Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of meiotic chromosome synaptic elongation through hierarchical fibrous assembly of SYCE2-TEX12

Abstract

The synaptonemal complex (SC) is a supramolecular protein assembly that mediates synapsis between homologous chromosomes during meiosis. SC elongation along the chromosome length (up to 24 μm) depends on its midline α-fibrous component SYCE2-TEX12. Here, we report X-ray crystal structures of human SYCE2-TEX12 as an individual building block and on assembly within a fibrous lattice. We combine these structures with mutagenesis, biophysics and electron microscopy to reveal the hierarchical mechanism of SYCE2-TEX12 fiber assembly. SYCE2-TEX12’s building blocks are 2:2 coiled coils that dimerize into 4:4 hetero-oligomers and interact end-to-end and laterally to form 10-nm fibers that intertwine within 40-nm bundled micrometer-long fibers that define the SC’s midline structure. This assembly mechanism bears striking resemblance with intermediate filament proteins vimentin, lamin and keratin. Thus, SYCE2-TEX12 exhibits behavior typical of cytoskeletal proteins to provide an α-fibrous SC backbone that structurally underpins synaptic elongation along meiotic chromosomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SYCE2-TEX12 self-assembly is driven by the C-terminal tip of TEX12.
Fig. 2: Crystal structure of the SYCE2-TEX12 core 2:2 complex.
Fig. 3: Crystal structure of the SYCE2-TEX12 core 4:4 complex.
Fig. 4: A molecular model of the SYCE2-TEX12 core ‘closed’ 4:4 assembly.
Fig. 5: Molecular determinants of SYCE2-TEX12 self-assembly by TEX12’s C-terminal tip.
Fig. 6: A molecular model of the SYCE2-TEX12 core fibrous assembly.
Fig. 7: A molecular mechanism for fibrous assembly of SYCE2-TEX12.

Similar content being viewed by others

Data availability

Crystallographic structure factors and atomic coordinates have been deposited in the Protein Data Bank (PDB) under accession numbers 6R17 and 6YQF, and their corresponding raw diffraction images have been deposited at https://proteindiffraction.org/. Source data are provided with this paper.

References

  1. Zickler, D. & Kleckner, N. Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harb. Perspect. Biol. 7, a016626 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Cahoon, C. K. & Hawley, R. S. Regulating the construction and demolition of the synaptonemal complex. Nat. Struct. Mol. Biol. 23, 369–377 (2016).

    Article  PubMed  CAS  Google Scholar 

  3. Kouznetsova, A., Benavente, R., Pastink, A. & Höög, C. Meiosis in mice without a synaptonemal complex. PLoS ONE 6, e28255 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sanchez-Saez, F. et al. Meiotic chromosome synapsis depends on multivalent SYCE1-SIX6OS1 interactions that are disrupted in cases of human infertility. Sci. Adv. 6, eabb1660 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Geisinger, A. & Benavente, R. Mutations in genes coding for synaptonemal complex proteins and their impact on human fertility. Cytogenet. Genome Res. 150, 77–85 (2016).

    Article  PubMed  CAS  Google Scholar 

  6. MacGregor, I. A., Adams, I. R. & Gilbert, N. Large-scale chromatin organisation in interphase, mitosis and meiosis. Biochem. J. 476, 2141–2156 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Patel, L. et al. Dynamic reorganization of the genome shapes the recombination landscape in meiotic prophase. Nat. Struct. Mol. Biol. 26, 164–174 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Martini, E., Diaz, R. L., Hunter, N. & Keeney, S. Crossover homeostasis in yeast meiosis. Cell 126, 285–295 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moses, M. J. Chromosomal structures in crayfish spermatocytes. J. Biophys. Biochem Cytol. 2, 215–218 (1956).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moses, M. J. Synaptinemal complex. Annu. Rev. Genet 2, 363–412 (1968).

    Article  Google Scholar 

  11. Westergaard, M. & von Wettstein, D. The synaptinemal complex. Annu. Rev. Genet. 6, 71–110 (1972).

    Article  CAS  PubMed  Google Scholar 

  12. Solari, A. J. Synaptosomal complexes and associated structures in microspread human spermatocytes. Chromosoma 81, 315–337 (1980).

    Article  CAS  PubMed  Google Scholar 

  13. Spindler, M. C., Filbeck, S., Stigloher, C. & Benavente, R. Quantitative basis of meiotic chromosome synapsis analyzed by electron tomography. Sci. Rep. 9, 16102 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Solari, A. J. & Moses, M. J. The structure of the central region in the synaptonemal complexes of hamster and cricket spermatocytes. J. Cell Biol. 56, 145–152 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schmekel, K., Skoglund, U. & Daneholt, B. The three-dimensional structure of the central region in a synaptonemal complex: a comparison between rat and two insect species, Drosophila melanogaster and Blaps cribrosa. Chromosoma 102, 682–692 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Schucker, K., Holm, T., Franke, C., Sauer, M. & Benavente, R. Elucidation of synaptonemal complex organization by super-resolution imaging with isotropic resolution. Proc. Natl Acad. Sci. USA 112, 2029–2033 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Dunce, J. M. et al. Structural basis of meiotic chromosome synapsis through SYCP1 self-assembly. Nat. Struct. Mol. Biol. 25, 557–569 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yuan, L. et al. Female germ cell aneuploidy and embryo death in mice lacking the meiosis-specific protein SCP3. Science 296, 1115–1118 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Yuan, L. et al. The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol. Cell 5, 73–83 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Yang, F. et al. Mouse SYCP2 is required for synaptonemal complex assembly and chromosomal synapsis during male meiosis. J. Cell Biol. 173, 497–507 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Costa, Y. et al. Two novel proteins recruited by synaptonemal complex protein 1 (SYCP1) are at the centre of meiosis. J. Cell Sci. 118, 2755–2762 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Schramm, S. et al. A novel mouse synaptonemal complex protein is essential for loading of central element proteins, recombination, and fertility. PLoS Genet. 7, e1002088 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hamer, G. et al. Characterization of a novel meiosis-specific protein within the central element of the synaptonemal complex. J. Cell Sci. 119, 4025–4032 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Gomez, H. L. et al. C14ORF39/SIX6OS1 is a constituent of the synaptonemal complex and is essential for mouse fertility. Nat. Commun. 7, 13298 (2016).

    Article  CAS  Google Scholar 

  25. de Vries, F. A. et al. Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation. Genes Dev. 19, 1376–1389 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Bolcun-Filas, E. et al. Mutation of the mouse Syce1 gene disrupts synapsis and suggests a link between synaptonemal complex structural components and DNA repair. PLoS Genet. 5, e1000393 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Bolcun-Filas, E. et al. SYCE2 is required for synaptonemal complex assembly, double strand break repair, and homologous recombination. J. Cell Biol. 176, 741–747 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hamer, G. et al. Progression of meiotic recombination requires structural maturation of the central element of the synaptonemal complex. J. Cell Sci. 121, 2445–2451 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Fraune, J., Schramm, S., Alsheimer, M. & Benavente, R. The mammalian synaptonemal complex: protein components, assembly and role in meiotic recombination. Exp. Cell Res. 318, 1340–1346 (2012).

  30. Lu, J. et al. Structural insight into the central element assembly of the synaptonemal complex. Sci. Rep. 4, 7059 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Davies, O. R., Maman, J. D. & Pellegrini, L. Structural analysis of the human SYCE2–TEX12 complex provides molecular insights into synaptonemal complex assembly. Open Biol. 2, 120099 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Syrjanen, J. L., Pellegrini, L. & Davies, O. R. A molecular model for the role of SYCP3 in meiotic chromosome organisation. Elife 3, e02963 (2014).

    Article  PubMed Central  CAS  Google Scholar 

  33. Syrjanen, J. L. et al. Single-molecule observation of DNA compaction by meiotic protein SYCP3. Elife 6, e22582 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dunne, O. M. & Davies, O. R. A molecular model for self-assembly of the synaptonemal complex protein SYCE3. J. Biol. Chem. 294, 9260–9275 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dunne, O. M. & Davies, O. R. Molecular structure of human synaptonemal complex protein SYCE1. Chromosoma 128, 223–236 (2019).

  36. West, A. M. et al. A conserved filamentous assembly underlies the structure of the meiotic chromosome axis. Elife 8, e40372 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bollschweiler, D. et al. Molecular architecture of the SYCP3 fibre and its interaction with DNA. Open Biol. 9, 190094 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yuan, L. et al. The synaptonemal complex protein SCP3 can form multistranded, cross-striated fibers in vivo. J. Cell Biol. 142, 331–339 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ortiz, R. et al. Cytochemical study of the distribution of RNA and DNA in the synaptonemal complex of guinea-pig and rat spermatocytes. Eur. J. Histochem. 46, 133–142 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Caballero, I. et al. ARCIMBOLDO on coiled coils. Acta Crystallogr. D Struct. Biol. 74, 194–204 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Squire, J. The Structural Basis of Muscular Contraction (Springer, 1981).

  42. Er Rafik, M., Doucet, J. & Briki, F. The intermediate filament architecture as determined by X-ray diffraction modeling of hard α-keratin. Biophys. J. 86, 3893–3904 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bai, Y., Luo, Q. & Liu, J. Protein self-assembly via supramolecular strategies. Chem. Soc. Rev. 45, 2756–2767 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Garcia-Seisdedos, H., Empereur-Mot, C., Elad, N. & Levy, E. D. Proteins evolve on the edge of supramolecular self-assembly. Nature 548, 244–247 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. McManus, J. J., Charbonneau, P., Zaccarelli, E. & Asherie, N. The physics of protein self-assembly. Curr. Opin. Colloid Interface Sci. 22, 73–79 (2016).

    Article  CAS  Google Scholar 

  46. Sandhu, S. et al. A pseudo-meiotic centrosomal function of TEX12 in cancer. Preprint at bioRxiv https://doi.org/10.1101/509869 (2019).

  47. Ahn, J. et al. Structural basis for lamin assembly at the molecular level. Nat. Commun. 10, 3757 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Aziz, A. et al. The structure of vimentin linker 1 and rod 1B domains characterized by site-directed spin-labeling electron paramagnetic resonance (SDSL-EPR) and X-ray crystallography. J. Biol. Chem. 287, 28349–28361 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pang, A. H., Obiero, J. M., Kulczyk, A. W., Sviripa, V. M. & Tsodikov, O. V. A crystal structure of coil 1B of vimentin in the filamentous form provides a model of a high-order assembly of a vimentin filament. FEBS J. 285, 2888–2899 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chernyatina, A. A., Nicolet, S., Aebi, U., Herrmann, H. & Strelkov, S. V. Atomic structure of the vimentin central α-helical domain and its implications for intermediate filament assembly. Proc. Natl Acad. Sci. USA 109, 13620–13625 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee, C. H., Kim, M. S., Chung, B. M., Leahy, D. J. & Coulombe, P. A. Structural basis for heteromeric assembly and perinuclear organization of keratin filaments. Nat. Struct. Mol. Biol. 19, 707–715 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Bunick, C. G. & Milstone, L. M. The X-ray crystal structure of the keratin 1-keratin 10 helix 2B heterodimer reveals molecular surface properties and biochemical insights into human skin disease. J. Invest. Dermatol. 137, 142–150 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Eldirany, S. A., Ho, M., Hinbest, A. J., Lomakin, I. B. & Bunick, C. G. Human keratin 1/10-1B tetramer structures reveal a knob-pocket mechanism in intermediate filament assembly. EMBO J. 38, e10074 (2019).

    Article  CAS  Google Scholar 

  54. Helfand, B. T. et al. Vimentin organization modulates the formation of lamellipodia. Mol. Biol. Cell 22, 1274–1289 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Eldirany, S. A., Lomakin, I. B., Ho, M. & Bunick, C. G. Recent insight into intermediate filament structure. Curr. Opin. Cell Biol. 68, 132–143 (2020).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Koster, S., Weitz, D. A., Goldman, R. D., Aebi, U. & Herrmann, H. Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networks. Curr. Opin. Cell Biol. 32, 82–91 (2015).

    Article  PubMed  CAS  Google Scholar 

  57. Herrmann, H. & Aebi, U. Intermediate filaments: structure and assembly. Cold Spring Harb. Perspect. Biol. 8, a018242 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Kayser, J., Grabmayr, H., Harasim, M., Herrmann, H. & Bausch, A. R. Assembly kinetics determine the structure of keratin networks. Soft Matter 8, 8873–8879 (2012).

    Article  CAS  Google Scholar 

  59. Turgay, Y. et al. The molecular architecture of lamins in somatic cells. Nature 543, 261–264 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jordan, P. W., Karppinen, J. & Handel, M. A. Polo-like kinase is required for synaptonemal complex disassembly and phosphorylation in mouse spermatocytes. J. Cell Sci. 125, 5061–5072 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Diederichs, K., McSweeney, S. & Ravelli, R. B. Zero-dose extrapolation as part of macromolecular synchrotron data reduction. Acta Crystallogr. D Biol. Crystallogr. 59, 903–909 (2003).

    Article  PubMed  CAS  Google Scholar 

  63. Tickle, I. J. et al. STARANISO (Global Phasing Ltd, 2018); http://staraniso.globalphasing.org/cgi-bin/staraniso.cgi

  64. Rodriguez, D. D. et al. Crystallographic ab initio protein structure solution below atomic resolution. Nat. Methods 6, 651–653 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Thomas, J. M. H., Keegan, R. M., Rigden, D. J. & Davies, O. R. Extending the scope of coiled-coil crystal structure solution by AMPLE through improved ab initio modelling. Acta Crystallogr. D Struct. Biol. 76, 272–284 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vonrhein, C. et al. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr. D Biol. Crystallogr. 67, 293–302 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sreerama, N. & Woody, R. W. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem. 287, 252–260 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Whitmore, L. & Wallace, B. A. Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89, 392–400 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Konarev, P. V., Volkov, V. V., Sokolova, A. V., Koch, M. H. J. & Svergun, D. I. PRIMUS—a Windows-PC based system for small-angle scattering data analysis. J. Appl. Cryst. 36, 1277–1282 (2003).

    Article  CAS  Google Scholar 

  75. Franke, D. & Svergun, D. I. DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J. Appl. Crystallogr. 42, 342–346 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Svergun, D. I. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 76, 2879–2886 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kozin, M. B. & Svergun, D. I. Automated matching of high- and low-resolution structural models. J. Appl. Crystallogr. 34, 33–41 (2001).

    Article  CAS  Google Scholar 

  78. Svergun, D. I., Barberato, C. & Koch, M. H. J. CRYSOL—a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Cryst. 28, 768–773 (1995).

    Article  CAS  Google Scholar 

  79. Schneidman-Duhovny, D., Hammel, M., Tainer, J. A. & Sali, A. FoXS, FoXSDock and MultiFoXS: single-state and multi-state structural modeling of proteins and their complexes based on SAXS profiles. Nucleic Acids Res. 44, W424–W429 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Petoukhov, M. V. et al. New developments in the ATSAS program package for small-angle scattering data analysis. J. Appl. Crystallogr. 45, 342–350 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wood, C. W. & Woolfson, D. N. CCBuilder 2.0: powerful and accessible coiled-coil modeling. Protein Sci. 27, 103–111 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Nivon, L. G., Moretti, R. & Baker, D. A Pareto-optimal refinement method for protein design scaffolds. PLoS ONE 8, e59004 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M. & Barton, G. J. Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Diamond Light Source and the staff of beamlines I03, I24 and B21 (proposals mx13587, mx18598, sm14435, sm15580, sm15897, sm15836 and sm21777). We thank I. Usón for advice on ARCIMBOLDO_LITE, and A. Baslé and H. Waller for assistance with X-ray crystallographic and circular dichroism data collection. This study was supported by a Wellcome Trust Senior Research Fellowship (grant no. 219413/Z/19/Z) (O.R.D.).

Author information

Authors and Affiliations

Authors

Contributions

J.M.D. crystallized SYCE2-TEX12 2:2 and 4:4 complexes and performed biophysical and EM experiments. L.J.S. collected initial biophysics data. O.R.D. solved the SYCE2-TEX12 crystal structures, analyzed data, designed experiments and wrote the paper.

Corresponding author

Correspondence to Owen R. Davies.

Ethics declarations

Competing interests

The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript. The authors declare no competing interests.

Additional information

Peer review information Nature Structural & Molecular Biology thanks John Weir and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available. Beth Moorefield was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Circular dichroism analysis of SYCE2-TEX12 complexes.

(a-c) Circular dichroism (CD) analysis of SYCE2-TEX12 core and full-length complexes containing wild-type (WT; purple) and ΔCtip (yellow) TEX12 sequences. (a) Far UV circular dichroism (CD) spectra recorded between 260 nm and 185 nm in mean residue ellipticity, MRE ([θ]) (x103 deg.cm2.dmol−1.residue−1). Data were deconvoluted using the CDSSTR algorithm, with helical content indicated. (b-c) CD thermal denaturation of SYCE2-TEX12 (b) core and (c) full-length complexes, recording the CD helical signature at 222 nm between 5 °C and 95 °C, as % unfolded. Melting temperatures were estimated, as indicated.

Extended Data Fig. 2 Image analysis of SYCE2-TEX12 electron micrographs.

(a-d) The procedure used for automated image analysis and quantification of SYCE2-TEX12 fibers is shown for an example micrograph. The Fiji distribution of ImageJ was used to process (a) raw micrographs through (b) background subtraction and (c) FFT Bandpass filter. (d) Fibers were detected by the Ridge detection algorithm in which the centre and edges of interpreted fibres were highlighted in red and green, respectively, from which mean fiber widths and fibre lengths were determined. Representative of at least three independent experiments.

Extended Data Fig. 3 Electron microscopy analysis of SYCE2-TEX12.

(a-d) Electron microscopy of SYCE2-TEX12 (a,b) core and (c,d) wild-type, relating to Fig. 1f,g. (a) Scatter plot of mean fibre width (d, nm) against fibre length (nm) for wild-type SYCE2-TEX12 core. (b) Histograms of the number of fibres with mean widths within 2-nm bins for SYCE2-TEX12 core wild-type (dark blue), ΔCtip (yellow), FFV (F102A, F109A, V116A; purple) and LFIL (L110E, F114E, I117E, L121E; green). The mean, standard deviation and number of fibres in each population is shown, each determined from nine micrographs. (c) Scatter plot of mean fibre width (d, nm) against fibre length (nm) for wild-type SYCE2-TEX12. (d) Histograms of the number of fibres with mean widths within 2-nm bins for SYCE2-TEX12 full-length wild-type (dark blue), ΔCtip (yellow), FFV (light blue) and LFIL (green). The mean, standard deviation and number of fibres in each population is shown, each determined from nine micrographs.

Source data

Extended Data Fig. 4 Crystal structure of the SYCE2-TEX12 core 2:2 complex.

(a) 2Fo-Fc electron density map of the SYCE2-TEX12 core ΔCtip 2:2 complex, presented as a rainbow between 1.0σ (blue) and 3.5σ (red), superimposed on the refined crystallographic model. (b-c) SEC-SAXS analysis of SYCE2-TEX12 core ΔS2C/ΔCtip. (b) SAXS Guinier analysis to determine the radius of gyration (Rg); linear fits are shown in red, with the fitted data range highlighted in black and demarcated by dashed lines. The Q.Rg values were < 1.3 and Rg was calculated as 41 Å and 49 Å, respectively. (c) SAXS Guinier analysis to determine the radius of gyration of the cross-section (Rc); linear fits are shown in red, with the fitted data range highlighted in black and demarcated by dashed lines. The Q.Rc values were < 1.3 and Rc was calculated as 11.7 Å and 12.2 Å, respectively. (d) SEC–MALS analysis of SYCE2-TEX12 core ΔS2C/ΔCtip (dRI profile with molecular weights plotted as diamonds) showing the formation of a 39 kDa 2:2 complex (86%; theoretical – 40 kDa) and a 79 kDa 4:4 complex (14%; theoretical – 79 kDa). (e) Theoretical model of the full SYCE2-TEX12 core ΔCtip 2:2 complex in which the missing C-terminal coiled-coil and S2C helix were docked onto the crystal structure.

Extended Data Fig. 5 Crystal structure of the SYCE2-TEX12 core 4:4 complex.

(a) 2Fo-Fc electron density map of the SYCE2-TEX12 core ΔCtip 4:4 complex (1.0σ), presented as a rainbow between 1.0σ (blue) and 3.5σ (red), superimposed on the refined crystallographic model. (b) Superposition of a constituent 2:2 complex from the SYCE2-TEX12 core ΔCtip 4:4 structure (light blue and light red) and the SYCE2-TEX12 core ΔCtip 2:2 structure (dark blue and dark red), with r.m.s. deviation of 1.91. (c) SEC-MALS analysis of SYCE2-TEX12 core MBP-fusion proteins (dRI profiles with molecular weights plotted as diamonds). SYCE2-TEX12 core wild-type is a 296 kDa 4:4 complex (theoretical – 278 kDa), whereas ΔS2C and ΔCtip form 131 kDa and 130 kDa 2:2 complexes, respectively (theoretical – 136 kDa and 137 kDa).

Extended Data Fig. 6 MALS and SAXS analysis of SYCE2-TEX12 wild-type and mutant complexes.

(a) SEC-MALS analysis of SYCE2-TEX12 core ΔS2C and V149E, V153E, V156E and L160E mutants (dRI profiles with molecular weights plotted as diamonds), demonstrating the formation of 47 kDa and 45 kDa 2:2 complexes, respectively (theoretical – 42 kDa and 45 kDa). The wild-type 90 kDa 4:4 complex is shown in grey for comparison. (b-g) SEC-SAXS analysis of SYCE2-TEX12 core wild-type, F102A F109A V116A (FFV) and L110E F114E I117E L121E (LFIL) mutants. (b) SAXS scattering data overlaid with the theoretical scattering curves of the 4:4 crystal structure (red), with modeled Ctip-S2C C-terminal bundles (blue), and with flexibly modelled N-termini (yellow); χ2 values are indicated and residuals for each fit are shown (inset). (c) SAXS Guinier analysis to determine the radius of gyration (Rg); linear fits are shown in red, with the fitted data range highlighted in black and demarcated by dashed lines. The Q.Rg values were < 1.3 and Rg was calculated as 49 Å, 49 Å and 47 Å, respectively. (d-e) SAXS Guinier analysis to determine the radius of gyration of the cross-section (Rc); linear fits are shown in red, with the fitted data range highlighted in black and demarcated by dashed lines. The Q.Rc values were < 1.3 and Rc was calculated as (d) 19.4 Å for wild-type and FFV and (e) 12.2 Å for LFIL. (f) SAXS P(r) interatomic distance distributions of SYCE2-TEX12 core FFV and LFIL, showing maximum dimensions of 19 nm and 18 nm, respectively. (g) SAXS ab initio model of SYCE2-TEX12 core FFV in which a filtered averaged model from 30 independent DAMMIF runs is shown.

Extended Data Fig. 7 Modelling of the SYCE2-TEX12 core ‘closed’ 4:4 assembly.

(a-c) Modelling of the ‘closed’ 4:4 assembly. (a) Theoretical model of hetero-dimeric coiled-coils corresponding to SYCE2 and TEX12 amino-acids 114-165 and 75-123, respectively (including Ctip and S2C sequences 155-165 and 114-123), were generated using CCBuilder by specifying the heptad register observed in the 2:2 and 4:4 crystal structures. (b) The coiled-coil model (red and blue) docked onto the 2:2 ends of the 4:4 crystal structure (pale red and pale blue), showing close correspondence between overlapping helices. (c) This resulted in a 4:4 structure with emanating S2C-Ctip dimers (top) that was subjected to iterative energy minimisation and geometry idealisation such that S2C-Ctip sequences of adjacent dimers combined into capping four-helical bundles at either end of the 4:4 molecule (bottom).

Extended Data Fig. 8 Modelling of the SYCE2-TEX12 core fibrous assembly.

(a) Model of SYCE2-TEX12 core fibrous assembly in which adjacent 4:4 complexes are translated by 15 nm and interact back-to-back through stacked S2C-Ctip antiparallel four-helical bundles. (b-e) SEC-SAXS analysis of SYCE2-TEX12 core 35 nm and 65 nm (length) fibres. (b) SAXS scattering data overlaid with the theoretical scattering curves of a 4 × 35 nm (w × l) fibre model (two consecutive 4:4 complexes, red) and a 2 × 65 nm (w × l) fibre model (four consecutive 2:2 complexes, blue); χ2 values are indicated and residuals for each fit are shown (inset). (c) The 4 × 35 nm and 2 × 65 nm fibre models used for SAXS data fitting. (d) SAXS Guinier analysis to determine the radius of gyration (Rg); linear fits are shown in red, with the fitted data range highlighted in black and demarcated by dashed lines. The Q.Rg values were < 1.3 and Rg was calculated as 86 Å and 167 Å, respectively. (e) SAXS Guinier analysis to determine the radius of gyration of the cross-section (Rc); linear fits are shown in red, with the fitted data range highlighted in black and demarcated by dashed lines. The Q.Rc values were < 1.3 and Rc was calculated as 16.6 Å and 15.3 Å, respectively.

Extended Data Fig. 9 Comparison of hierarchical assembly by SYCE2-TEX12 and intermediate filaments.

(a,b) Side-by-side comparison of assembly by (a) SYCE2-TEX12 and (b) intermediate filaments, using examples of keratin and vimentin. (a) SYCE2-TEX12 undergoes hierarchical assembly from a 2:2 into 4:4 complex, and through end-on assembly into 2-nm and 4-nm fibres, which assemble into 10-nm fibres that become bundled together in 40-nm fibres that represent its dominant state by electron microscopy. Scale bars, 20 nm (top), 50 nm (middle), 100 nm (bottom, upper) and 50 nm (bottom, lower). (b) The keratin K1/K10-1B complex is a dimer that forms an anti-parallel hetero-tetramer (PDB accession 6EC0)53. Higher order assembly occurs through unit length filaments, into 10-nm fibres, which are directly comparable to SYCE2-TEX12 10-nm fibres, and are shown here for vimentin (middle). Scale bars, 100 nm. Reproduced from Helfand, et al.54. The 10-nm IF fibres can further assemble into thick bundles, which are directly comparable with SYCE2-TEX12 40-nm fibres. Please see Kayser, et al.58 for electron micrographs of keratin’s thick bundles.

Supplementary information

Source data

Source Data Fig. 1

Unprocessed gels.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunce, J.M., Salmon, L.J. & Davies, O.R. Structural basis of meiotic chromosome synaptic elongation through hierarchical fibrous assembly of SYCE2-TEX12. Nat Struct Mol Biol 28, 681–693 (2021). https://doi.org/10.1038/s41594-021-00636-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-021-00636-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing