Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.


Mining for METTL3 inhibitors to suppress cancer

The RNA methyltransferase METTL3 catalyzes N6-methyladenosine (m6A) modification of messenger RNAs (mRNAs). It is overexpressed in many types of cancer, including acute myelogenous leukemia (AML), and promotes cancer cell growth and tumorigenicity. Now, a selective small molecule inhibitor of METTL3 shows significant antileukemic effects in preclinical AML models, highlighting the promise of pharmacological METTL3 inhibition as a new cancer therapy.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: METTL3 inhibition is a promising therapy against AML.


  1. Morera, L., Lübbert, M. & Jung, M. Clin. Epigenetics 8, 57 (2016).

    Article  Google Scholar 

  2. Dominissini, D. et al. Nature 485, 201–206 (2012).

    Article  CAS  Google Scholar 

  3. Meyer, K. D. et al. Cell 149, 1635–1646 (2012).

    Article  CAS  Google Scholar 

  4. Meyer, K. D. & Jaffrey, S. R. Nat. Rev. Mol. Cell Biol. 15, 313–326 (2014).

    Article  CAS  Google Scholar 

  5. Lin, S., Choe, J., Du, P., Triboulet, R. & Gregory, R. I. Mol. Cell 62, 335–345 (2016).

    Article  CAS  Google Scholar 

  6. Choe, J. et al. Nature 561, 556–560 (2018).

    Article  CAS  Google Scholar 

  7. Vu, L. P. et al. Nat. Med. 23, 1369–1376 (2017).

    Article  CAS  Google Scholar 

  8. Barbieri, I. et al. Nature 552, 126–131 (2017).

    Article  CAS  Google Scholar 

  9. Yankova, E. et al. Nature (2021).

    Article  PubMed  Google Scholar 

  10. Moroz-Omori, E. V. Preprint at bioRxiv (2020).

  11. Wang, X. et al. Nature 505, 117–120 (2014).

    Article  Google Scholar 

  12. Zaccara, S. & Jaffrey, S. R. Cell 181, 1582–1595.e18 (2020).

    Article  CAS  Google Scholar 

  13. Paris, J. et al. Cell Stem Cell 25, 137–148.e6 (2019).

    Article  CAS  Google Scholar 

  14. Li, Z. et al. Cancer Cell 31, 127–141 (2017).

    Article  Google Scholar 

  15. Huang, Y. et al. Cancer Cell 35, 677–691.e10 (2019).

    Article  CAS  Google Scholar 

  16. Shen, C. et al. Cell Stem Cell 27, 64–80.e9 (2020).

    Article  CAS  Google Scholar 

  17. Mauer, J. et al. Nature 541, 371–375 (2017).

    Article  CAS  Google Scholar 

  18. Mauer, J. et al. Nat. Chem. Biol. 15, 340–347 (2019).

    Article  CAS  Google Scholar 

Download references


R.I.G. is supported by an Outstanding Investigator Award (R35CA232115) and R01 grant (R01CA233671) from the National Cancer Institute (NCI) of the NIH.

Author information

Authors and Affiliations



J.L. and R.I.G. wrote the manuscript.

Corresponding author

Correspondence to Richard I. Gregory.

Ethics declarations

Competing interests

R.I.G. is a cofounder and scientific advisory board member of 28-7 Therapeutics and Theon Therapeutics.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Gregory, R.I. Mining for METTL3 inhibitors to suppress cancer. Nat Struct Mol Biol 28, 460–462 (2021).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research