Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural insights into metazoan pretargeting GET complexes

Abstract

Close coordination between chaperones is essential for protein biosynthesis, including the delivery of tail-anchored (TA) proteins containing a single C-terminal transmembrane domain to the endoplasmic reticulum (ER) by the conserved GET pathway. For successful targeting, nascent TA proteins must be promptly chaperoned and loaded onto the cytosolic ATPase Get3 through a transfer reaction involving the chaperone SGTA and bridging factors Get4, Ubl4a and Bag6. Here, we report cryo-electron microscopy structures of metazoan pretargeting GET complexes at 3.3–3.6 Å. The structures reveal that Get3 helix 8 and the Get4 C terminus form a composite lid over the Get3 substrate-binding chamber that is opened by SGTA. Another interaction with Get4 prevents formation of Get3 helix 4, which links the substrate chamber and ATPase domain. Both interactions facilitate TA protein transfer from SGTA to Get3. Our findings show how the pretargeting complex primes Get3 for coordinated client loading and ER targeting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cryo-EM structures of pretargeting metazoan GET complexes.
Fig. 2: Get4 primes Get3 for TA protein loading.
Fig. 3: A composite lid covers the Get3 substrate chamber.
Fig. 4: Secondary Get3–Get4 interactions mediate TA protein transfer.
Fig. 5: SGTA remodels one bridging complex and the substrate chamber lid.
Fig. 6: Validation of the metazoan pretargeting GET complex architecture.

Similar content being viewed by others

Data availability

EM maps and models described in this study are available under accession nos. EMD-24700, EMD-24701, EMD-24702, EMD-24703, EMD-24704, PDB-7RU9, PDB-7RUA and PDB-7RUC. Source data are provided with this paper.

Code availability

No code was generated in this study.

References

  1. Gestaut, D. et al. The Chaperonin TRiC/CCT associates with prefoldin through a conserved electrostatic interface essential for cellular proteostasis. Cell 177, 751–765 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rosenzweig, R., Nillegoda, N. B., Mayer, M. P. & Bukau, B. The Hsp70 chaperone network. Nat. Rev. Mol. Cell Biol. 20, 665–680 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Genest, O., Wickner, S. & Doyle, S. M. Hsp90 and Hsp70 chaperones: collaborators in protein remodeling. J. Biol. Chem. 294, 2109–2120 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Chio, U. S., Cho, H. & Shan, S. Mechanisms of tail-anchored membrane protein targeting and insertion. Annu. Rev. Cell Dev. Biol. 33, 417–438 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hegde, R. S. & Keenan, R. J. Tail-anchored membrane protein insertion into the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 12, 787–798 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schuldiner, M. et al. The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 134, 634–645 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stefanovic, S. & Hegde, R. S. Identification of a targeting factor for posttranslational membrane protein insertion into the ER. Cell 128, 1147–1159 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Favaloro, V., Vilardi, F., Schlecht, R., Mayer, M. P. & Dobberstein, B. Asna1/TRC40-mediated membrane insertion of tail-anchored proteins. J. Cell Sci. 123, 1522–1530 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Mateja, A. et al. Structure of the Get3 targeting factor in complex with its membrane protein cargo. Science 347, 1152–1155 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mateja, A. et al. The structural basis of tail-anchored membrane protein recognition by Get3. Nature 461, 361–366 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bozkurt, G. et al. Structural insights into tail-anchored protein binding and membrane insertion by Get3. Proc. Natl Acad. Sci. USA 106, 21131–21136 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Suloway, C. J. M., Chartron, J. W., Zaslaver, M. & Clemons, W. M. Model for eukaryotic tail-anchored protein binding based on the structure of Get3. Proc. Natl Acad. Sci. USA 106, 14849–14854 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, F., Brown, E. C., Mak, G., Zhuang, J. & Denic, V. A chaperone cascade sorts proteins for posttranslational membrane insertion into the endoplasmic reticulum. Mol. Cell 40, 159–171 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, F., Whynot, A., Tung, M. & Denic, V. The mechanism of tail-anchored protein insertion into the ER membrane. Mol. Cell 43, 738–750 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rome, M. E., Chio, U. S., Rao, M., Gristick, H. & Shan, S. Differential gradients of interaction affinities drive efficient targeting and recycling in the GET pathway. Proc. Natl Acad. Sci. USA 111, E4929–E4935 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rome, M. E., Rao, M., Clemons, W. M. & Shan, S. Precise timing of ATPase activation drives targeting of tail-anchored proteins. Proc. Natl Acad. Sci. USA 110, 7666–7671 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mariappan, M. et al. A ribosome-associating factor chaperones tail-anchored membrane proteins. Nature 466, 1120–1124 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mock, J.-Y. et al. Bag6 complex contains a minimal tail-anchor-targeting module and a mock BAG domain. Proc. Natl Acad. Sci. USA 112, 106–111 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Shao, S., Rodrigo-Brenni, M. C., Kivlen, M. H. & Hegde, R. S. Mechanistic basis for a molecular triage reaction. Science 355, 298–302 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin, K.-F., Fry, M. Y., Saladi, S. M. & Clemons, W. M. Molecular basis of tail-anchored integral membrane protein recognition by the cochaperone Sgt2. J. Biol. Chem. 296, 100441 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chio, U. S., Chung, S., Weiss, S. & Shan, S. A chaperone lid ensures efficient and privileged client transfer during tail-anchored protein targeting. Cell Rep. 26, 37–44 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rao, M. et al. Multiple selection filters ensure accurate tail-anchored membrane protein targeting. eLife 5, e21301 (2016).

  23. Leznicki, P., Clancy, A., Schwappach, B. & High, S. Bat3 promotes the membrane integration of tail-anchored proteins. J. Cell Sci. 123, 2170–2178 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chio, U. S., Chung, S., Weiss, S. & Shan, S. A protean clamp guides membrane targeting of tail-anchored proteins. Proc. Natl Acad. Sci. USA 114, E8585–E8594 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stefer, S. et al. Structural basis for tail-anchored membrane protein biogenesis by the Get3-receptor complex. Science 333, 758–762 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mariappan, M. et al. The mechanism of membrane-associated steps in tail-anchored protein insertion. Nature 477, 61–66 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McDowell, M. A. et al. Structural basis of tail-anchored membrane protein biogenesis by the GET insertase complex. Mol. Cell 80, 72–86 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, F., Chan, C., Weir, N. R. & Denic, V. The Get1/2 transmembrane complex is an endoplasmic-reticulum membrane protein insertase. Nature 512, 441–444 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vilardi, F., Stephan, M., Clancy, A., Janshoff, A. & Schwappach, B. WRB and CAML are necessary and sufficient to mediate tail-anchored protein targeting to the ER membrane. PLoS ONE 9, e85033 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hessa, T. et al. Protein targeting and degradation are coupled for elimination of mislocalized proteins. Nature 475, 394–397 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rodrigo-Brenni, M. C., Gutierrez, E. & Hegde, R. S. Cytosolic quality control of mislocalized proteins requires RNF126 recruitment to Bag6. Mol. Cell 55, 227–237 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gristick, H. B. et al. Crystal structure of ATP-bound Get3–Get4–Get5 complex reveals regulation of Get3 by Get4. Nat. Struct. Mol. Biol. 21, 437–442 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mock, J.-Y., Xu, Y., Ye, Y. & Clemons, W. M. Structural basis for regulation of the nucleo-cytoplasmic distribution of Bag6 by TRC35. Proc. Natl Acad. Sci. USA 114, 11679–11684 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chartron, J. W., Suloway, C. J. M., Zaslaver, M. & Clemons, W. M. Structural characterization of the Get4/Get5 complex and its interaction with Get3. Proc. Natl Acad. Sci. USA 107, 12127–12132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bozkurt, G. et al. The structure of Get4 reveals an α‐solenoid fold adapted for multiple interactions in tail‐anchored protein biogenesis. FEBS Lett. 584, 1509–1514 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Morgens, D. W. et al. Retro-2 protects cells from ricin toxicity by inhibiting ASNA1-mediated ER targeting and insertion of tail-anchored proteins. eLife 8, e48434 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Suloway, C. J., Rome, M. E. & Clemons, W. M. Tail‐anchor targeting by a Get3 tetramer: the structure of an archaeal homologue. EMBO J. 31, 707–719 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Xu, Y., Liu, Y., Lee, J. & Ye, Y. A ubiquitin-like domain recruits an oligomeric chaperone to a retrotranslocation complex in endoplasmic reticulum-associated degradation. J. Biol. Chem. 288, 18068–18076 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Banerji, J., Sands, J., Strominger, J. L. & Spies, T. A gene pair from the human major histocompatibility complex encodes large proline-rich proteins with multiple repeated motifs and a single ubiquitin-like domain. Proc. Natl Acad. Sci. USA 87, 2374–2378 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Martin, T. G., Boland, A., Fitzpatrick, A. W. P. & Scheres, S. H. W. Graphene oxide grid preparation. figshare https://doi.org/10.6084/m9.figshare.3178669.v1 (2016).

  41. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wagner, T. et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2, 218 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pettersen, E. F. et al. UCSF Chimera: a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Cryst. Struct. Biol. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  48. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Cryst. Struct. Biol. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  49. Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Cryst. Struct. Biol. 74, 519–530 (2018).

    Article  CAS  Google Scholar 

  50. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Cryst. Struct. Biol. 66, 12–21 (2010).

    Article  CAS  Google Scholar 

  51. Barad, B. A. et al. EMRinger: side chain–directed model and map validation for 3D cryo-electron microscopy. Nat. Methods 12, 943–946 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. The PyMOL Molecular Graphics System v.1.5.0.4 https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1468450 (Schrödinger, LLC, 2015).

  54. Buchan, D. W. A. & Jones, D. T. The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Res. 47, W402–W407 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Morin, A. et al. Collaboration gets the most out of software. eLife 2, e01456 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  56. McKenna, M. J. et al. The endoplasmic reticulum P5A-ATPase is a transmembrane helix dislocase. Science 369, eabc5809 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Cryo-EM screening and data collections were performed at the Cryo-EM Center for Structural Biology and the Molecular Electron Microscopy Suite at Harvard Medical School. Data processing was supported by SBGrid. SEC-MALS was performed at the Center of Macromolecular Interactions at Harvard Medical School. We thank M. McKenna for calmodulin complexes; M. Chambers, Z. Li, S. Sterling and R. Walsh for cryo-EM support; K. Arnett for SEC-MALS training; R. Keenan and C. Atkinson for input at preliminary stages of this project; and A. Brown, R. Hegde and Shao Laboratory members for helpful discussions. This work was supported by the Richard and Susan Smith Family Foundation (S.S.), Harvard Medical School (S.S.), the Vallee Foundation (S.S.), the Packard Foundation (S.S.) and NIH DP2GM137415 (S.S.). M.C.J.Y. is supported by AHA predoctoral fellowship no. 287375208.

Author information

Authors and Affiliations

Authors

Contributions

A.F.A.K., M.C.J.Y., T.-C.H. and S.S. performed and analyzed experiments. A.F.A.K. collected cryo-EM data. A.F.A.K. and S.S. processed cryo-EM data, built atomic models and wrote the paper with input from all authors. S.S. supervised the project.

Corresponding author

Correspondence to Sichen Shao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Structural & Molecular Biology thanks Shu-ou Shan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Florian Ullrich was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 GET complexes analyzed in this study.

a, SDS-PAGE and Coomassie staining of recombinant cBUGG (cBag6-Ubl4a-Get4-Get3) and cBUGGS (cBag6-Ubl4a-Get4-Get3-SGTA) complexes, representative of 6 independent purifications. b, Recombinant Flag-tagged tail-anchored (TA) protein containing the UV-activatable crosslinking amino acid Bpa in the Sec61β transmembrane domain [Flag-TA(Bpa)] in complex with the calcium-dependent chaperone calmodulin was incubated with SGTA, cBUGG, and the calcium chelator EGTA as indicated. Reactions were exposed to UV light and analyzed by SDS-PAGE and immunoblotting, representative of 2 independent experiments. TA protein crosslinks to other TA protein molecules (x TA), SGTA, and Get3 are indicated.

Source data

Extended Data Fig. 2 Quality of maps and models.

a, Representative 2D class averages of the cBUGG (cBag6-Ubl4a-Get4-Get3; top) and cBUGGS (cBUGG + SGTA; bottom) complexes. Scale bars, 100 Å. Pink arrowheads, extra density seen in 2D class averages of cBUGGS but not cBUGG. b, Fourier shell correlation (FSC) coefficient vs. resolution (1/Å) curves of the indicated maps. Resolution was estimated at FSC = 0.143 (gray dotted line). c, Unsharpened Coulomb potential maps colored by local resolution. Get3 L(α4) is indicated. Light orange arrows, C-terminal region of Get4; Pink arrow, cBUGGS-specific interaction. d, Model vs. map FSC curves.

Extended Data Fig. 3 Examples of model and map fits.

Segmented EM densities of the sharpened cBUGG-in map and atomic model of the indicated Get3 (green), Get4 (light orange), and cBag6 (blue) residues. Map contour levels are listed below.

Extended Data Fig. 4 Get3 comparisons.

a, Superposition of Get3 from cBUGG-in (colored) with yeast Get3 in the closed conformation (gray, PDB 2WOJ). The two Get3 subunits are differentiated by dark (Get3-A) and light (Get3-B) green. Helices lining the substrate chamber are labeled. b, Superposition of Get3 from cBUGG-in (green) with yeast Get3 (gray) bound to the Pep12 transmembrane domain (TMD, purple, PDB 4XTR). c, Clipped view of the metazoan Get3 substrate chamber colored by surface hydrophobicity (blue, least hydrophobic to orange, most hydrophobic). d, Segmented EM density (at 14.1σ contour level) and atomic model of the ATP binding site of cBUGG-in. The catalytic Asp68 mutated to Asn is indicated. e, Superposition of the ATP-binding sites of Get3 in cBUGG-out with yeast Get3 in the closed conformation (2WOJ), bound to a substrate (4XTR), and in complex with Get4/5 (4PWX). Resolutions of crystal structures are reported in parentheses. Motifs involved in ATP binding and hydrolysis are labeled; other residues are transparent.

Extended Data Fig. 5 Get3-Get4 comparisons.

a, Superposition of cBUGG-out (colored) with yeast Get3-Get4-Get5 (gray, PDB 4PWX). Conserved (black) and L(α4) (purple) binding interactions are boxed. b, Surface electrostatics of the Get3-Get4 interface. Boxed regions correspond to panel a. c, Superposition of the bridging factors of cBUGG-in (gray) and cBUGG-out (colored) aligned on Get3. d, Overview of Get3-Get4 interactions along one bridging arm. Note that the two interaction sites on Get4 involve different Get3 subunits.

Extended Data Fig. 6 Substrate chamber lid.

a, Lid region above the Get3 substrate chamber of the unsharpened cBUGG map without imposed symmetry (at 9.5σ contour level; gray) and the cBUGG-out atomic model (colored). Dotted lines indicate proposed continuity of unmodeled regions of Get3 (green) and Get4 (yellow). b, Unmodeled sequences of Get3 and Get4. Hydrophobic (orange), acidic (red), and basic (blue) amino acids are colored. Modeled amino acids are gray with Get3 secondary structure designations above (green). Mauve line, Get4 residues modeled in PDB 6AU8; gray dashed lines, unmodeled helices predicted by PSIPRED. c-d, Unsharpened cBUGG-in map (at 9.7σ contour level) and hypothetical lid helices contributed by c, Get3 or d, Get4. Mauve arrow indicates break in lid density that may correspond to the point where Get3 loops back towards α9. e, Cartoon (top) and surface electrostatics (bottom) of Get3 in cBUGG-in showing a basic face of α7 (dashed rectangle) that may interact with acidic C-terminal Get4 residues. Basic residues (Arg183 and Arg179) along α7 are shown. f, Scheme for assaying radiolabeled TA protein capture and transfer from SGTA to Get3. IVT, in vitro translation. g, SDS-PAGE and autoradiography (top) or Coomassie staining (bottom) of PURE in vitro translation reactions with no additional chaperone, SGTA, or the indicated Get3 variant, followed by chemical crosslinking. Note that the KAAKKK Get3 mutant captures TA protein as well as wildtype Get3, representative of 2 independent experiments.

Source data

Extended Data Fig. 7 Recruitment platform and SGTA interactions.

a, Model and unsharpened map of cBUGG-in showing connectivity of cBag6 and cBag6 interactions with Get4. Blue arrow, turning point after cBag6 α3. b, cBUGG-out model of a bridging arm fitted into the unsharpened cBUGG map without imposed symmetry. Red arrow, interaction between Ubl4a and the cBag6 α2-α3 loop; red box, interaction between the C terminus of cBag6 and the Get4 α9-α10 loop. Blue dotted line, map region corresponding to unmodeled C-terminal cBag6 residues. c, Different views of the unsharpened cBUGGS map at 9.5σ contour level as in Fig. 5b. Relevant helices of Get3 (green), Get4 (light orange), and cBag6 (blue) are numbered. Arrows are as in Fig. 5b. d, The masked cBUGGS map (pink) aligned to the cBUGG map (transparent gray), both at 4.5σ contour level, showing remodeling of the recruitment platform towards D1 (blue arrow) and the region above the Get3 substrate chamber upon SGTA binding. The view on the right corresponds to the top view in Fig. 1 (right panels). e, Aligned maps as in panel d, both at 9.5σ contour level, showing how SGTA binding remodels the lid over the Get3 substrate chamber.

Extended Data Fig. 8 Identification of Get3(Bpa) crosslinks to SGTA and Get4.

UV-dependent crosslinking reactions as in Fig. 6b were subjected to denaturing pulldowns for Get3-Strep and immunoblotted for a, SGTA (Ponceau staining shown in bottom panel) or b, FLAG-tagged Get4, representative of 2 independent experiments. Low levels of uncrosslinked Get4 result from non-specific interactions with the resin, are a small proportion of the input (see Fig. 6b), and serve as loading controls.

Source data

Extended Data Fig. 9 Influences on complex architecture.

a, SEC-MALS traces of the indicated complexes. Absorbance at 280 nm was normalized to the highest peak for each sample. *, minor populations of higher-order cBUGGS (black) and excess Get4 (orange). b, SDS-PAGE and Coomassie staining of cBUGGS purified via Flag-tagged Get4, representative of 2 independent purifications. c, Representative 2D classes (top, scale bar, 100 Å) and micrographs (bottom, scale bar, 50 nm) of negatively stained cBUGGS purified via GST- (left) or Flag-tagged Get4 (right). d, SDS-PAGE and Coomassie staining of the BUGGS complex containing full-length Bag6 assembled with Ubl4a, Get4, Get3, and SGTA, representative of 3 independent experiments.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–5 and discussion.

Reporting Summary.

Peer Review Information.

Supplementary Video 1

cBUGG complex overview.

Supplementary Video 2

Comparison between cBUGG-in and cBUGG-out conformations.

Supplementary Video 3

cBUGGs complex overview.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keszei, A.F.A., Yip, M.C.J., Hsieh, TC. et al. Structural insights into metazoan pretargeting GET complexes. Nat Struct Mol Biol 28, 1029–1037 (2021). https://doi.org/10.1038/s41594-021-00690-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-021-00690-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing