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            Abstract
Small interfering RNAs (siRNAs) promote RNA degradation in a variety of processes and have important clinical applications. siRNAs direct cleavage of target RNAs by guiding Argonaute2 (AGO2) to its target site. Target site accessibility is critical for AGO2-target interactions, but how target site accessibility is controlled in vivo is poorly understood. Here, we use live-cell single-molecule imaging in human cells to determine rate constants of the AGO2 cleavage cycle in vivo. We find that the rate-limiting step in mRNA cleavage frequently involves unmasking of target sites by translating ribosomes. Target site masking is caused by heterogeneous intramolecular RNA-RNA interactions, which can conceal target sites for many minutes in the absence of translation. Our results uncover how dynamic changes in mRNA structure shape AGO2-target recognition, provide estimates of mRNA folding and unfolding rates in vivo, and provide experimental evidence for the role of mRNA structural dynamics in control of mRNA-protein interactions.
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                    Fig. 1: Observing AGO2-dependent mRNA target silencing by single-molecule live-cell imaging.


Fig. 2: Ribosomes stimulate AGO2-dependent mRNA cleavage by promoting AGO2-target interactions.


Fig. 3: In vivo kinetics of the AGO2 cleavage cycle.


Fig. 4: Masking of mRNA target sites by RNA structures inhibits AGO2-target interactions.


Fig. 5: Multiple weak intramolecular mRNA interactions cooperatively mask AGO2 target sites.


Fig. 6: Kinetics of mRNA folding shape AGO2-mRNA interactions.
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Extended data

Extended Data Fig. 1 Effects of AGO2-siRNA complexes on mRNA transcription and translation.
a, Relative mRNA levels of endogenous KIF18B based on qPCR in non-transfected cells (no siRNA) and cells transfected with KIF18B siRNA #1 (+ siRNA). Each dot represents an independent experiment and lines with error bars indicate the mean Â± SEM. b-f, i, Cells expressing the KIF18B reporter without siRNA (no siRNA) or transfected with 10â€‰nM KIF18B siRNA #1 (+ siRNA) were fixed and incubated with smFish probes to visualize reporter mRNAs. b, Representative images of cells incubated with smFISH probes targeting the KIF18B reporter (SunTag-Cy5 and PP7-Alexa594) in no siRNA cells (upper panel) and + siRNA cells (lower panel). Arrows in insets indicate mRNA molecules for which the 5â€² end (SunTag-Cy5 probe) and 3â€² end (PP7-Alexa594 probe) do not co-localize. Scale bar, 10â€‰Âµm in large images and 1â€‰Âµm in insets. c-d, Number of mRNAs in no siRNA and + siRNA cells in (c) the cytoplasm and (d) the nucleus determined based on smFISH using probes targeting the SunTag sequence. Each dot represents a single cell and lines with error bars indicate the mean Â± SEM. e-f, Percentage of mRNAs for which the 5â€² end (labeled with SunTag probes) and 3â€² end (labeled with PP7 probes) co-localized in no siRNA and + siRNA cells, either in (e) the cytoplasm or (f) the nucleus. Each dot represents a single cell and lines with error bars indicate the mean Â± SEM. g, Relative AGO2 mRNA levels based on qPCR in control cells (no gRNA) and cells treated with a CRISPRi guide targeting endogenous AGO2 (AGO2 gRNA). Each dot represents an independent experiment and lines with error bars indicate the mean Â± SEM. h, SunTag-PP7 cells expressing the KIF18B reporter were transfected with KIF18B siRNA #1. The number of ribosomes present on the 5â€² cleavage fragment was determined one frame after the moment of cleavage (see Supplementary Note 4). Dotted red line indicates the intensity of a single SunTag array (that is the intensity associated with a single ribosome). i, Cells were treated for 40â€‰min with dox and the integrated intensity of transcription sites was determined with smFISH probes targeting the SunTag sequence. Each dot represents a single transcription site and lines with error bars indicate the mean Â± SEM. j-k, SunTag-PP7 cells expressing the KIF18B reporter were untransfected (no siRNA) or transfected with KIF18B siRNA #1 (+ siRNA). j, GFP intensity over time associated with individual mRNAs is shown for no siRNA cells (black line) and + siRNA cells (grey lines). Black line indicates average of all mRNAs in no siRNA cells, while each grey line represents the average GFP intensity of all mRNAs cleaved at the same moment relative to the start of translation (see Supplementary Note 5). The red dot indicates the moment of cleavage. k, Average increase in GFP fluorescence intensity either between 1.5-4â€‰min after the start of translation (no siRNA) or at the moment preceding mRNA cleavage (+ siRNA) is shown (see Supplementary Note 5). Each dot represents the average of an independent experiment and lines with error bars indicate the mean Â± SEM. a, c-f, g, i, P-values are based on a two-tailed Studentâ€™s t-test. k, P-value is based on a paired two-tailed t-test. P-values are indicated as * (pâ€‰<â€‰0.05), ** (pâ€‰<â€‰0.01), *** (pâ€‰<â€‰0.001), ns = not significant. Number of measurements for each experiment is listed in Supplementary Table 1. Data for graphs in a,c-k are available as source data.
Source data


Extended Data Fig. 2 Ribosomes stimulate AGO2-dependent mRNA cleavage.
a, The moment at which the first ribosome arrived at the stop codon was calculated for indicated reporters. The experimental data (colored bars) was fit with a gamma distribution (black lines) (See Supplementary Note 5). b-i, SunTag-PP7 cells expressing the indicated reporters were transfected with 50â€‰nM (KIF18B siRNA #3) or 10â€‰nM (all others) siRNA and treated with CHX, where indicated. The time from first detection of translation or from CHX addition until separation of GFP and mCherry foci (that is mRNA cleavage) is shown. Solid lines and corresponding shaded regions represent mean Â± SEM. Dotted line indicates that the data is replotted from an earlier figure panel for comparison. j, Ratio of non-nuclear and nuclear mRNAs 90â€‰min after addition of dox in cells expressing the KIF18B reporter (control) or KIF18B-early-stop reporter (Stop) as determined by smFISH using SunTag probes. Note that mRNA localization is similar for the two cell lines used for northern blot analysis (see Fig. 2e). Each dot represents one cell and lines with error bars indicate the mean Â± SEM. P-value is based on a two-tailed Studentâ€™s t-test. k, SunTag-PP7 cells expressing the indicated reporters were transfected with 10â€‰nM siRNA and treated with CHX, where indicated. The time from first detection of translation or from CHX addition (+ CHX) until separation of GFP and mCherry foci (that is mRNA cleavage) is shown. Solid lines and corresponding shaded regions represent mean Â± SEM. l, The fraction of mRNAs that contains a ribosome on the 3â€² cleavage fragment is shown for mRNAs on which translation started at least 7.5â€‰minutes (KIF18B) or 6â€‰minutes (GAPDH) before the moment of cleavage. On these mRNAs it is expected that the first ribosome has passed the AGO2 target site in ~95% of mRNAs (indicated by black bars) based on the experimentally-derived ribosome elongation rate. The expected fraction (black bars) and observed fraction (green bars) of mRNAs that contains a ribosome on the 3â€² cleavage fragment is shown. Number of measurements for each experiment is listed in Supplementary Table 1. Data for graphs in a-l are available as source data.
Source data


Extended Data Fig. 3 In vivo and in vitro kinetics of the AGO2 cleavage cycle.
a, In vitro AGO2 cleavage reaction with purified AGO2 loaded with KIF18B siRNA #1 and a short oligonucleotide target containing the KIF18B siRNA #1 target sequence. b, Quantification of the cleaved fraction of blot in (a). c, Calculated cleavage rates in the presence of translating ribosomes are shown for different siRNA concentrations (see Supplementary Note 4). Dots and error bars indicate the mean Â± SEM. Number of measurements for each experiment is listed in Supplementary Table 1. Data for graphs in b,c are available as source data.
Source data


Extended Data Fig. 4 Degree of structural masking depends on the AGO2 binding sequence and the surrounding sequence.
a, Schematic of the KIF18B reporter in which the position of the siRNA #1 and siRNA #2 binding sites are swapped. b-c, SunTag-PP7 cells expressing indicated reporters were transfected with (b) 10â€‰nM KIF18B siRNA #1 or (c) 10â€‰nM KIF18B siRNA #2. The time from first detection of translation until separation of GFP and mCherry foci (that is mRNA cleavage) is shown. Solid lines and corresponding shaded regions represent mean Â± SEM. Dotted lines indicate that the data is replotted from an earlier figure panel for comparison. d, Schematic of the GAPDH reporter in which the KIF18B siRNA #1 or KIF18B siRNA #2 binding site is placed at the position of GAPDH siRNA #3. e-f, SunTag-PP7 cells expressing the indicated reporters were transfected with (e) 10â€‰nM KIF18B siRNA #1 or (f) 10â€‰nM KIF18B siRNA #2. The time from first detection of translation or CHX addition until mRNA cleavage is shown. Note that data of the KIF18B-early-stop reporter and KIF18B reporter treated with CHX are combined to generate the cleavage curve for cleavage in the absence of ribosomes. Solid lines and corresponding shaded regions represent mean Â± SEM. g, Ratio of cleavage rate in the presence and absence of ribosomes is shown for the indicated siRNAs and reporters (see Supplementary Note 4). Each dot represents a single experiment and lines with error bars indicate the mean Â± SEM. P-values are based on a two-tailed Studentâ€™s t-test. P-values are indicated as * (pâ€‰<â€‰0.05), ** (pâ€‰<â€‰0.01), *** (pâ€‰<â€‰0.001). K1, K2 and G3 indicate the position of the indicated siRNA. K1 refers to the position of KIF18B siRNA #1, K2 to KIF18B siRNA #2 and G3 to GAPDH siRNA #3. Light blue and light green data points are replotted from an earlier experiment. Number of measurements for each experiment is listed in Supplementary Table 1. Data for graphs in b,c,e-g are available as source data.
Source data


Extended Data Fig. 5 Multiple weak intramolecular mRNA interactions together result in potent AGO2 target site masking.
a-e, SunTag-PP7 cells expressing the indicated reporters were transfected with (a) 10â€‰nM KIF18B siRNA #1 or (b-e) 10â€‰nM GAPDH siRNA #3. The time from first detection of translation until separation of GFP and mCherry foci (that is mRNA cleavage) is shown. Solid lines and corresponding shaded regions represent mean Â± SEM. Dotted lines indicate that the data is replotted from an earlier figure panel for comparison. f, Cleavage rates for the â€˜luciferaseâ€™ reporters with indicated siRNA target sites and with different distances between the stop codon and the siRNA target site are shown. Each dot and error bar indicate the mean Â± SEM. Dotted lines are only for visualization. Number of measurements for each experiment is listed in Supplementary Table 1. Data for graphs in a-f are available as source data.
Source data


Extended Data Fig. 6 Structural dynamics of RNA folding.
a-c, SunTag-PP7 cells expressing the indicated reporters were transfected with 10â€‰nM of the indicated siRNA and treated with CHX, where indicated. The CHX cleavage curves (red lines) only include mRNAs for which translation started between (a) 2.5-5.0â€‰min, (b) 2.0-4.5â€‰min, or (c) 2.0-5.0â€‰min before CHX addition (see Supplementary Note 4). Dotted lines represent optimal fit with a two-component exponential decay distribution. The no CHX cleavage curve is re-normalized and plotted from (a) 2.5â€‰min or (b-c) 2.0â€‰min after the start of translation. d, Relative GFP fluorescence intensities were measured before and after the addition of CHX in SunTag-PP7 cells expressing the KIF18B reporter. Intensity-time traces were aligned at the moment of CHX addition. GFP fluorescence intensities were normalized to the GFP fluorescence intensities at the moment of CHX addition. The thick blue line represents the average intensity of all traces, thin grey lines represent intensity traces of multiple single mRNAs. e, Fitting parameters and corresponding half-lives of the two-component exponential fits from Fig. 6a and Extended Data Fig. 6a, b. f, Average number of ribosomes per mRNA molecule for the KIF18B-uORF and KIF18B reporters. Each dot represents an independent experiment and lines with error bars indicate the mean Â± SEM. g, i, SunTag-PP7 cells expressing the indicated reporter were transfected with the indicated siRNA and (i) treated with CHX. g, The time from first detection of translation until separation of GFP and mCherry foci (that is mRNA cleavage) is shown or i, the time from CHX addition until mRNA cleavage is shown. Solid lines and corresponding shaded regions represent mean Â± SEM. Dotted lines indicate that the data is replotted from an earlier figure panel for comparison. h, Ratio of the cleavage rates in the presence and absence of translating ribosomes is shown for the indicated siRNAs and reporters (see Supplementary Note 4). Each dot represents a single experiment and lines with error bars indicate the mean Â± SEM. Light black data points are replotted from an earlier experiment. j, Simulated cleavage curves for 10 and 0.1â€‰nM siRNA concentration using fast or slow unmasking rates (average unmasking time of 1â€‰s and 1,200s, respectively). Number of measurements for each experiment is listed in Supplementary Table 1. Data for graphs in a-d,f-j are available as source data.
Source data
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SunTag-PP7 cells expressing the KIF18B reporter (Fig. 1b) were transfected with 10â€‰nM of KIF18B siRNA #1. Images were acquired every 30â€‰s on a spinning-disk confocal microscope focusing near the bottom plasma membrane of the cell. Individual mRNAs can be tracked from the start of translation (appearance of GFP signal) until mRNA cleavage (separation of mCherry and GFP foci) or for the duration of the movie. Note that the mCherry signal disappears after cleavage, indicating exonucleolytic decay of the 3â€² cleavage fragment.
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