Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Three-dimensional genome organization via triplex-forming RNAs

Abstract

An increasing number of long noncoding RNAs (lncRNAs) have been proposed to act as nuclear organization factors during interphase. Direct RNA-DNA interactions can be achieved by the formation of triplex helix structures where a single-stranded RNA molecule hybridizes by complementarity into the major groove of double-stranded DNA. However, whether and how these direct RNA-DNA associations influence genome structure in interphase chromosomes remain poorly understood. Here we theorize that RNA organizes the genome in space via a triplex-forming mechanism. To test this theory, we apply a computational modeling approach of chromosomes that combines restraint-based modeling with polymer physics. Our models suggest that colocalization of triplex hotspots targeted by lncRNAs could contribute to large-scale chromosome compartmentalization cooperating, rather than competing, with architectural transcription factors such as CTCF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of lncRNAs with triplex-forming potential.
Fig. 2: Characterization of co-TrTS hotspots in the genome.
Fig. 3: Co-TrTSs as drivers of chromosomal conformation.
Fig. 4: Cooperative effects of CTCF and ENST00000541775.1 on 3D genome structure.
Fig. 5: Compartment segregation mediated by co-TrTSs.

Similar content being viewed by others

Data availability

RNA-seq datasets were downloaded from ENCODE with accession nos. ENCSR000CPO, ENCSR000CQF, ENCSR000CQM, ENCSR530NHO and ENCSR000CPS. The PARS dataset was downloaded from Gene Expression Omnibus (GEO) with accession no. GSE50676. Hi-C was downloaded from GEO with accession no. GSE63525. CTCF ChIP–seq was downloaded from ENCODE with accession no. ENCSR000AKB. DNAse sequencing was downloaded from ENCODE with accession nos. ENCFF097LEF, ENCFF273MVV and ENCFF804BNU. The GENCODE v.19 lncRNA set was downloaded from https://www.gencodegenes.org/human/release_19.html.

Code availability

Custom scripts used to identify colocalizing loci and perform restraint-based modeling are available at http://sgt.cnag.cat/3dg/datasets/. The custom python scripts for analysis used the libraries Numpy107, Pandas108, Seaborn and Matplotlib109, Scipy110 and Multiprocessing111.

References

  1. Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Barutcu, A. R., Maass, P. G., Lewandowski, J. P., Weiner, C. L. & Rinn, J. L. A TAD boundary is preserved upon deletion of the CTCF-rich Firre locus. Nat. Commun. 9, 1444 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nora, E. P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930–944 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nuebler, J., Fudenberg, G., Imakaev, M., Abdennur, N. & Mirny, L. A. Chromatin organization by an interplay of loop extrusion and compartmental segregation. Proc. Natl Acad. Sci. USA 115, E6697–E6706 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rowley, M. J. & Corces, V. G. Organizational principles of 3D genome architecture. Nat. Rev. Genet. 19, 789–800 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Szabo, Q., Bantignies, F. & Cavalli, G. Principles of genome folding into topologically associating domains. Sci. Adv. 5, eaaw1668 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bantignies, F. & Cavalli, G. Polycomb group proteins: repression in 3D. Trends Genet. 27, 454–464 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Yang, J. & Li, F. Are all repeats created equal? Understanding DNA repeats at an individual level. Curr. Genet. 63, 57–63 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Cournac, A., Koszul, R. & Mozziconacci, J. The 3D folding of metazoan genomes correlates with the association of similar repetitive elements. Nucleic Acids Res. 44, 245–255 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Winter, D. J. et al. Repeat elements organise 3D genome structure and mediate transcription in the filamentous fungus Epichloe festucae. PLoS Genet. 14, e1007467 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lu, J. Y. et al. Homotypic clustering of L1 and B1/Alu repeats compartmentalizes the 3D genome. Cell Res. 31, 613–630 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Morf, J. et al. RNA proximity sequencing reveals the spatial organization of the transcriptome in the nucleus. Nat. Biotechnol. 37, 793–802 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Quinodoz, S. A. et al. RNA promotes the formation of spatial compartments in the nucleus. Preprint at bioRxiv https://doi.org/10.1101/2020.08.25.267435 (2020).

  18. Bonetti, A. et al. RADICL-seq identifies general and cell type–specific principles of genome-wide RNA-chromatin interactions. Nat. Commun. 11, 1108 (2020).

    Article  Google Scholar 

  19. Bell, J. C. et al. Chromatin-associated RNA sequencing (ChAR-seq) maps genome-wide RNA-to-DNA contacts. eLife 7, e27024 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li, X. et al. GRID-seq reveals the global RNA-chromatin interactome. Nat. Biotechnol. 35, 940–950 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sridhar, B. et al. Systematic mapping of RNA-chromatin interactions in vivo. Curr. Biol. 27, 602–609 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Senturk Cetin, N. et al. Isolation and genome-wide characterization of cellular DNA:RNA triplex structures. Nucleic Acids Res. 47, 2306–2321 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nickerson, J. A., Krochmalnic, G., Wan, K. M. & Penman, S. Chromatin architecture and nuclear RNA. Proc. Natl Acad. Sci. USA 86, 177–181 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Holmes, D. S., Mayfield, J. E., Sander, G. & Bonner, J. Chromosomal RNA: its properties. Science 177, 72–74 (1972).

    Article  CAS  PubMed  Google Scholar 

  25. Rodriguez-Campos, A. & Azorin, F. RNA is an integral component of chromatin that contributes to its structural organization. PLoS ONE 2, e1182 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tsai, M. C. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. & Sharp, P. A. A phase separation model for transcriptional control. Cell 169, 13–23 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Michieletto, D. & Gilbert, N. Role of nuclear RNA in regulating chromatin structure and transcription. Curr. Opin. Cell Biol. 58, 120–125 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Frank, L. & Rippe, K. Repetitive RNAs as regulators of chromatin-associated subcompartment formation by phase separation. J. Mol. Biol. 432, 4270–4286 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Caudron-Herger, M. et al. Coding RNAs with a non-coding function: maintenance of open chromatin structure. Nucleus 2, 410–424 (2011).

    Article  PubMed  Google Scholar 

  31. Meng, Y. et al. The non-coding RNA composition of the mitotic chromosome by 5’-tag sequencing. Nucleic Acids Res. 44, 4934–4946 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chujo, T., Yamazaki, T. & Hirose, T. Architectural RNAs (arcRNAs): a class of long noncoding RNAs that function as the scaffold of nuclear bodies. Biochim. Biophys. Acta 1859, 139–146 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Engreitz, J. M. et al. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341, 1237973 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Donley, N., Smith, L. & Thayer, M. J. ASAR15, a cis-acting locus that controls chromosome-wide replication timing and stability of human chromosome 15. PLoS Genet. 11, e1004923 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fey, E. G., Ornelles, D. A. & Penman, S. Association of RNA with the cytoskeleton and the nuclear matrix. J. Cell Sci. 1986, 99–119 (1986).

    Article  Google Scholar 

  36. Hall, L. L. et al. Stable C0T-1 repeat RNA is abundant and is associated with euchromatic interphase chromosomes. Cell 156, 907–919 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kalwa, M. et al. The lncRNA HOTAIR impacts on mesenchymal stem cells via triple helix formation. Nucleic Acids Res. 44, 10631–10643 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mondal, T. et al. MEG3 long noncoding RNA regulates the TGF-beta pathway genes through formation of RNA-DNA triplex structures. Nat. Commun. 6, 7743 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. O’Leary, V. B. et al. PARTICLE, a triplex-forming long ncRNA, regulates locus-specific methylation in response to low-dose irradiation. Cell Rep. 11, 474–485 (2015).

    Article  PubMed  Google Scholar 

  40. Johnson, R. & Guigo, R. The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. RNA 20, 959–976 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nozawa, R. S. et al. SAF-A regulates interphase chromosome structure through oligomerization with chromatin-associated RNAs. Cell 169, 1214–1227 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saldaña-Meyer, R. et al. RNA interactions are essential for CTCF-mediated genome organization. Mol. Cell 76, 412–422 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Buske, F. A., Bauer, D. C., Mattick, J. S. & Bailey, T. L. Triplexator: detecting nucleic acid triple helices in genomic and transcriptomic data. Genome Res. 22, 1372–1381 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Baù, D. et al. The three-dimensional folding of the alpha-globin gene domain reveals formation of chromatin globules. Nat. Struct. Mol. Biol. 18, 107–114 (2011).

    Article  PubMed  Google Scholar 

  45. Nir, G. et al. Walking along chromosomes with super-resolution imaging, contact maps, and integrative modeling. PLoS Genet. 14, e1007872 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Di Stefano, M. et al. Transcriptional activation during cell reprogramming correlates with the formation of 3D open chromatin hubs. Nat. Commun. 11, 2564 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Di Stefano, M., Rosa, A., Belcastro, V., di Bernardo, D. & Micheletti, C. Colocalization of coregulated genes: a steered molecular dynamics study of human chromosome 19. PLoS Comput. Biol. 9, e1003019 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tjong, H. et al. Population-based 3D genome structure analysis reveals driving forces in spatial genome organization. Proc. Natl Acad. Sci. USA 113, E1663–E1672 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tiana, G. et al. Structural fluctuations of the chromatin fiber within topologically associating domains. Biophys. J. 110, 1234–1245 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Wan, Y. et al. Landscape and variation of RNA secondary structure across the human transcriptome. Nature 505, 706–709 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Maldonado, R., Schwartz, U., Silberhorn, E. & Langst, G. Nucleosomes stabilize ssRNA-dsDNA triple helices in human cells. Mol. Cell 73, 1243–1254 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Sinden, R. Torsional tension in the DNA double helix measured with trimethylpsoralen in living E. coli cells: analogous measurements in insect and human cells. Cell 21, 773–783 (1980).

    Article  CAS  PubMed  Google Scholar 

  54. Pyne, A. L. B. et al. Base-pair resolution analysis of the effect of supercoiling on DNA flexibility and major groove recognition by triplex-forming oligonucleotides. Nat. Commun. 12, 1053 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mirny, L. A., Imakaev, M. & Abdennur, N. Two major mechanisms of chromosome organization. Curr. Opin. Cell Biol. 58, 142–152 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Alipour, E. & Marko, J. F. Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res. 40, 11202–11212 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl Acad. Sci. USA 112, E6456–E6465 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tang, Z. et al. CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription. Cell 163, 1611–1627 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Buske, F. A., Mattick, J. S. & Bailey, T. L. Potential in vivo roles of nucleic acid triple-helices. RNA Biol. 8, 427–439 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kunkler, C. N. et al. Stability of an RNA•DNA–DNA triple helix depends on base triplet composition and length of the RNA third strand. Nucleic Acids Res. 47, 7213–7222 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kaufmann, B. et al. Identifying triplex binding rules in vitro leads to creation of a new synthetic regulatory tool in vivo. Preprint at bioRxiv https://doi.org/10.1101/2019.12.25.888362 (2019).

  65. Hadjiargyrou, M. & Delihas, N. The intertwining of transposable elements and non-coding RNAs. Int. J. Mol. Sci. 14, 13307–13328 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hoekstra, H. E. et al. Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet. 9, e1003470 (2013).

    Article  Google Scholar 

  67. Clark, M. B. et al. Genome-wide analysis of long noncoding RNA stability. Genome Res. 22, 885–898 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Boyle, S. The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum. Mol. Genet. 10, 211–219 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Maison, C. et al. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat. Genet. 30, 329–334 (2002).

    Article  PubMed  Google Scholar 

  70. Barutcu, A. R., Blencowe, B. J. & Rinn, J. L. Differential contribution of steady-state RNA and active transcription in chromatin organization. EMBO Rep. 20, e48068 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Henderson, A. S., Warburton, D. & Atwood, K. C. Location of ribosomal DNA in the human chromosome complement. Proc. Natl Acad. Sci. USA 69, 3394–3398 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Misteli, T. et al. Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase Rosettes. PLoS Biol. 3, e157 (2005).

    Article  Google Scholar 

  73. Fadloun, A. et al. Chromatin signatures and retrotransposon profiling in mouse embryos reveal regulation of LINE-1 by RNA. Nat. Struct. Mol. Biol. 20, 332–338 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Quinodoz, S. A. et al. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174, 744–757 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Strom, A. R. et al. Phase separation drives heterochromatin domain formation. Nature 547, 241–245 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Larson, A. G. et al. Liquid droplet formation by HP1alpha suggests a role for phase separation in heterochromatin. Nature 547, 236–240 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hult, C. et al. Enrichment of dynamic chromosomal crosslinks drive phase separation of the nucleolus. Nucleic Acids Res. 45, 11159–11173 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Plys, A. J. et al. Phase separation of Polycomb-repressive complex 1 is governed by a charged disordered region of CBX2. Genes Dev. 33, 799–813 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jost, D., Carrivain, P., Cavalli, G. & Vaillant, C. Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains. Nucleic Acids Res. 42, 9553–9561 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Di Pierro, M., Zhang, B., Aiden, E. L., Wolynes, P. G. & Onuchic, J. N. Transferable model for chromosome architecture. Proc. Natl Acad. Sci. USA 113, 12168–12173 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Brackley, C. A., Johnson, J., Kelly, S., Cook, P. R. & Marenduzzo, D. Simulated binding of transcription factors to active and inactive regions folds human chromosomes into loops, rosettes and topological domains. Nucleic Acids Res. 44, 3503–3512 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Di Stefano, M., Nützmann, H.-W., Marti-Renom, Marc, A. & Jost, D. Polymer modelling unveils the roles of heterochromatin and nucleolar organizing regions in shaping 3D genome organization in Arabidopsis thaliana. Nucleic Acids Res. 49, 1840–1858 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cochard, A. et al. RNA at the surface of phase-separated condensates impacts their size and number. Preprint at bioRxiv https://doi.org/10.1101/2021.06.22.449254 (2021).

  84. Beliveau, B. J. et al. Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc. Natl Acad. Sci. USA 109, 21301–21306 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Femino, A. M. Visualization of single RNA transcripts in situ. Science 280, 585–590 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Matera, A. G. & Ward, D. C. Oligonucleotide probes for the analysis of specific repetitive DNA sequences by fluorescence in situ hybridization. Hum. Mol. Genet. 1, 535–539 (1992).

    Article  CAS  PubMed  Google Scholar 

  87. Chang, C. H. et al. Islands of retroelements are major components of Drosophila centromeres. PLoS Biol. 17, e3000241 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ricci, M. A., Manzo, C., Garcia-Parajo, M. F., Lakadamyali, M. & Cosma, M. P. Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell 160, 1145–1158 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Stollar, B. D. & Raso, V. Antibodies recognise specific structures of triple-helical polynucleotides built on poly(A) or poly(dA). Nature 250, 231–234 (1974).

    Article  CAS  PubMed  Google Scholar 

  90. Ohno, M., Fukagawa, T., Lee, J. S. & Ikemura, T. Triplex-forming DNAs in the human interphase nucleus visualized in situ by polypurine/polypyrimidine DNA probes and antitriplex antibodies. Chromosoma 111, 201–213 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Gorab, E., Amabis, J. M., Stocker, A. J., Drummond, L. & Stollar, B. D. Potential sites of triple-helical nucleic acid formation in chromosomes of Rhynchosciara (Diptera: Sciaridae) and Drosophila melanogaster. Chromosome Res. 17, 821–832 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Kuo, C.-C. et al. Detection of RNA–DNA binding sites in long noncoding RNAs. Nucleic Acids Res. 47, e32 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Mumbach, M. R. et al. HiChIRP reveals RNA-associated chromosome conformation. Nat. Methods 16, 489–492 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43–49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jurka, J. Repbase update: a database and an electronic journal of repetitive elements. Trends Genet. 16, 418–420 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Davis, C. A. et al. The Encyclopedia of DNA elements (ENCODE): data portal update. Nucleic Acids Res. 46, D794–D801 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Ayel, E. & Escudé, C. In vitro selection of oligonucleotides that bind double-stranded DNA in the presence of triplex-stabilizing agents. Nucleic Acids Res. 38, e31 (2010).

    Article  PubMed  Google Scholar 

  98. Barsh, G. S., Bacolla, A., Wang, G. & Vasquez, K. M. New perspectives on DNA and RNA triplexes as effectors of biological activity. PLOS Genet. 11, e1005696 (2015).

    Article  Google Scholar 

  99. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Paulsen, J. et al. Handling realistic assumptions in hypothesis testing of 3D co-localization of genomic elements. Nucleic Acids Res. 41, 5164–5174 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Imakaev, M. et al. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat. Methods 9, 999–1003 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  103. Kremer, K. & Grest, G. S. Dynamics of entangled linear polymer melts: a molecular‐dynamics simulation. J. Chem. Phys. 92, 5057–5086 (1990).

    Article  CAS  Google Scholar 

  104. Rosa, A. & Everaers, R. Structure and dynamics of interphase chromosomes. PLoS Comput. Biol. 4, e1000153 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Fiorin, G., Klein, M. L. & Hénin, J. Using collective variables to drive molecular dynamics simulations. Mol. Phys. 111, 3345–3362 (2013).

    Article  CAS  Google Scholar 

  106. Serra, F. et al. Automatic analysis and 3D-modelling of Hi-C data using TADbit reveals structural features of the fly chromatin colors. PLoS Comput. Biol. 13, e1005665 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. McKinney, W. Data structures for statistical computing in Python. In Proc. 9th Python in Science Conference (eds van der Walt, S. & Millman, J.) 56–61 (SciPy.org, 2010); https://doi.org/10.25080/Majora-92bf1922-00a

  109. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article  Google Scholar 

  110. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17, 261–272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. McKerns, M. M. et al. Building a framework for predictive science. Preprint at https://arxiv.org/abs/1202.1056 (2012).

  112. Lejeune, J. et al. A PROPOSED standard system of nomenclature of human mitotic chromosomes. Lancet 275, 1063–1065 (1960).

    Article  Google Scholar 

Download references

Acknowledgements

We thank all current and past members of the Marti-Renom laboratory for their continuous discussions and support; H. Y. Chang, R. A. Flynn and K. Qu for help with PARS data analysis; J. Morf for fruitful discussions; M. Dabad and A. Esteve-Codina of the Functional Genomics Team at CNAG for initial RNA-seq analysis; and C.T. Wu and members of the Wu laboratory for their support. This work was supported by the European Research Council under the 7th Framework Program FP7/2007-2013 (ERC grant agreement no. 609989 to M.A.M.-R.) and the Spanish Ministerio de Ciencia, Innovación y Universidades through nos. IJCI-2015-23352 to I.F. and BFU2017-85926-P and PID2020-115696RB-I00 to M.A.M.-R. CRG acknowledges support from ‘Centro de Excelencia Severo Ochoa 2013-2017’, SEV-2012-0208 and the CERCA Program/Generalitat de Catalunya, as well as support from the Spanish Ministry of Science and Innovation through the Instituto de Salud Carlos III and the EMBL partnership, the Generalitat de Catalunya through Departament de Salut and Departament d’Empresa i Coneixement, and cofinancing with funds from the European Regional Development Fund by the Spanish Ministry of Science and Innovation corresponding to the Programa Opertaivo FEDER Plurirregional de España 2014–2020 and by the Secretaria d’Universitats i Recerca, Departament d’Empresa i Coneixement of the Generalitat de Catalunya corresponding to the program Operatiu FEDER Catalunya 2014–2020 and the NIH (to C.T. Wu no. R01HD091797 for supporting I.F.).

Author information

Authors and Affiliations

Authors

Contributions

I.F. and M.A.M.-R. conceived the study. I.F. and M.D.S. performed modeling. P.S.-V. and M.M.-M. supported modeling protocol development and implementation. I.F. wrote the manuscript with M.D.S., P.S.-V., M.M.-M. and M.A.M.-R. M.A.M.-R. oversaw the project.

Corresponding authors

Correspondence to Irene Farabella or Marc A. Marti-Renom.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Structural & Molecular Biology thanks Sarah Harris and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Carolina Perdigoto and Beth Moorefield were the primary editors on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Genomic features of co-localized Triplex Target hotspot.

(a) Percentage of TrTS that co-localize genome-wide versus the length of the identified lncRNAs with triplex forming potential. The blue line represents a linear regression model fit and the transparent shade is the 95% confidence interval. (b) Top three enriched motifs (Methods) for co-localizing Triplex Target Sites over background obtained with HOMER99. (c) Enrichment of co-TrTS hotspots in DNase I hypersensitive sites. (d) Number of lncRNAs with triplex forming potential with respect to chromosomal gene density. (e) Co-TrTS potential distribution per-chromosome for the four clusters defined in Fig. 2e. Box boundaries represent 1st and 3rd quartiles, middle line represents median, and whiskers extend to 1.5 times the interquartile range (two-sided Mann-Whitney rank test, using python default parameters, ***: p < 10−3; n = 897, 506, 667, and 575 for cluster 1, 2, 3, and 4, respectively. (f) Compartmentalization saddle plot (Methods) of all intra-chromosomal interactions in GM12878 cell line.

Extended Data Fig. 2 Restraint-based simulations for human chromosome 19.

(a,b) Contact maps derived from the ensemble of 3D models generated using co-localizing pairs of randomly selected loci (A) and low complexity enriched genomic sites (B). (C-F) Matrices of Pearson cross-correlation coefficients of top six eigenvectors for chromosome 19 of the experimental Hi-C compared to the four simulated datasets (that is, ENST00000541775.1, CTCF, random, and low complexity for c, d, e and f, respectively).

Extended Data Fig. 3 Comparisons of co-localized Triplex Target Sites restraint-based simulations.

(a) Distribution of the percentage of satisfied restraints in the ensemble of models using co-localizing pairs of loci driven by the ENST00000541775.1 co-TrTS hotspots and the CTCF enriched sites. Box boundaries represent 1st and 3rd quartiles, middle line represents median, and whiskers extend to 1.5 times the interquartile range; n = 1000 equal to the size of the 3D models ensemble. (b) Element-wise Spearman cross-correlation coefficients (spCCC) between the experimental Hi-C contact map and the contact maps derived from the 3D models generated using co-localizing pairs of loci driven by the co-TrTS hotspots of 7 representative lncRNAs with triplex potential belonging to cluster 4.

Extended Data Fig. 4 Correlation analysis of Hi-C and simulated contact maps for chromosome 22.

(a) Distribution of the diagonal cross-correlation coefficients (dCCC) (Methods) in chromosome 22 of the contact maps derived from the ensemble of 3D models with Hi-C. Box boundaries represent 1st and 3rd quartiles, middle line represents median, and whiskers extend to 1.5 times the interquartile range. The statistical significance of the difference between each pair of dCCC distributions has been assessed with the two-sided Mann-Whitney rank test using python default parameters. The p-values are < 10−3 unless reported; n = 1026 equal to the number of beads in chromosome 22.

Extended Data Fig. 5 Triplex forming lncRNAs govern long-range interactions.

(a-f) Diagonal correlations coefficient (dCCC) along the first 10 Mb between the experimental Hi-C contact map and the contact maps derived from the ensemble of the 3D models generated using lncRNAs with triplex potential from cluster 4: (A) ENST00000547963.1, (B) ENST0000043436.1, (C) ENST00000449111.1, (D) ENST00000561611.2, (E) ENST00000540866.2, and (F) ENST00000421202.1 co-TrTS hotspots for each of the 23 chromosomes (grey) and genome-wide average (blue). Vertical red bar marks 250 kb, which is the median length of convergent CTCF loops61. (g-i) Diagonal correlations coefficient (dCCC) along the first 10 Mb between the experimental Hi-C contact map and the contact maps derived from the ensemble of 3D models generated using CTCF enriched genomic loci (orange), ENST00000541775.1 co-TrTS hotspots (light blue), and CTCF & ENST00000541775.1 enriched genomic loci (yellow) for all (G) metacentric, (H) submetacentric, and (I) acrocentric chromosomes. Chromosomes are classified according to the standard Denver classification112.

Supplementary information

Reporting Summary

Supplementary Tables

Table 1. List of the 115 selected triplex-forming lncRNAs. Table 2. Percentage of significant Hi-C interactions used as restraints.

Supplementary Video 1

Randomly selected simulation from 1,000 trajectories in the ENST00000541775.1 co-TrTS hotspot ensemble. The simulated beads are colored according to their compartment type based on A/B calling derived from Hi-C data5 at 100-kb resolution (red and blue denote A- and B-type beads, respectively), showing segregation between compartment types in the simulation. The centromeric region is not shown.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farabella, I., Di Stefano, M., Soler-Vila, P. et al. Three-dimensional genome organization via triplex-forming RNAs. Nat Struct Mol Biol 28, 945–954 (2021). https://doi.org/10.1038/s41594-021-00678-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-021-00678-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing