2010).

    Article  Google Scholar 

  12. Gibson, B. A. & Kraus, W. L. Nat. Rev. Mol. Cell Biol. 13, 411–424 (2012).

    Article  CAS  Google Scholar 

  13. Dulaney, C., Marcrom, S., Stanley, J. & Yang, E. S. Semin. Cell Dev. Biol. 63, 144–153 (2017).

    Article  CAS  Google Scholar 

  14. Ray Chaudhuri, A. & Nussenzweig, A. Nat. Rev. Mol. Cell Biol. 18, 610–621 (2017).

    Article  CAS  Google Scholar 

  15. Mehrotra, P. V. et al. Mol. Cell. Biol. 41, 46–55 (2011).

    CAS  Google Scholar 

  16. Timinszky, G. et al. Nat. Struct. Mol. Biol. 16, 923–929 (2009).

    Article  CAS  Google Scholar 

  17. Ruiz, P. D., Hamilton, G. A., Park, J. W. & Gamble, M. J. Mol. Cell. Biol. 40, e00230–19 (2020).

    CAS  Google Scholar 

  18. Chen, H. et al. Nat. Struct. Mol. Biol. 21, 981–989 (2014).

    Article  CAS  Google Scholar 

  19. Hodge, D. Q., Cui, J., Gamble, M. J. & Guo, W. Sci. Rep. 8, 841 (2018).

    Article  Google Scholar 

  20. Pliatska, M., Kapasa, M., Kokkalis, A., Polyzos, A. & Thanos, D. Mol. Cell. Biol. 38, e00669–17 (2018).

    Article  CAS  Google Scholar 

  21. Chen, H. et al. Mol. Cell 59, 719–731 (2015).

    Article  CAS  Google Scholar 

  22. Novikov, L. et al. Mol. Cell. Biol. 31, 4244–4255 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Gamble.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamilton, G.A., Gamble, M.J. MacroH2A1.1 has evolved to let PARP1 do more by loosening its grip on PAR. Nat Struct Mol Biol 28, 961–962 (2021). https://doi.org/10.1038/s41594-021-00695-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-021-00695-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing