Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

How asymmetric DNA replication achieves symmetrical fidelity

Abstract

Accurate DNA replication of an undamaged template depends on polymerase selectivity for matched nucleotides, exonucleolytic proofreading of mismatches, and removal of remaining mismatches via DNA mismatch repair (MMR). DNA polymerases (Pols) δ and ε have 3′–5′ exonucleases into which mismatches are partitioned for excision in cis (intrinsic proofreading). Here we provide strong evidence that Pol δ can extrinsically proofread mismatches made by itself and those made by Pol ε, independently of both Pol δ’s polymerization activity and MMR. Extrinsic proofreading across the genome is remarkably efficient. We report, with unprecedented accuracy, in vivo contributions of nucleotide selectivity, proofreading, and MMR to the fidelity of DNA replication in Saccharomyces cerevisiae. We show that extrinsic proofreading by Pol δ improves and balances the fidelity of the two DNA strands. Together, we depict a comprehensive picture of how nucleotide selectivity, proofreading, and MMR cooperate to achieve high and symmetrical fidelity on the two strands.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: URA3 and CAN1 reporter gene mutation rates and hotspot mutation rates.
Fig. 2: Genome mutation rates from mutation accumulation experiments.
Fig. 3: Repair efficiency and specificity of Pol δ extrinsic PR.
Fig. 4: Pol δ extrinsically repairs its own errors.
Fig. 5: Determinants of DNA replication fidelity.

Data availability

All whole genome sequencing data is available through Sequence Read Archive accession number PRJNA689775. Source data are provided with this paper.

Code availability

Muver suite is available via GitHub44 or upon request.

References

  1. Lujan, S. A., Williams, J. S. & Kunkel, T. A. DNA polymerases divide the labor of genome replication. Trends Cell Biol. 26, 640–654 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kunkel, T. A. & Burgers, P. M. J. Arranging eukaryotic nuclear DNA polymerases for replication: Specific interactions with accessory proteins arrange Pols alpha, delta, and in the replisome for leading-strand and lagging-strand DNA replication. Bioessays https://doi.org/10.1002/bies.201700070 (2017).

  3. Clausen, A. R. et al. Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation. Nat. Struct. Mol. Biol. 22, 185–191 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Daigaku, Y. et al. A global profile of replicative polymerase usage. Nat. Struct. Mol. Biol. 22, 192–198 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Miyabe, I., Kunkel, T. A. & Carr, A. M. The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved. PLoS Genet. 7, e1002407 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Nick McElhinny, S. A., Gordenin, D. A., Stith, C. M., Burgers, P. M. & Kunkel, T. A. Division of labor at the eukaryotic replication fork. Mol. Cell 30, 137–144 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pursell, Z. F., Isoz, I., Lundstrom, E. B., Johansson, E. & Kunkel, T. A. Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science 317, 127–130 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Yeeles, J. T. P., Janska, A., Early, A. & Diffley, J. F. X. How the eukaryotic replisome achieves rapid and efficient DNA replication. Mol. Cell 65, 105–116 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Yu, C. et al. Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall. Mol. Cell 56, 551–563 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Garbacz, M. A. et al. Evidence that DNA polymerase delta contributes to initiating leading strand DNA replication in Saccharomyces cerevisiae. Nat. Commun. 9, 858 (2018).

    PubMed  PubMed Central  Google Scholar 

  11. Zhou, Z. X., Lujan, S. A., Burkholder, A. B., Garbacz, M. A. & Kunkel, T. A. Roles for DNA polymerase delta in initiating and terminating leading strand DNA replication. Nat. Commun. 10, 3992 (2019).

    PubMed  PubMed Central  Google Scholar 

  12. Aria, V. & Yeeles, J. T. P. Mechanism of bidirectional leading-strand synthesis establishment at eukaryotic DNA replication origins. Mol. Cell. 73, 199–211.e10 (2018).

    Google Scholar 

  13. Guilliam, T. A. & Yeeles, J. T. P. Reconstitution of translesion synthesis reveals a mechanism of eukaryotic DNA replication restart. Nat. Struct. Mol. Biol. 27, 450–460 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Miyabe, I. et al. Polymerase delta replicates both strands after homologous recombination-dependent fork restart. Nat. Struct. Mol. Biol. 22, 932–938 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Donnianni, R. A. et al. DNA polymerase delta synthesizes both strands during break-induced replication. Mol. Cell 76, 371–381 e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bebenek, A. & Ziuzia-Graczyk, I. Fidelity of DNA replication-a matter of proofreading. Curr. Genet 64, 985–996 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kunkel, T. A. Exonucleolytic proofreading. Cell 53, 837–840 (1988).

    CAS  PubMed  Google Scholar 

  18. Li, G. M. Mechanisms and functions of DNA mismatch repair. Cell Res. 18, 85–98 (2008).

    CAS  PubMed  Google Scholar 

  19. Barbari, S. R. & Shcherbakova, P. V. Replicative DNA polymerase defects in human cancers: Consequences, mechanisms, and implications for therapy. DNA Repair (Amst.) 56, 16–25 (2017).

    CAS  PubMed Central  Google Scholar 

  20. Joyce, C. M. & Steitz, T. A. DNA polymerase I: from crystal structure to function via genetics. Trends Biochem. Sci. 12, 288–292 (1987).

    CAS  Google Scholar 

  21. Kornberg, T. & Kornberg, A. 4. Bacterial DNA Polymerases. in The Enzymes vol. 10 (ed. Boyer, P. D.) 119–144 (Academic Press, 1974).

  22. Joyce, C. M. How DNA travels between the separate polymerase and 3′–5′-exonuclease sites of DNA polymerase I (Klenow fragment). J. Biol. Chem. 264, 10858–10866 (1989).

    CAS  PubMed  Google Scholar 

  23. Nick McElhinny, S. A., Pavlov, Y. I. & Kunkel, T. A. Evidence for extrinsic exonucleolytic proofreading. Cell Cycle 5, 958–962 (2006).

    CAS  PubMed  Google Scholar 

  24. Bebenek, K., Matsuda, T., Masutani, C., Hanaoka, F. & Kunkel, T. A. Proofreading of DNA polymerase eta-dependent replication errors. J. Biol. Chem. 276, 2317–2320 (2001).

    CAS  PubMed  Google Scholar 

  25. Perrino, F. W. & Loeb, L. A. Proofreading by the epsilon subunit of Escherichia coli DNA polymerase III increases the fidelity of calf thymus DNA polymerase alpha. Proc. Natl Acad. Sci. USA 86, 3085–3088 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Perrino, F. W. & Loeb, L. A. Hydrolysis of 3′-terminal mispairs in vitro by the 3′–5′ exonuclease of DNA polymerase delta permits subsequent extension by DNA polymerase alpha. Biochemistry 29, 5226–5231 (1990).

    CAS  PubMed  Google Scholar 

  27. Pavlov, Y. I. et al. Evidence that errors made by DNA polymerase α are corrected by DNA polymerase δ. Curr. Biol. 16, 202–207 (2006).

    CAS  PubMed  Google Scholar 

  28. Morrison, A. & Sugino, A. The 3′→5′ exonucleases of both DNA polymerases delta and epsilon participate in correcting errors of DNA replication in Saccharomyces cerevisiae. Mol. Gen. Genet. 242, 289–296 (1994).

    CAS  PubMed  Google Scholar 

  29. St Charles, J. A., Liberti, S. E., Williams, J. S., Lujan, S. A. & Kunkel, T. A. Quantifying the contributions of base selectivity, proofreading and mismatch repair to nuclear DNA replication in Saccharomyces cerevisiae. DNA Repair 31, 41–51 (2015).

    Google Scholar 

  30. Flood, C. L. et al. Replicative DNA polymerase delta but not epsilon proofreads errors in cis and in trans. PLoS Genet. 11, e1005049 (2015).

    PubMed  PubMed Central  Google Scholar 

  31. Bulock, C. R., Xing, X. & Shcherbakova, P. V. DNA polymerase delta proofreads errors made by DNA polymerase epsilon. Proc. Natl Acad. Sci. USA 117, 6035–6041 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tran, H. T., Gordenin, D. A. & Resnick, M. A. The 3′→5′ exonucleases of DNA polymerases delta and epsilon and the 5′→3′ exonuclease Exo1 have major roles in postreplication mutation avoidance in Saccharomyces cerevisiae. Mol. Cell Biol. 19, 2000–2007 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Longley, M. J., Pierce, A. J. & Modrich, P. DNA polymerase delta is required for human mismatch repair in vitro. J. Biol. Chem. 272, 10917–10921 (1997).

    CAS  PubMed  Google Scholar 

  34. Kadyrov, F. A. et al. A possible mechanism for exonuclease 1-independent eukaryotic mismatch repair. Proc. Natl Acad. Sci. USA 106, 8495–8500 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Shcherbakova, P. V. et al. Unique error signature of the four-subunit yeast DNA polymerase epsilon. J. Biol. Chem. 278, 43770–43780 (2003).

    CAS  PubMed  Google Scholar 

  36. Williams, J. S. et al. Proofreading of ribonucleotides inserted into DNA by yeast DNA polymerase varepsilon. DNA Repair 11, 649–656 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Jain, R. et al. Crystal structure of yeast DNA polymerase epsilon catalytic domain. PLoS ONE 9, e94835 (2014).

    PubMed  PubMed Central  Google Scholar 

  38. Hogg, M. et al. Structural basis for processive DNA synthesis by yeast DNA polymerase varepsilon. Nat. Struct. Mol. Biol. 21, 49–55 (2014).

    CAS  PubMed  Google Scholar 

  39. Dua, R., Levy, D. L. & Campbell, J. L. Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol epsilon and its unexpected ability to support growth in the absence of the DNA polymerase domain. J. Biol. Chem. 274, 22283–22288 (1999).

    CAS  PubMed  Google Scholar 

  40. Swan, M. K., Johnson, R. E., Prakash, L., Prakash, S. & Aggarwal, A. K. Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase delta. Nat. Struct. Mol. Biol. 16, 979–986 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Herr, A. J., Kennedy, S. R., Knowels, G. M., Schultz, E. M. & Preston, B. D. DNA replication error-induced extinction of diploid yeast. Genetics 196, 677–691 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Tracy, M. A. et al. Spontaneous polyploids and antimutators compete during the evolution of Saccharomyces cerevisiae mutator cells. Genetics 215, 959–974 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lujan, S. A. et al. Heterogeneous polymerase fidelity and mismatch repair bias genome variation and composition. Genome Res. 24, 1751–1764 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Burkholder, A. B. et al. Muver, a computational framework for accurately calling accumulated mutations. BMC Genomics 19, 345 (2018).

    PubMed  PubMed Central  Google Scholar 

  45. Reijns, M. A. M. et al. Lagging-strand replication shapes the mutational landscape of the genome. Nature 518, 502–506 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Fortune, J. M. et al. Saccharomyces cerevisiae DNA polymerase delta: high fidelity for base substitutions but lower fidelity for single- and multi-base deletions. J. Biol. Chem. 280, 29980–29987 (2005).

    CAS  PubMed  Google Scholar 

  47. Lujan, S. A. et al. Mismatch repair balances leading and lagging strand DNA replication fidelity. PLoS Genet. 8, e1003016 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Andrianova, M. A., Bazykin, G. A., Nikolaev, S. I. & Seplyarskiy, V. B. Human mismatch repair system balances mutation rates between strands by removing more mismatches from the lagging strand. Genome Res. 27, 1336–1343 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Fijalkowska, I. J., Schaaper, R. M. & Jonczyk, P. DNA replication fidelity in Escherichia coli: a multi-DNA polymerase affair. FEMS Microbiol. Rev. 36, 1105–1121 (2012).

    CAS  PubMed  Google Scholar 

  50. Drake, J. W., Charlesworth, B., Charlesworth, D. & Crow, J. F. Rates of spontaneous mutation. Genetics 148, 1667–1686 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Roche, H., Gietz, R. D. & Kunz, B. A. Specificity of the yeast rev3 delta antimutator and REV3 dependency of the mutator resulting from a defect (rad1 delta) in nucleotide excision repair. Genetics 137, 637–646 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Pavlov, Y. I., Shcherbakova, P. V. & Kunkel, T. A. In vivo consequences of putative active site mutations in yeast DNA polymerases alpha, epsilon, delta, and zeta. Genetics 159, 47–64 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kraszewska, J., Garbacz, M., Jonczyk, P., Fijalkowska, I. J. & Jaszczur, M. Defect of Dpb2p, a noncatalytic subunit of DNA polymerase varepsilon, promotes error prone replication of undamaged chromosomal DNA in Saccharomyces cerevisiae. Mutat. Res. 737, 34–42 (2012).

    CAS  PubMed  Google Scholar 

  54. Garbacz, M. et al. Fidelity consequences of the impaired interaction between DNA polymerase epsilon and the GINS complex. DNA Repair 29, 23–35 (2015).

    CAS  PubMed  Google Scholar 

  55. Garbacz, M. A. et al. The absence of the catalytic domains of Saccharomyces cerevisiae DNA polymerase strongly reduces DNA replication fidelity. Nucleic Acids Res. 47, 3986–3995 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534, 47–54 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Haradhvala, N. J. et al. Distinct mutational signatures characterize concurrent loss of polymerase proofreading and mismatch repair. Nat. Commun. 9, 1746 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Nick McElhinny, S. A., Kissling, G. E. & Kunkel, T. A. Differential correction of lagging-strand replication errors made by DNA polymerases α and ∆. Proc. Natl Acad. Sci. USA 107, 21070–21075 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Li, H. & O’Donnell, M. E. The eukaryotic CMG helicase at the replication fork: emerging architecture reveals an unexpected mechanism. Bioessays https://doi.org/10.1002/bies.201700208 (2018).

  60. Picher, A. J. et al. Promiscuous mismatch extension by human DNA polymerase lambda. Nucleic Acids Res. 34, 3259–3266 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Xing, X. et al. A recurrent cancer-associated substitution in DNA polymerase ε produces a hyperactive enzyme. Nat. Commun. 10, 374 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Morrison, A., Johnson, A. L., Johnston, L. H. & Sugino, A. Pathway correcting DNA replication errors in Saccharomyces cerevisiae. EMBO J. 12, 1467–1473 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Simon, M., Giot, L. & Faye, G. The 3′ to 5′ exonuclease activity located in the DNA polymerase delta subunit of Saccharomyces cerevisiae is required for accurate replication. EMBO J. 10, 2165–2170 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Albertson, T. M. et al. DNA polymerase epsilon and delta proofreading suppress discrete mutator and cancer phenotypes in mice. Proc. Natl Acad. Sci. USA 106, 17101–17104 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Rayner, E. et al. A panoply of errors: polymerase proofreading domain mutations in cancer. Nat. Rev. Cancer 16, 71–81 (2016).

    CAS  PubMed  Google Scholar 

  66. Maslowska, K. H., Makiela-Dzbenska, K., Mo, J. Y., Fijalkowska, I. J. & Schaaper, R. M. High-accuracy lagging-strand DNA replication mediated by DNA polymerase dissociation. Proc. Natl Acad. Sci. USA 115, 4212–4217 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Fukushima, S., Itaya, M., Kato, H., Ogasawara, N. & Yoshikawa, H. Reassessment of the in vivo functions of DNA polymerase I and RNase H in bacterial cell growth. J. Bacteriol. 189, 8575–8583 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Dervyn, E. et al. Two essential DNA polymerases at the bacterial replication fork. Science 294, 1716–1719 (2001).

    CAS  PubMed  Google Scholar 

  69. Sanders, G. M., Dallmann, H. G. & McHenry, C. S. Reconstitution of the B. subtilis replisome with 13 proteins including two distinct replicases. Mol. Cell 37, 273–281 (2010).

    CAS  PubMed  Google Scholar 

  70. Bruck, I., Goodman, M. F. & O’Donnell, M. The essential C family DnaE polymerase is error-prone and efficient at lesion bypass. J. Biol. Chem. 278, 44361–44368 (2003).

    CAS  PubMed  Google Scholar 

  71. Randall, J. R., Nye, T. M., Wozniak, K. J. & Simmons, L. A. RNase HIII is important for Okazaki fragment processing in Bacillus subtilis. J. Bacteriol. 201, e00686–18 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Paschalis, V. et al. Interactions of the Bacillus subtilis DnaE polymerase with replisomal proteins modulate its activity and fidelity. Open Biol. 7, 170146 (2017).

    PubMed  PubMed Central  Google Scholar 

  73. Kazlauskas, D., Krupovic, M., Guglielmini, J., Forterre, P. & Venclovas, C. Diversity and evolution of B-family DNA polymerases. Nucleic Acids Res. 48, 10142–10156 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Thomas, D. C. et al. Fidelity of mammalian DNA replication and replicative DNA polymerases. Biochemistry 30, 11751–11759 (1991).

    CAS  PubMed  Google Scholar 

  75. Schmitt, M. W., Matsumoto, Y. & Loeb, L. A. High fidelity and lesion bypass capability of human DNA polymerase delta. Biochimie 91, 1163–1172 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kunkel, T. A., Hamatake, R. K., Motto-Fox, J., Fitzgerald, M. P. & Sugino, A. Fidelity of DNA polymerase I and the DNA polymerase I-DNA primase complex from Saccharomyces cerevisiae. Mol. Cell Biol. 9, 4447–4458 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Korona, D. A., Lecompte, K. G. & Pursell, Z. F. The high fidelity and unique error signature of human DNA polymerase epsilon. Nucleic Acids Res. 39, 1763–1773 (2011).

    CAS  PubMed  Google Scholar 

  78. Arana, M. E., Seki, M., Wood, R. D., Rogozin, I. B. & Kunkel, T. A. Low-fidelity DNA synthesis by human DNA polymerase theta. Nucleic Acids Res. 36, 3847–3856 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wosika, V. et al. New families of single integration vectors and gene tagging plasmids for genetic manipulations in budding yeast. Mol. Genet Genomics 291, 2231–2240 (2016).

    CAS  PubMed  Google Scholar 

  80. Morrison, A., Bell, J. B., Kunkel, T. A. & Sugino, A. Eukaryotic DNA polymerase amino acid sequence required for 3′–5′ exonuclease activity. Proc. Natl Acad. Sci. USA 88, 9473–9477 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Jin, Y. H. et al. The 3′→5′ exonuclease of DNA polymerase delta can substitute for the 5′ flap endonuclease Rad27/Fen1 in processing Okazaki fragments and preventing genome instability. Proc. Natl Acad. Sci. USA 98, 5122–5127 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kostriken, R. & Heffron, F. The product of the HO gene is a nuclease: purification and characterization of the enzyme. Cold Spring Harb. Symp. Quant. Biol. 49, 89–96 (1984).

    CAS  PubMed  Google Scholar 

  83. Zhou, Z. X., Williams, J. S. & Kunkel, T. A. Studying ribonucleotide incorporation: strand-specific detection of ribonucleotides in the yeast genome and measuring ribonucleotide-induced mutagenesis. J. Vis. Exp. 58020 (2018).

  84. Drake, J. W. A constant rate of spontaneous mutation in DNA-based microbes. Proc. Natl Acad. Sci. USA 88, 7160–7164 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Larrea, A. A. et al. Genome-wide model for the normal eukaryotic DNA replication fork. Proc. Natl Acad. Sci. USA 107, 17674–17679 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Gordenin and R. Schaaper for critical reading of and thoughtful comments on the manuscript. We thank P. Mieczkowski and others from the High Throughput Sequencing Facility of UNC Chapel Hill for performing Illumina sequencing. This study was supported by Project Z01 ES065070 to T.A.K from the Division of Intramural Research of the NIH, NIEHS.

Author information

Authors and Affiliations

Authors

Contributions

Z.-X.Z. and T.A.K. conceived the project. Z.-X.Z. performed most of the experiments. Z.-X.Z. and S.A.L. analyzed the genome-wide mutation data. A.B.B. performed mutation calling using the muver pipeline. J.A.S. contributed to mutation accumulation experiments. J.D. purified the Pol ε holoenzyme. C.F. and J.S.W. contributed to Supplementary Table 3.

Corresponding author

Correspondence to Thomas A. Kunkel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Structural & Molecular Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available. Beth Moorefield was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Genetic interaction between pol2-M644G and pol3-exo-.

Reporter gene assays were performed similar to Fig. 1. n > =15 independent cultures were used for fluctuation analysis for each genotype.

Source data

Extended Data Fig. 2 pol3-x mutant does not support colony growth.

Tetrad dissection from a heterozygous pol3-x/POL3-WT diploid strain. Plate was incubated at °C for 5 days.

Supplementary information

Supplementary Information

Supplementary Note, Figures 1–7, Tables 1–9, and Supplementary Source Data.

Reporting Summary

Peer Review File

Supplementary Data

Source data for Supplementary Table 3 and Supplementary Fig. 6.

Source data

Source Data Fig. 1

Individual data points from fluctuation analysis.

Source Data Fig. 2

Substitution mutation rates for each genomic isolate.

Source Data Fig. 3

Rates of individual substitution type for each isolate.

Source Data Fig. 3

Uncropped image of PAGE gel.

Source Data Fig. 4

Substitution mutation rates for each genomic isolate; individual data points from fluctuation analysis.

Source Data Extended Data Fig. 1

Individual data points from fluctuation analysis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, ZX., Lujan, S.A., Burkholder, A.B. et al. How asymmetric DNA replication achieves symmetrical fidelity. Nat Struct Mol Biol 28, 1020–1028 (2021). https://doi.org/10.1038/s41594-021-00691-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-021-00691-6

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing