Enhancer RNAs are an important regulatory layer of the epigenome

Abstract

Noncoding RNAs (ncRNAs) direct a remarkable number of diverse functions in development and disease through their regulation of transcription, RNA processing and translation. Leading the charge in the RNA revolution is a class of ncRNAs that are synthesized at active enhancers, called enhancer RNAs (eRNAs). Here, we review recent insights into the biogenesis of eRNAs and the mechanisms underlying their multifaceted functions and consider how these findings could inform future investigations into enhancer transcription and eRNA function.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Molecular features that define enhancer RNAs.
Fig. 2: eRNA regulation of enhancer–promoter interactions and the epigenetic state of chromatin.
Fig. 3: eRNAs modulate the chromatin interactions of transcriptional regulators.
Fig. 4: The role of eRNAs in regulating condensate assembly on enhancers.

References

  1. 1.

    Plank, J. L. & Dean, A. Enhancer function: mechanistic and genome-wide insights come together. Mol. Cell 55, 5–14 (2014).

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Long, H. K., Prescott, S. L. & Wysocka, J. Ever-changing landscapes: transcriptional enhancers in development and evolution. Cell 167, 1170–1187 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Rahnamoun, H. et al. Mutant p53 shapes the enhancer landscape of cancer cells in response to chronic immune signaling. Nat. Commun. 8, 754 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Franco, H. L., Nagari, A. & Kraus, W. L. TNFα signaling exposes latent estrogen receptor binding sites to alter the breast cancer cell transcriptome. Mol. Cell 58, 21–34 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Lai, F., Gardini, A., Zhang, A. & Shiekhattar, R. Integrator mediates the biogenesis of enhancer RNAs. Nature 525, 399–403 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Lam, M. T. et al. Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature 498, 511–515 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  CAS  Google Scholar 

  9. 9.

    van Arensbergen, J. et al. High-throughput identification of human SNPs affecting regulatory element activity. Nat. Genet. 51, 1160–1169 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Schoenfelder, S. & Fraser, P. Long-range enhancer-promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437–455 (2019).

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Villar, D. et al. Enhancer evolution across 20 mammalian species. Cell 160, 554–566 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Arnold, C. D. et al. Quantitative genome-wide enhancer activity maps for five Drosophila species show functional enhancer conservation and turnover during cis-regulatory evolution. Nat. Genet. 46, 685–692 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Schmidt, D. et al. Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science 328, 1036–1040 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Blow, M. J. et al. ChIP-seq identification of weakly conserved heart enhancers. Nat. Genet. 42, 806–810 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    May, D. et al. Large-scale discovery of enhancers from human heart tissue. Nat. Genet. 44, 89–93 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Yang, S. et al. Functionally conserved enhancers with divergent sequences in distant vertebrates. BMC Genomics 16, 882 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Chatterjee, S., Bourque, G. & Lufkin, T. Conserved and non-conserved enhancers direct tissue specific transcription in ancient germ layer specific developmental control genes. BMC Dev. Biol. 11, 63 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Hare, E. E., Peterson, B. K., Iyer, V. N., Meier, R. & Eisen, M. B. Sepsid even-skipped enhancers are functionally conserved in Drosophila despite lack of sequence conservation. PLoS Genet. 4, e1000106 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Beagrie, R. A. & Pombo, A. Gene activation by metazoan enhancers: diverse mechanisms stimulate distinct steps of transcription. Bioessays 38, 881–893 (2016).

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Furlong, E. E. M. & Levine, M. Developmental enhancers and chromosome topology. Science 361, 1341–1345 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Catarino, R. R. & Stark, A. Assessing sufficiency and necessity of enhancer activities for gene expression and the mechanisms of transcription activation. Genes Dev. 32, 202–223 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Krivega, I. & Dean, A. Enhancer and promoter interactions—long distance calls. Curr. Opin. Genet. Dev. 22, 79–85 (2012).

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Deng, W. et al. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 149, 1233–1244 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Bartman, C. R., Hsu, S. C., Hsiung, C. C.-S., Raj, A. & Blobel, G. A. Enhancer regulation of transcriptional bursting parameters revealed by forced chromatin looping. Mol. Cell 62, 237–247 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Sawado, T., Halow, J., Bender, M. A. & Groudine, M. The β-globin locus control region (LCR) functions primarily by enhancing the transition from transcription initiation to elongation. Genes Dev. 17, 1009–1018 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Song, S.-H. et al. Multiple functions of Ldb1 required for β-globin activation during erythroid differentiation. Blood 116, 2356–2364 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Li, W. et al. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498, 516–520 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Rahnamoun, H. et al. RNAs interact with BRD4 to promote enhanced chromatin engagement and transcription activation. Nat. Struct. Mol. Biol. 25, 687–697 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Tsai, P.-F. et al. A muscle-specific enhancer RNA mediates cohesin recruitment and regulates transcription in trans. Mol. Cell 71, 129–141.e8 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Schaukowitch, K. et al. Enhancer RNA facilitates NELF release from immediate early genes. Mol. Cell 56, 29–42 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Lai, F. et al. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature 494, 497–501 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Ivaldi, M. S. et al. Fetal γ-globin genes are regulated by the BGLT3 long noncoding RNA locus. Blood 132, 1963–1973 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    De Santa, F. et al. A large fraction of extragenic RNA Pol II transcription sites overlap enhancers. PLoS Biol. 8, e1000384 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Kim, T.-K. et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182–187 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Franco, H. L. et al. Enhancer transcription reveals subtype-specific gene expression programs controlling breast cancer pathogenesis. Genome Res. 28, 159–170 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Hah, N., Murakami, S., Nagari, A., Danko, C. G. & Kraus, W. L. Enhancer transcripts mark active estrogen receptor binding sites. Genome Res. 23, 1210–1223 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Core, L. J. et al. Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers. Nat. Genet. 46, 1311–1320 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Hah, N. et al. Inflammation-sensitive super enhancers form domains of coordinately regulated enhancer RNAs. Proc. Natl Acad. Sci. USA 112, E297–E302 (2015).

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Hah, N. et al. A rapid, extensive, and transient transcriptional response to estrogen signaling in breast cancer cells. Cell 145, 622–634 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Kwak, H., Fuda, N. J., Core, L. J. & Lis, J. T. Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science 339, 950–953 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Mahat, D. B. et al. Base-pair-resolution genome-wide mapping of active RNA polymerases using precision nuclear run-on (PRO-seq). Nat. Protoc. 11, 1455–1476 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Carninci, P. et al. Genome-wide analysis of mammalian promoter architecture and evolution. Nat. Genet. 38, 626–635 (2006).

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Shiraki, T. et al. Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc. Natl Acad. Sci. USA 100, 15776–15781 (2003).

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Arner, E. et al. Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science 347, 1010–1014 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Meers, M. P. et al. Transcription start site profiling uncovers divergent transcription and enhancer-associated RNAs in Drosophila melanogaster. BMC Genomics 19, 157 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Henriques, T. et al. Widespread transcriptional pausing and elongation control at enhancers. Genes Dev. 32, 26–41 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Chen, R. A.-J. et al. The landscape of RNA polymerase II transcription initiation in C. elegans reveals promoter and enhancer architectures. Genome Res. 23, 1339–1347 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Chepelev, I., Wei, G., Wangsa, D., Tang, Q. & Zhao, K. Characterization of genome-wide enhancer-promoter interactions reveals co-expression of interacting genes and modes of higher order chromatin organization. Cell Res. 22, 490–503 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Heintzman, N. D. et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459, 108–112 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA 107, 21931–21936 (2010).

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Rada-Iglesias, A. et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279–283 (2011).

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Wang, D. et al. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474, 390–394 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Mikhaylichenko, O. et al. The degree of enhancer or promoter activity is reflected by the levels and directionality of eRNA transcription. Genes Dev. 32, 42–57 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Pekowska, A. et al. H3K4 tri-methylation provides an epigenetic signature of active enhancers. EMBO J. 30, 4198–4210 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Koch, F. et al. Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters. Nat. Struct. Mol. Biol. 18, 956–963 (2011).

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Natoli, G. & Andrau, J. C. Noncoding transcription at enhancers: general principles and functional models. Annu. Rev. Genet. 46, 1–19 (2012).

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Flynn, R. A., Almada, A. E., Zamudio, J. R. & Sharp, P. A. Antisense RNA polymerase II divergent transcripts are P-TEFb dependent and substrates for the RNA exosome. Proc. Natl Acad. Sci. USA 108, 10460–10465 (2011).

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Scruggs, B. S. et al. Bidirectional transcription arises from two distinct hubs of transcription factor binding and active chromatin. Mol. Cell 58, 1101–1112 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Preker, P. et al. PROMoter uPstream Transcripts share characteristics with mRNAs and are produced upstream of all three major types of mammalian promoters. Nucleic Acids Res. 39, 7179–7193 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Kowalczyk, M. S. et al. Intragenic enhancers act as alternative promoters. Mol. Cell 45, 447–458 (2012).

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Andersson, R. & Sandelin, A. Determinants of enhancer and promoter activities of regulatory elements. Nat. Rev. Genet. 21, 71–87 (2020).

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Kim, T. K. & Shiekhattar, R. Architectural and functional commonalities between enhancers and promoters. Cell 162, 948–959 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Hirose, Y. & Manley, J. L. RNA polymerase II and the integration of nuclear events. Genes Dev. 14, 1415–1429 (2000).

    CAS  PubMed  Google Scholar 

  64. 64.

    Proudfoot, N. J., Furger, A. & Dye, M. J. Integrating mRNA processing with transcription. Cell 108, 501–512 (2002).

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Shatkin, A. J. & Manley, J. L. The ends of the affair: capping and polyadenylation. Nat. Struct. Biol. 7, 838–842 (2000).

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Hintermair, C. et al. Threonine-4 of mammalian RNA polymerase II CTD is targeted by Polo-like kinase 3 and required for transcriptional elongation. EMBO J. 31, 2784–2797 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Hsin, J. P. & Manley, J. L. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev. 26, 2119–2137 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Mayer, A. et al. CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science 336, 1723–1725 (2012).

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Corden, J. L. Tails of RNA polymerase II. Trends Biochem. Sci. 15, 383–387 (1990).

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    West, M. L. & Corden, J. L. Construction and analysis of yeast RNA polymerase II CTD deletion and substitution mutations. Genetics 140, 1223–1233 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Eick, D. & Geyer, M. The RNA polymerase II carboxy-terminal domain (CTD) code. Chem. Rev. 113, 8456–8490 (2013).

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Bonn, S. et al. Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development. Nat. Genet. 44, 148–156 (2012).

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Descostes, N. et al. Tyrosine phosphorylation of RNA polymerase II CTD is associated with antisense promoter transcription and active enhancers in mammalian cells. Elife 3, e02105 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Hsin, J. P., Li, W., Hoque, M., Tian, B. & Manley, J. L. RNAP II CTD tyrosine 1 performs diverse functions in vertebrate cells. Elife 3, e02112 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Bentley, D. L. Coupling mRNA processing with transcription in time and space. Nat. Rev. Genet. 15, 163–175 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Shah, N. et al. Tyrosine-1 of RNA polymerase II CTD controls global termination of gene transcription in mammals. Mol. Cell 69, 48–61.e6 (2018).

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Nojima, T. et al. Deregulated expression of mammalian lncRNA through loss of SPT6 induces R-loop formation, replication stress, and cellular senescence. Mol. Cell 72, 970–984.e7 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Wang, A. H. et al. The elongation factor Spt6 maintains ESC pluripotency by controlling super-enhancers and counteracting Polycomb proteins. Mol. Cell 68, 398–413.e6 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Lin, C., Garruss, A. S., Luo, Z., Guo, F. & Shilatifard, A. The RNA Pol II elongation factor Ell3 marks enhancers in ES cells and primes future gene activation. Cell 152, 144–156 (2013).

    CAS  Article  PubMed  Google Scholar 

  80. 80.

    Gil, N. & Ulitsky, I. Production of spliced long noncoding RNAs specifies regions with increased enhancer activity. Cell Syst. 7, 537–547.e3 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Vučićević, D., Corradin, O., Ntini, E., Scacheri, P. C. & Ørom, U. A. Long ncRNA expression associates with tissue-specific enhancers. Cell Cycle 14, 253–260 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Core, L. J. et al. Defining the status of RNA polymerase at promoters. Cell Rep. 2, 1025–1035 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Kaikkonen, M. U. et al. Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. Mol. Cell 51, 310–325 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Andersson, R. et al. Nuclear stability and transcriptional directionality separate functionally distinct RNA species. Nat. Commun. 5, 5336 (2014).

    CAS  Article  PubMed  Google Scholar 

  85. 85.

    Pefanis, E. et al. RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity. Cell 161, 774–789 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Lubas, M. et al. The human nuclear exosome targeting complex is loaded onto newly synthesized RNA to direct early ribonucleolysis. Cell Rep. 10, 178–192 (2015).

    CAS  Article  PubMed  Google Scholar 

  87. 87.

    Austenaa, L. M. et al. Transcription of mammalian cis-regulatory elements is restrained by actively enforced early termination. Mol. Cell 60, 460–474 (2015).

    CAS  Article  PubMed  Google Scholar 

  88. 88.

    Ulitsky, I. & Bartel, D. P. lincRNAs: genomics, evolution, and mechanisms. Cell 154, 26–46 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Guttman, M. & Rinn, J. L. Modular regulatory principles of large non-coding RNAs. Nature 482, 339–346 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Cabili, M. N. et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25, 1915–1927 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Almada, A. E., Wu, X., Kriz, A. J., Burge, C. B. & Sharp, P. A. Promoter directionality is controlled by U1 snRNP and polyadenylation signals. Nature 499, 360–363 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Paralkar, V. R. et al. Unlinking an lncRNA from its associated cis element. Mol. Cell 62, 104–110 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Groff, A. F. et al. In vivo characterization of Linc-p21 reveals functional cis-regulatory DNA elements. Cell Rep. 16, 2178–2186 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Kopp, F. & Mendell, J. T. Functional classification and experimental dissection of long noncoding RNAs. Cell 172, 393–407 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Alvarez-Dominguez, J. R., Knoll, M., Gromatzky, A. A. & Lodish, H. F. The super-enhancer-derived alncRNA-EC7/Bloodlinc potentiates red blood cell development in trans. Cell Rep. 19, 2503–2514 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Espinosa, J. M. On the origin of lncRNAs: missing link found. Trends Genet. 33, 660–662 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Cinghu, S. et al. Intragenic enhancers attenuate host gene expression. Mol. Cell 68, 104–117.e6 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Shechner, D. M., Hacisuleyman, E., Younger, S. T. & Rinn, J. L. Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat. Methods 12, 664–670 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Lee, J. S. & Mendell, J. T. Antisense-mediated transcript knockdown triggers premature transcription termination. Mol. Cell 77, 1044–1054.e3 (2020).

    CAS  Article  PubMed  Google Scholar 

  100. 100.

    Lai, F., Damle, S. S., Ling, K. K. & Rigo, F. Directed RNase H cleavage of nascent transcripts causes transcription termination. Mol. Cell 77, 1032–1043.e4 (2020).

    CAS  Article  PubMed  Google Scholar 

  101. 101.

    Yang, Y. et al. Enhancer RNA-driven looping enhances the transcription of the long noncoding RNA DHRS4-AS1, a controller of the DHRS4 gene cluster. Sci. Rep. 6, 20961 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Chu, C., Qu, K., Zhong, F. L., Artandi, S. E. & Chang, H. Y. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol. Cell 44, 667–678 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Femino, A. M., Fay, F. S., Fogarty, K. & Singer, R. H. Visualization of single RNA transcripts in situ. Science 280, 585–590 (1998).

    CAS  Article  PubMed  Google Scholar 

  104. 104.

    Bose, D. A. et al. RNA binding to CBP stimulates histone acetylation and transcription. Cell 168, 135–149.e22 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  105. 105.

    Hsieh, C.-L. et al. Enhancer RNAs participate in androgen receptor-driven looping that selectively enhances gene activation. Proc. Natl Acad. Sci. USA 111, 7319–7324 (2014).

    CAS  Article  PubMed  Google Scholar 

  106. 106.

    Mousavi, K. et al. eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci. Mol. Cell 51, 606–617 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Sigova, A. A. et al. Transcription factor trapping by RNA in gene regulatory elements. Science 350, 978–981 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Zhao, Y. et al. Activation of P-TEFb by androgen receptor-regulated enhancer RNAs in castration-resistant prostate cancer. Cell Rep. 15, 599–610 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Tan, S. H. et al. The enhancer RNA ARIEL activates the oncogenic transcriptional program in T-cell acute lymphoblastic leukemia. Blood 134, 239–251 (2019).

    CAS  Article  PubMed  Google Scholar 

  110. 110.

    Aguilera, A. & García-Muse, T. R loops: from transcription byproducts to threats to genome stability. Mol. Cell 46, 115–124 (2012).

    CAS  Article  PubMed  Google Scholar 

  111. 111.

    Meng, F. L. et al. Convergent transcription at intragenic super-enhancers targets AID-initiated genomic instability. Cell 159, 1538–1548 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Aguilo, F. et al. Deposition of 5-methylcytosine on enhancer RNAs enables the coactivator function of PGC-1α. Cell Rep. 14, 479–492 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Maris, C., Domínguez, C. & Allain, F. H. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J. 272, 2118–2131 (2005).

    CAS  Article  PubMed  Google Scholar 

  114. 114.

    Grishin, N. V. KH domain: one motif, two folds. Nucleic Acids Res. 29, 638–643 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Chang, K. Y. & Ramos, A. The double-stranded RNA-binding motif, a versatile macromolecular docking platform. FEBS J. 272, 2109–2117 (2005).

    CAS  Article  PubMed  Google Scholar 

  116. 116.

    Nair, S. J. et al. Phase separation of ligand-activated enhancers licenses cooperative chromosomal enhancer assembly. Nat. Struct. Mol. Biol. 26, 193–203 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    CAS  Article  PubMed  Google Scholar 

  118. 118.

    Ruthenburg, A. J., Li, H., Patel, D. J. & Allis, C. D. Multivalent engagement of chromatin modifications by linked binding modules. Nat. Rev. Mol. Cell Biol. 8, 983–994 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. & Sharp, P. A. A phase separation model for transcriptional control. Cell 169, 13–23 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Polymenidou, M. The RNA face of phase separation. Science 360, 859–860 (2018).

    CAS  Article  PubMed  Google Scholar 

  121. 121.

    Boija, A. et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175, 1842–1855.e16 (2018).

    CAS  Article  PubMed  Google Scholar 

  122. 122.

    Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Boeynaems, S. et al. Protein phase separation: a new phase in cell biology. Trends Cell Biol. 28, 420–435 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Jim Kadonaga for reading the manuscript and providing helpful suggestions. Research in the Lauberth laboratory is supported by a grant from the NIH/National Institute of General Medical Sciences (R35 GM128900) to S.L., and research in the Sartorelli laboratory is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases Intramural Research Program of the NIH (grants AR041126 and AR041164).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shannon M. Lauberth.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Beth Moorefield was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sartorelli, V., Lauberth, S.M. Enhancer RNAs are an important regulatory layer of the epigenome. Nat Struct Mol Biol 27, 521–528 (2020). https://doi.org/10.1038/s41594-020-0446-0

Download citation

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing