Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structural mechanism of heat-induced opening of a temperature-sensitive TRP channel

Abstract

Numerous physiological functions rely on distinguishing temperature through temperature-sensitive transient receptor potential channels (thermo-TRPs). Although the function of thermo-TRPs has been studied extensively, structural determination of their heat- and cold-activated states has remained a challenge. Here, we present cryo-EM structures of the nanodisc-reconstituted wild-type mouse TRPV3 in three distinct conformations: closed, heat-activated sensitized and open states. The heat-induced transformations of TRPV3 are accompanied by changes in the secondary structure of the S2-S3 linker and the N and C termini and represent a conformational wave that links these parts of the protein to a lipid occupying the vanilloid binding site. State-dependent differences in the behavior of bound lipids suggest their active role in thermo-TRP temperature-dependent gating. Our structural data, supported by physiological recordings and molecular dynamics simulations, provide an insight for understanding the molecular mechanism of temperature sensing.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: TRPV3 function and cryo-electron microscopy.
Fig. 2: TRPV3 structures and pore permeation at high temperature.
Fig. 3: N and C termini.
Fig. 4: Lipids.
Fig. 5: State-dependent structural changes.
Fig. 6: Mechanism of TRPV3 temperature activation.

Data availability

All data needed to evaluate the conclusions of the paper are provided in the paper or the Supplementary Information. Cryo-EM density maps have been deposited to the Electron Microscopy Data Bank (EMDB) under the accession codes EMD-23853 (mTRPV3 closed, 4 °C, MSP2N2), EMD-23854 (mTRPV3 closed, 42 °C, MSP2N2), EMD-23855 (mTRPV3 sensitized, 42 °C, MSP2N2), EMD-23856 (mTRPV3 closed, 4 °C, cNW11), EMD-23857 (mTRPV3 closed, 42 °C, cNW11) and EMD-23858 (mTRPV3 open, 42 °C, cNW11) (Table 1). The corresponding model coordinates have been deposited to the Protein Data Bank (PDB) under accession codes 7MIJ (mTRPV3 closed, 4 °C, MSP2N2), 7MIK (mTRPV3 closed, 42 °C, MSP2N2), 7MIL (mTRPV3 sensitized, 42 °C, MSP2N2), 7MIM (mTRPV3 closed, 4 °C, cNW11), 7MIN (mTRPV3 closed, 42 °C, cNW11) and 7MIO (mTRPV3 open, 42 °C, cNW11) (Table 1). Source data are provided with this paper.

References

  1. Castillo, K., Diaz-Franulic, I., Canan, J., Gonzalez-Nilo, F. & Latorre, R. Thermally activated TRP channels: molecular sensors for temperature detection. Phys. Biol. 15, 021001 (2018).

    PubMed  Article  CAS  Google Scholar 

  2. Voets, T. TRP channels and thermosensation. Handb. Exp. Pharmacol. 223, 729–741 (2014).

    CAS  PubMed  Article  Google Scholar 

  3. Islas, L. D. Thermal effects and sensitivity of biological membranes. Curr. Top. Membr. 74, 1–17 (2014).

    CAS  PubMed  Article  Google Scholar 

  4. Lamas, J. A., Rueda-Ruzafa, L. & Herrera-Pérez, S. Ion channels and thermosensitivity: TRP, TREK or both? Int. J. Mol. Sci. 20, 2371 (2019).

    PubMed Central  Article  CAS  Google Scholar 

  5. Arrigoni, C. & Minor, D. L. Global versus local mechanisms of temperature sensing in ion channels. Pflug. Arch. 470, 733–744 (2018).

    CAS  Article  Google Scholar 

  6. Dhaka, A., Viswanath, V. & Patapoutian, A. Trp ion channels and temperature sensation. Annu. Rev. Neurosci. 29, 135–161 (2006).

    CAS  PubMed  Article  Google Scholar 

  7. Voets, T., Talavera, K., Owsianik, G. & Nilius, B. Sensing with TRP channels. Nat. Chem. Biol. 1, 85–92 (2005).

    CAS  PubMed  Article  Google Scholar 

  8. Latorre, R., Zaelzer, C. & Brauchi, S. Structure–functional intimacies of transient receptor potential channels. Q. Rev. Biophys. 42, 201–246 (2009).

    CAS  PubMed  Article  Google Scholar 

  9. Jordt, S. E., McKemy, D. D. & Julius, D. Lessons from peppers and peppermint: the molecular logic of thermosensation. Curr. Opin. Neurobiol. 13, 487–492 (2003).

    CAS  PubMed  Article  Google Scholar 

  10. Clapham, D. E. TRP channels as cellular sensors. Nature 426, 517–524 (2003).

    CAS  PubMed  Article  Google Scholar 

  11. Yuan, P. Structural biology of thermoTRPV channels. Cell Calcium 84, 102106 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Singh, A. K. et al. Structural basis of temperature sensation by the TRP channel TRPV3. Nat. Struct. Mol. Biol. 26, 994–998 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Nilius, B., Bíró, T. & Owsianik, G. TRPV3: time to decipher a poorly understood family member! J. Physiol. 592, 295–304 (2014).

    CAS  PubMed  Article  Google Scholar 

  14. Yang, P. & Zhu, M. X. Trpv3. Handb. Exp. Pharmacol. 222, 273–291 (2014).

    CAS  PubMed  Article  Google Scholar 

  15. Broad, L. M. et al. TRPV3 in drug development. Pharmaceuticals (Basel) 9, 55 (2016).

    PubMed Central  Article  CAS  Google Scholar 

  16. Chung, M. K., Lee, H., Mizuno, A., Suzuki, M. & Caterina, M. J. 2-Aminoethoxydiphenyl borate activates and sensitizes the heat-gated ion channel TRPV3. J. Neurosci. 24, 5177–5182 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Xiao, R. et al. Calcium plays a central role in the sensitization of TRPV3 channel to repetitive stimulations. J. Biol. Chem. 283, 6162–6174 (2008).

    CAS  PubMed  Article  Google Scholar 

  18. Liu, B., Yao, J., Zhu, M. X. & Qin, F. Hysteresis of gating underlines sensitization of TRPV3 channels. J. Gen. Physiol. 138, 509–520 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Moqrich, A. et al. Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307, 1468–1472 (2005).

    CAS  PubMed  Article  Google Scholar 

  20. Xu, H. et al. TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418, 181–186 (2002).

    CAS  PubMed  Article  Google Scholar 

  21. Peier, A. M. et al. A heat-sensitive TRP channel expressed in keratinocytes. Science 296, 2046–2049 (2002).

    CAS  PubMed  Article  Google Scholar 

  22. Smith, G. D. et al. TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418, 186–190 (2002).

    CAS  PubMed  Article  Google Scholar 

  23. Shimada, H. et al. The structure of lipid nanodisc-reconstituted TRPV3 reveals the gating mechanism. Nat. Struct. Mol. Biol. 27, 645–652 (2020).

    CAS  PubMed  Article  Google Scholar 

  24. Deng, Z. et al. Gating of human TRPV3 in a lipid bilayer. Nat. Struct. Mol. Biol. 27, 635–644 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Zubcevic, L., Borschel, W. F., Hsu, A. L., Borgnia, M. J. & Lee, S. Y. Regulatory switch at the cytoplasmic interface controls TRPV channel gating. Elife 8, e47746 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Zubcevic, L. et al. Conformational ensemble of the human TRPV3 ion channel. Nat. Commun. 9, 4773 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  27. Singh, A. K., McGoldrick, L. L. & Sobolevsky, A. I. Structure and gating mechanism of the transient receptor potential channel TRPV3. Nat. Struct. Mol. Biol. 25, 805–813 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Nasr, M. L. et al. Covalently circularized nanodiscs for studying membrane proteins and viral entry. Nat. Methods 14, 49–52 (2017).

    CAS  PubMed  Article  Google Scholar 

  29. Shi, D. J., Ye, S., Cao, X., Zhang, R. & Wang, K. Crystal structure of the N-terminal ankyrin repeat domain of TRPV3 reveals unique conformation of finger 3 loop critical for channel function. Protein Cell 4, 942–950 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Gao, Y., Cao, E., Julius, D. & Cheng, Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534, 347–351 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Cao, E., Liao, M., Cheng, Y. & Julius, D. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504, 113–118 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Liu, B. & Qin, F. Single-residue molecular switch for high-temperature dependence of vanilloid receptor TRPV3. Proc. Natl Acad. Sci. USA 114, 1589–1594 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Cao, E., Cordero-Morales, J. F., Liu, B., Qin, F. & Julius, D. TRPV1 channels are intrinsically heat sensitive and negatively regulated by phosphoinositide lipids. Neuron 77, 667–679 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Feng, Q. Temperature sensing by thermal TRP channels: thermodynamic basis and molecular insights. Curr. Top. Membr. 74, 19–50 (2014).

    CAS  PubMed  Article  Google Scholar 

  35. Vlachová, V. et al. Functional role of C-terminal cytoplasmic tail of rat vanilloid receptor 1. J. Neurosci. 23, 1340–1350 (2003).

    PubMed  PubMed Central  Article  Google Scholar 

  36. Yao, J., Liu, B. & Qin, F. Modular thermal sensors in temperature-gated transient receptor potential (TRP) channels. Proc. Natl Acad. Sci. USA 108, 11109–11114 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Grandl, J. et al. Temperature-induced opening of TRPV1 ion channel is stabilized by the pore domain. Nat. Neurosci. 13, 708–714 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Grandl, J. et al. Pore region of TRPV3 ion channel is specifically required for heat activation. Nat. Neurosci. 11, 1007–1013 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Brauchi, S., Orio, P. & Latorre, R. Clues to understanding cold sensation: thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proc. Natl Acad. Sci. USA 101, 15494–15499 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Brauchi, S., Orta, G., Salazar, M., Rosenmann, E. & Latorre, R. A hot-sensing cold receptor: C-terminal domain determines thermosensation in transient receptor potential channels. J. Neurosci. 26, 4835–4840 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Zhang, F. et al. Heat activation is intrinsic to the pore domain of TRPV1. Proc. Natl Acad. Sci. USA 115, E317–E324 (2018).

    CAS  PubMed  Article  Google Scholar 

  42. Voets, T. et al. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430, 748–754 (2004).

    CAS  PubMed  Article  Google Scholar 

  43. Gregorio-Teruel, L. et al. The integrity of the TRP domain is pivotal for correct TRPV1 channel gating. Biophys. J. 109, 529–541 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Kim, S. E., Patapoutian, A. & Grandl, J. Single residues in the outer pore of TRPV1 and TRPV3 have temperature-dependent conformations. PLoS ONE 8, e59593 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Macikova, L., Vyklicka, L., Barvik, I., Sobolevsky, A. I. & Vlachova, V. Cytoplasmic inter-subunit interface controls use-dependence of thermal activation of TRPV3 channel. Int. J. Mol. Sci. 20, 3990 (2019).

    CAS  PubMed Central  Article  Google Scholar 

  46. Laursen, W. J., Schneider, E. R., Merriman, D. K., Bagriantsev, S. N. & Gracheva, E. O. Low-cost functional plasticity of TRPV1 supports heat tolerance in squirrels and camels. Proc. Natl Acad. Sci. USA 113, 11342–11347 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Clapham, D. E. & Miller, C. A thermodynamic framework for understanding temperature sensing by transient receptor potential (TRP) channels. Proc. Natl Acad. Sci. USA 108, 19492–19497 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Jara-Oseguera, A. & Islas, L. D. The role of allosteric coupling on thermal activation of thermo-TRP channels. Biophys. J. 104, 2160–2169 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Kasimova, M. A. et al. A hypothetical molecular mechanism for TRPV1 activation that invokes rotation of an S6 asparagine. J. Gen. Physiol. 150, 1554–1566 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Goehring, A. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat. Protoc. 9, 2574–2585 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Russo, C. J. & Passmore, L. A. Electron microscopy: ultrastable gold substrates for electron cryomicroscopy. Science 346, 1377–1380 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14, 673–681 (2006).

    CAS  PubMed  Article  Google Scholar 

  53. Hattori, M., Hibbs, R. E. & Gouaux, E. A fluorescence-detection size-exclusion chromatography-based thermostability assay for membrane protein precrystallization screening. Structure 20, 1293–1299 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).

    CAS  PubMed  Article  Google Scholar 

  55. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    CAS  Article  PubMed  Google Scholar 

  57. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. Afonine, P. V. et al. New tools for the analysis and validation of cryo-EM maps and atomic models. Acta Crystallogr. D Struct. Biol. 74, 814–840 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  Article  PubMed  Google Scholar 

  61. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators and developers. Protein Sci. 30, 70–82 (2021).

    CAS  PubMed  Article  Google Scholar 

  62. Terwilliger, T. C., Ludtke, S. J., Read, R. J., Adams, P. D. & Afonine, P. V. Improvement of cryo-EM maps by density modification. Nat. Methods 17, 923–927 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    PubMed  Article  CAS  Google Scholar 

  64. Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 68, 352–367 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. The PyMOL Molecular Graphics System (DeLano Scientific, 2002).

  66. Dawaliby, R. et al. Phosphatidylethanolamine is a key regulator of membrane fluidity in eukaryotic cells. J. Biol. Chem. 291, 3658–3667 (2016).

    CAS  PubMed  Article  Google Scholar 

  67. Abraham, M. J. & Gready, J. E. Optimization of parameters for molecular dynamics simulation using smooth particle-mesh Ewald in GROMACS 4.5. J. Comput. Chem. 32, 2031–2040 (2011).

    CAS  PubMed  Article  Google Scholar 

  68. Lindorff-Larsen, K. et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78, 1950–1958 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. Jorgensen, W. L. & Tirado-Rives, J. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proc. Natl Acad. Sci. USA 102, 6665–6670 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. Dittert, I. et al. Improved superfusion technique for rapid cooling or heating of cultured cells under patch-clamp conditions. J. Neurosci. Methods 151, 178–185 (2006).

    PubMed  Article  Google Scholar 

  71. Cao, C., Zakharian, E., Borbiro, I. & Rohacs, T. Interplay between calmodulin and phosphatidylinositol 4,5-bisphosphate in Ca2+-induced inactivation of transient receptor potential vanilloid 6 channels. J. Biol. Chem. 288, 5278–5290 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. Luo, J., Stewart, R., Berdeaux, R. & Hu, H. Tonic inhibition of TRPV3 by Mg2+ in mouse epidermal keratinocytes. J. Invest. Dermatol. 132, 2158–2165 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Cao, X., Yang, F., Zheng, J. & Wang, K. Intracellular proton-mediated activation of TRPV3 channels accounts for the exfoliation effect of α-hydroxyl acids on keratinocytes. J. Biol. Chem. 287, 25905–25916 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Wang, H. et al. Mechanisms of proton inhibition and sensitization of the cation channel TRPV3. J. Gen. Physiol. 153, e202012663 (2021).

    CAS  PubMed  Article  Google Scholar 

  75. Choi, S. W. et al. The novel high-frequency variant of TRPV3 p.A628T in East Asians showing faster sensitization in response to chemical agonists. Pflug. Arch. 471, 1273–1289 (2019).

    CAS  Article  Google Scholar 

  76. Doerner, J. F., Hatt, H. & Ramsey, I. S. Voltage- and temperature-dependent activation of TRPV3 channels is potentiated by receptor-mediated PI(4,5)P2 hydrolysis. J. Gen. Physiol. 137, 271–288 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. Schrapers, K. T., Sponder, G., Liebe, F., Liebe, H. & Stumpff, F. The bovine TRPV3 as a pathway for the uptake of Na+, Ca2+ and NH4+. PLoS ONE 13, e0193519 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  78. Henderson, R. et al. Outcome of the first electron microscopy validation task force meeting. Structure 20, 205–214 (2012).

    CAS  PubMed  Article  Google Scholar 

  79. Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Samsom, M. S. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–360 (1996).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We thank S. Mulligan (Pacific Northwest Center for Cryo-EM), U. Baxa and T. Edwards (National Cancer Institute, The Frederick National Laboratory), R. Grassucci, Y.-C. Chi, Z. Zhang, C. Wang, J. Wang (Columbia University Cryo-Electron Microscopy Center) and H. Kuang (New York Structural Biology Center/National Center for CryoEM Access and Training) for help with microscope operation and data collection, personnel of the Supercomputer Center ‘Polytechnical’ at the St Petersburg Polytechnic University for access to the facility and D. Nolde for assistance with supercomputing. This research was, in part, supported by the National Cancer Institute’s National Cryo-EM Facility at the Frederick National Laboratory for Cancer Research under contract no. HSSN261200800001E. Some of this work was performed at the Columbia University Cryo-Electron Microscopy Center. A portion of this research was supported by NIH grant no. U24GM129547 and performed at the PNCC at OHSU and accessed through EMSL (grid.436923.9), a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research. Some of this work was performed at the National Center for CryoEM Access and Training (NCCAT) and the Simons Electron Microscopy Center located at the New York Structural Biology Center, supported by the NIH Common Fund Transformative High Resolution Cryo-Electron Microscopy program (U24 GM129539) and by grants from the Simons Foundation (SF349247) and NY State Assembly Majority. MD simulations work was supported by the Russian Science Foundation (project #18-14-00375). Water and ion conductivity analysis was supported by the Russian Foundation for Basic Research (project #19-04-00350). Supercomputer calculations were supported within the framework of the HSE University Basic Research Program and the Russian Academic Excellence Project ‘5-100’. Whole-cell patch-clamp recordings were supported by Czech Science Foundation (project #19-03777 S). A.I.S. was supported by the NIH (R01 CA206573, R01 NS083660, R01 NS107253) and NSF (1818086).

Author information

Authors and Affiliations

Authors

Contributions

K.D.N. and A.N. made constructs, prepared protein samples and developed and optimized heating protocols. K.D.N., A.N. and N.K. performed cryo-EM data processing. K.D.N., A.N. and A.I.S. analyzed structural data. N.A.K., Y.A.T. and R.G.E. designed computational work, performed molecular modeling and analyzed the data. V.S. and V.V. prepared constructs and performed whole-cell patch-clamp recordings. E.Z. performed and analyzed planar lipid bilayer recordings. K.D.N., A.N., Y.A.T., V.V., E.Z., R.G.E. and A.I.S. wrote the manuscript.

Corresponding author

Correspondence to Alexander I. Sobolevsky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Structural & Molecular Biology thanks Chia-Hsueh Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Florian Ullrich was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Temperature-dependent changes in currents and thermodynamics of TRPV3.

a, A representative continuous recording of current from multiple TRPV3 channels occasionally reconstituted into the synthetic lipid bilayer (black) in response to the temperature ramp from 22 to 42 °C (red), with the membrane potential alternating between +100 mV (red circles) and –100 mV (blue circles). Note the sharp increase in current activity in the 36–42 °C temperature range. b, Temperature dependence of the open probability Po at +100 mV calculated using single-channel recordings (see examples in Fig. 1b; n = 19 independent experiments; 189,976 events were analyzed; the data includes the previously published12 and new recordings). Fitting of the data allows estimation of the temperature coefficient, Q10 = 27.0 ± 7.4 (n = 19 independent experiments). c, Van’t Hoff plot of the equilibrium constant Keq calculated using the values of Po (see Methods). Linear fits in the 22–36 °C and 36–42 °C temperature ranges provide the values of changes in enthalpy and entropy for the temperature-induced activation of TRPV3. Data in b and c are presented as mean values ± SEM. Source data for b and c are available online.

Source data

Extended Data Fig. 2 Characteristics of TRPV3 cryo-EM reconstructions.

Plots show unmasked, masked and corrected FSC curves calculated between half maps, with the overall resolution estimated using the FSC = 0.143 criterion78. Cryo-EM maps are colored according to the local resolution estimation in Relion55.

Extended Data Fig. 3 Map versus model FSC curves.

Map versus model FSC curves with and without mask were calculated using Mtriage as part of Phenix package59.

Extended Data Fig. 4 Cryo-EM density of TRPV3.

a, Stereo view of an ARD fragment of the 1.98-Å resolution cryo-EM map of TRPV3 reconstituted in MSP2N2 nanodiscs and incubated at 4 °C. b, Fragments of the same map for the membrane segments and TRP helix.

Extended Data Fig. 5 Comparison of pore geometry and architecture of TRPV3 structures.

a, Pore-forming domains of TRPV3 in the sensitized state with the residues lining the pore shown as sticks. Only two of four subunits are shown, with the front and back subunits omitted for clarity. The pore profile is shown as a space-filling model (light blue). b, Distribution of water (blue mesh) and ions (red mesh) during MD simulations of TRPV3 in the sensitized state, illustrating the lack of pore permeation. c, The pore radius for different TRPV3 structures calculated using HOLE79. The vertical dashed line denotes the radius of a water molecule, 1.4 Å. d, Superposition of a single subunit from different closed-state structures of TRPV3, with the main structural elements labeled. The root-mean-square deviation (RMSD) calculated for each pair of these subunits ranges between 0.314 and 0.441 Å. e-f, Superposition of TRPV3 structures in the closed (MSP2N2, 4 °C; green) and sensitized (pink) states (RMSD, 3.098 Å) viewed parallel to the membrane (e) or intracellularly (f). g-h, Superposition of TRPV3 structures in the closed (MSP2N2, 4 °C; green) and open (orange) states (RMSD, 3.293 Å) viewed parallel to the membrane (g) or intracellularly (h). Only two of four subunits are shown in (e) and (g) with the front and back subunits omitted for clarity. Note (e-h) that TRPV3 in the sensitized and open states becomes shorter and its intracellular skirt undergoes a clockwise rotation when viewed intracellularly.

Extended Data Fig. 6 Overview of cryo-EM data collected for mTRPV3 in cNW11 nanodiscs at 42 °C and 3D reconstruction workflow.

Representative micrographs with example particles circled in yellow and reference-free 2D class averages in different orientations are shown. Three datasets were collected and joined after particle clean-up. All processing steps were done in Relion, except the 2D/3D particle clean-up that was done in cryoSPARC.

Extended Data Fig. 7 Molecular dynamics simulations.

a, Conductance of water and Na+ ions through the selectivity filter and gate of the closed, sensitized and open TRPV3 plotted against the time course of MD simulation. Note that the closed state shows no permeation, the sensitized state permeates water through the selectivity filter only and the open state permeates water and Na+ ions through both selectivity filter and gate. b-g, Averaged MD density distributions (yellow) for non-hydrogen atoms of phosphatidylethanolamine (PE, b), phosphatidylinositol (PI, c), phosphatidylserine (PS, d), phosphatidylcholine (PC, e), phosphatidylglycerol (PG, f) and cholesterol (g) lipids nested in the vanilloid site of the closed TRPV3 at the beginning of 500-ns simulations. Black mesh shows cryo-EM density. MD snapshots of lipid molecules and residues coordinating their heads are shown in sticks. Chemical structures of the lipid molecules are shown to the left of each structural panel. The overlap of MD and EM densities are 26% for PE, 30% for PI, 36% for PS, 30% for PC, 33% for PG and 24% for cholesterol, calculated by multiplying the overlapping volume of MD and cryo-EM densities by two and dividing by their sum.

Extended Data Fig. 8 Comparison of open-state structures of wild-type TRPV3 and Y564A mutant.

a-b, Overall superposition (RMSD, 2.131 Å) of the open-state structures of wild-type TRPV3 (orange) and previously published Y564A mutant12 (blue, PDB ID: 6PVP) viewed parallel to the membrane (a) and extracellularly (b). c, Single-subunit superposition based on the transmembrane domains (RMSD, 0.943 Å). Note, the most pronounced conformational differences are observed for the S1-S2, S2-S3, S5-P and ARD loops, while the transmembrane domains and TRP helices superpose closely.

Extended Data Fig. 9 Sequence alignment of mouse TRPV channels.

α helices and β strands are depicted above the sequences as cylinders and arrows, respectively. The * symbols indicate residues in the ARD and linker domain that interact with residues in the C-terminus (¥ symbols). Red rectangular outlines denote regions involved in the interaction of the C-terminus with the ARD and linker domain, including residues conserved in thermo-TRPVs, and the AR5 and linker domain loops, which are present in thermo-TRPVs and absent in TRPV5–6. The location of the selectivity filter (S.F.) is indicated by a red box. Identical residues are colored red and highlighted in light pink. Positions of the previously identified mutations in TRPV3 that are critical for thermal sensitivity are highlighted in dark pink.

Extended Data Fig. 10 Conformational changes accompanying temperature-induced opening of wild-type TRPV3.

Superposition of the closed- and heat-activated open-state structures of TRPV3 (cNW11, 42 °C) viewed parallel to the membrane is shown in the centre. Insets show select regions with the arrows indicating the displacement of domains in the open relative to the closed state. The lipid at the vanilloid site is shown in sticks (pink).

Supplementary information

Reporting Summary

Supplementary Video 1

Structural heterogeneity of particles in a cryo-EM sample subjected to temperature cycles. 3D variability analysis of TRPV3 particles in cNW11 nanodiscs. Morph transition between open and closed states was calculated in cryoSPARC.

Supplementary Video 2

Structural transitions between closed, sensitized and open states. Regions involved in gating dynamics are highlighted in pink, with the elements undergoing the strongest structural changes highlighted in dark pink.

Source data

Source Data Extended Data Fig. 1

Statistical source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nadezhdin, K.D., Neuberger, A., Trofimov, Y.A. et al. Structural mechanism of heat-induced opening of a temperature-sensitive TRP channel. Nat Struct Mol Biol 28, 564–572 (2021). https://doi.org/10.1038/s41594-021-00615-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-021-00615-4

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing