Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A helical assembly of human ESCRT-I scaffolds reverse-topology membrane scission

Abstract

The ESCRT complexes drive membrane scission in HIV-1 release, autophagosome closure, multivesicular body biogenesis, cytokinesis, and other cell processes. ESCRT-I is the most upstream complex and bridges the system to HIV-1 Gag in virus release. The crystal structure of the headpiece of human ESCRT-I comprising TSG101–VPS28–VPS37B–MVB12A was determined, revealing an ESCRT-I helical assembly with a 12-molecule repeat. Electron microscopy confirmed that ESCRT-I subcomplexes form helical filaments in solution. Mutation of VPS28 helical interface residues blocks filament formation in vitro and autophagosome closure and HIV-1 release in human cells. Coarse-grained (CG) simulations of ESCRT assembly at HIV-1 budding sites suggest that formation of a 12-membered ring of ESCRT-I molecules is a geometry-dependent checkpoint during late stages of Gag assembly and HIV-1 budding and templates ESCRT-III assembly for membrane scission. These data show that ESCRT-I is not merely a bridging adaptor; it has an essential scaffolding and mechanical role in its own right.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Structure of the heterotetrameric human ESCRT-I head.
Fig. 2: MVB12A VPF motif is required for interaction with the ESCRT-I head and occludes the TSG101 PTAP motif.
Fig. 3: Helical ESCRT-I head assemblies.
Fig. 4: Helical contacts are required for phagophore closure in autophagy.
Fig. 5: Helical contacts are required for efficient HIV-1 release.
Fig. 6: ESCRT-I assembly from CGMD simulations.

Data availability

Coordinates and structure factors have been deposited in the Protein Data Bank under accession code PDB 6VME. Uncropped images for Figs. 1c, 2d,f, 4a,e, and 5 and Extended Data Fig. 1 are available in Supplementary Fig. 1; source data for graphs in Fig. 4 are available online.

References

  1. 1.

    Schöneberg, J., Lee, I.-H., Iwasa, J. H. & Hurley, J. H. Reverse-topology membrane scission by the ESCRT proteins. Nat. Rev. Mol. Cell Biol. 18, 5–17 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    McCullough, J., Frost, A. & Sundquist, W. I. Structures, functions, and dynamics of ESCRT-III/Vps4 membrane remodeling and fission complexes. Annu. Rev. Cell Dev. Biol. 34, 85–109 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Lippincott-Schwartz, J., Freed, E. O. & van Engelenburg, S. B. A consensus view of ESCRT-mediated human immunodeficiency virus type 1 abscission. Annu. Rev. Virol. 4, 309–325 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Hurley, J. H. & Cada, A. K. Inside job: how the ESCRTs release HIV-1 from infected cells. Biochem. Soc. Trans. 46, 1029–1036 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Stoten, C. L. & Carlton, J. G. ESCRT-dependent control of membrane remodelling during cell division. Semin. Cell Dev. Biol. 74, 50–65 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Takahashi, Y. et al. An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure. Nat. Commun. 9, 2855 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Zhen, Y. et al. ESCRT-mediated phagophore sealing during mitophagy. Autophagy 16, 826–841 (2020).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Zhou, F. et al. Rab5-dependent autophagosome closure by ESCRT. J. Cell Biol. 218, 1908–1927 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Olmos, Y. & Carlton, J. G. The ESCRT machinery: new roles at new holes. Curr. Opin. Cell Biol. 38, 1–11 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Campsteijn, C., Vietri, M. & Stenmark, H. Novel ESCRT functions in cell biology: spiraling out of control? Curr. Opin. Cell Biol. 41, 1–8 (2016).

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Schöneberg, J. et al. ATP-dependent force generation and membrane scission by ESCRT-III and Vps4. Science 362, 1423–1428 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    McCullough, J. et al. Structure and membrane remodeling activity of ESCRT-III helical polymers. Science 350, 1548–1551 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Henne, W. M., Buchkovich, N. J., Zhao, Y. & Emr, S. D. The endosomal sorting complex ESCRT-II mediates the assembly and architecture of ESCRT-III helices. Cell 151, 356–371 (2012).

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Hanson, P. I., Roth, R., Lin, Y. & Heuser, J. E. Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. J. Cell Biol. 180, 389–402 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Shen, Q.-T. et al. Structural analysis and modeling reveals new mechanisms governing ESCRT-III spiral filament assembly. J. Cell Biol. 206, 763–777 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Chiaruttini, N. et al. Relaxation of loaded ESCRT-III spiral springs drives membrane deformation. Cell 163, 866–879 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Cashikar, A. G. et al. Structure of cellular ESCRT-III spirals and their relationship to HIV budding. eLife 3, e02184 (2014).

    Article  CAS  PubMed Central  Google Scholar 

  18. 18.

    Effantin, G. et al. ESCRT-III CHMP2A and CHMP3 form variable helical polymers in vitro and act synergistically during HIV-1 budding. Cell. Microbiol. 15, 213–226 (2013).

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Lata, S. et al. Structural basis for autoinhibition of ESCRT-III CHMP3. J. Mol. Biol. 378, 818–827 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Mierzwa, B. E. et al. Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodelling during cytokinesis. Nat. Cell Biol. 19, 787–798 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    VerPlank, L. et al. Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag). Proc. Natl Acad. Sci. USA 98, 7724–7729 (2001).

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Garrus, J. E. et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 55–65 (2001).

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Martin-Serrano, J., Zang, T. & Bieniasz, P. D. HIV-I and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat. Med. 7, 1313–1319 (2001).

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Demirov, D. G., Ono, A., Orenstein, J. M. & Freed, E. O. Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function. Proc. Natl Acad. Sci. USA 99, 955–960 (2002).

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    von Schwedler, U. K. et al. The protein network of HIV budding. Cell 114, 701–713 (2003).

    Article  Google Scholar 

  26. 26.

    Strack, B., Calistri, A., Craig, S., Popova, E. & Gottlinger, H. G. AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 114, 689–699 (2003).

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Ali, N. et al. Recruitment of UBPY and ESCRT exchange drive HD-PTP-dependent sorting of EGFR to the MVB. Curr. Biol. 23, 453–461 (2013).

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Loncle, N., Agromayor, M., Martin-Serrano, J. & Williams, D. W. An ESCRT module is required for neuron pruning. Sci. Reports https://doi.org/10.1038/srep08461 (2015).

  29. 29.

    Parkinson, M. D. J. et al. A non-canonical ESCRT pathway, including histidine domain phosphotyrosine phosphatase (HD-PTP), is used for down-regulation of virally ubiquitinated MHC class I. Biochem. J. 471, 79–88 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Doyotte, A., Mironov, A., McKenzie, E. & Woodman, P. The Bro1-related protein HD-PTP/PTPN23 is required for endosomal cargo sorting and multivesicular body morphogenesis. Proc. Natl Acad. Sci. USA 105, 6308–6313 (2008).

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Pornillos, O., Alam, S. L., Davis, D. R. & Sundquist, W. I. Structure of the Tsg101 UEV domain in complex with the PTAP motif of the HIV-1 p6 protein. Nat. Struct. Biol. 9, 812–817 (2002).

    CAS  PubMed  Google Scholar 

  32. 32.

    Im, Y. J. et al. Crystallographic and functional analysis of the ESCRT-1/HIV-1 Gag PTAP interaction. Structure 18, 1536–1547 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Sundquist, W. I. et al. Ubiquitin recognition by the human TSG101 protein. Mol. Cell 13, 783–789 (2004).

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Teo, H., Veprintsev, D. B. & Williams, R. L. Structural insights into endosomal sorting complex required for transport (ESCRT-I) recognition of ubiquitinated proteins. J. Biol. Chem. 279, 28689–28696 (2004).

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Kostelansky, M. S. et al. Molecular architecture and functional model of the complete yeast ESCRT-I heterotetramer. Cell 129, 485–498 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Katzmann, D. J., Babst, M. & Emr, S. D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 145–155 (2001).

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    de Souza, R. F. & Aravind, L. UMA and MABP domains throw light on receptor endocytosis and selection of endosomal cargoes. Bioinformatics 26, 1477–1480 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Morita, E. et al. Identification of human MVB12 proteins as ESCRT-I subunits that function in HIV budding. Cell Host Microbe 2, 41–53 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Stefani, F. et al. UBAP1 is a component of an endosome-specific ESCRT-I complex that is essential for MVB sorting. Curr. Biol. 21, 1245–1250 (2011).

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Audhya, A., McLeod, I. X., Yates, J. R. & Oegama, K. MVB-12, a fourth subunit of metazoan ESCRT-I, functions in receptor downregulation. PLoS One 2, e956 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Boura, E. et al. Solution structure of the ESCRT-I complex by small angle x-ray scattering, EPR, and FRET spectroscopy. Proc. Natl Acad. Sci. USA 108, 9437–9442 (2011).

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Kostelansky, M. S. et al. Structural and functional organization of the ESCRT-I trafficking complex. Cell 125, 113–126 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Teo, H. L. et al. ESCRT-I core and ESCRT-II GLUE domain structures reveal role for GLUE in linking to ESCRT-I and membranes. Cell 125, 99–111 (2006).

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Im, Y. J. & Hurley, J. H. Integrated structural model and membrane targeting mechanism of the human ESCRT-II complex. Dev. Cell 14, 902–913 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Gill, D. J. et al. Structural insight into the ESCRT-I/-II link and its role in MVB trafficking. EMBO J. 26, 600–612 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Pineda-Molina, E. et al. The crystal structure of the C-terminal domain of Vps28 reveals a conserved surface required for Vps20 recruitment. Traffic 7, 1007–1016 (2006).

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Agromayor, M. et al. The UBAP1 Subunit of ESCRT-I Interacts with Ubiquitin via a SOUBA Domain. Structure 20, 414–428 (2012).

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Pornillos, O. et al. HIV Gag mimics the Tsg101-recruiting activity of the human Hrs protein. J. Cell Biol. 162, 425–434 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Takahashi, Y. et al. VPS37A directs ESCRT recruitment for phagophore closure. J. Cell Biol. 218, 3336–3354 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Dussupt, V. et al. The nucleocapsid region of HIV-1 Gag cooperates with the PTAP and LYPXnL late domains to recruit the cellular machinery necessary for viral budding. PLoS Pathog. 5, e1000339 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Zivony-Elboum, Y. et al. A founder mutation in Vps37A causes autosomal recessive complex hereditary spastic paraparesis. J. Med. Genet. 49, 462–472 (2012).

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Ruland, J. et al. p53 accumulation, defective cell proliferation, and early embryonic lethality in mice lacking tsg101. Proc. Natl Acad. Sci. USA 98, 1859–1864 (2001).

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Ladinsky, M. S. et al. Electron tomography of HIV-1 infection in gut-associated lymphoid tissue. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1003899 (2014).

  54. 54.

    Boura, E. & Hurley, J. H. Structural basis for membrane targeting by the MVB12-associated β-prism domain of the human ESCRT-I MVB12 subunit. Proc. Natl Acad. Sci. USA 109, 1901–1906 (2012).

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Hoffman, H. K., Fernandez, M. V., Groves, N. S., Freed, E. O. & van Engelenburg, S. B. Genomic tagging of endogenous human ESCRT-I complex preserves ESCRT-mediated membrane-remodeling functions. J. Biol. Chem. 294, 16266–16281 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Carlson, L. A. et al. Cryo electron tomography of native HIV-1 budding sites. PLoS Pathog. 6, e1001173 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Van Engelenburg, S. B. et al. Distribution of ESCRT machinery at HIV assembly sites reveals virus scaffolding of ESCRT subunits. Science 343, 653–656 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Dobro, M. J. et al. Electron cryotomography of ESCRT assemblies and dividing Sulfolobus cells suggests that spiraling filaments are involved in membrane scission. Mol. Biol. Cell 24, 2319–2327 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Bodon, G. et al. Charged multivesicular body protein 2B (CHMP2B) of the endosomal sorting complex required for transport-III (ESCRT-III) polymerizes into helical structures deforming the plasma membrane. J. Biol. Chem. 286, 40276–40286 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Carlson, L.-A., Shen, Q.-T., Pavlin, M. R. & Hurley, J. H. ESCRT filaments as spiral springs. Dev. Cell 35, 397–398 (2015).

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Bleck, M. et al. Temporal and spatial organization of ESCRT protein recruitment during HIV-1 budding. Proc. Natl Acad. Sci. USA 111, 12211–12216 (2014).

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Johnson, D. S., Bleck, M. & Simon, S. M. Timing of ESCRT-III protein recruitment and membrane scission during HIV-1 assembly. eLife 7,e36221 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Kabsch, W. XDS. Acta Crystallogr Sect. D: Biol. Crystallogr. 66, 125–132 (2010).

    CAS  Article  Google Scholar 

  64. 64.

    Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. Sect. D: Biol. Crystallogr. 67, 235–242 (2011).

    CAS  Article  Google Scholar 

  65. 65.

    McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. Sect. D: Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  CAS  Google Scholar 

  67. 67.

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D: Biol. Crystallogr. 66, 213–221 (2010).

    CAS  Article  Google Scholar 

  68. 68.

    Sette, P. et al. The Phe105 loop of Alix Bro1 domain plays a key role in HIV-1 release. Structure 19, 1485–1495 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Zhang, Z. et al. A systematic methodology for defining coarse-grained sites in large biomolecules. Biophys. J. 95, 5073–5083 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Lyman, E., Pfaendtner, J. & Voth, G. A. Systematic multiscale parameterization of heterogeneous elastic network models of proteins. Biophys. J. 95, 4183–4192 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    CAS  Article  Google Scholar 

  72. 72.

    Schneider, T. & Stoll, E. Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys. Rev. B 17, 1302–1322 (1978).

    CAS  Article  Google Scholar 

  73. 73.

    Martyna, G. J., Tobias, D. J. & Klein, M. L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101, 4177–4189 (1994).

    CAS  Article  Google Scholar 

  74. 74.

    Grime, J. M. A. & Madsen, J. J. Efficient simulation of tunable lipid assemblies across scales and resolutions. Preprint at https://arxiv.org/abs/1910.05362 (2019).

  75. 75.

    Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graphics 14, 33-& (1996).

    Article  Google Scholar 

Download references

Acknowledgements

We thank B. Yang for contributing to early stages of this project, S. Fromm, C. Buffalo, and P. Grob for electron microscopy advice and support, K. Larsen for comments on the manuscript, and J. Briggs for providing immature Gag lattice maps. This work was supported by NIH grants R37 AI112442 (J.H.H.), R01 GM127954 (H.G.W), R01 GM128507 (A.H. and G.A.V.) and F32 AI150477 (A.J.P.). Beamline 8.3.1 at the Advanced Light Source is supported by the National Institutes of Health (R01 GM124149 and P30 GM124169), Plexxikon Inc., and the Integrated Diffraction Analysis Technologies program of the US Department of Energy Office of Biological and Environmental Research. The Advanced Light Source (Berkeley, CA) is a national user facility operated by Lawrence Berkeley National Laboratory on behalf of the US Department of Energy under contract number DE-AC02-05CH11231, Office of Basic Energy Sciences.

Author information

Affiliations

Authors

Contributions

Conceptualization, T.G.F., Y.T., G.A.V., J.H.H.; investigation, T.G.F., Y.T., A.H., K.R., N.T., A.L.Y., X.L.; resources, A.J.P.; supervision, H.-G.W., F.B., G.A.V., J.H.H.; writing − original draft, T.G.F., Y.T., A.H., G.A.V., J.H.H.; writing − review and editing, all authors.

Corresponding author

Correspondence to James H. Hurley.

Ethics declarations

Competing interests

J.H.H. is a cofounder of Casma Therapeutics.

Additional information

Peer review information Peer reviewer reports are available. Inês Chen was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Effect of specific mutations on ESCRT-I head complex integrity.

Mutant versions of the ESCRT-I head complex were expressed in E. coli. VPS28 and MVB12A subunits were expressed as C-terminal hexahistidine and N-terminal GST fusions respectively. Lysate was incubated with Ni-NTA agarose beads and complex integrity analyzed by SDS-PAGE following multiple washes. The SDS-PAGE image shown is representative of two independent biological repeats. Uncropped image is in Supplementary Fig. 1.

Extended Data Fig. 2 Sequence alignment of VPS28 orthologs.

Secondary structure displayed above the alignment is derived from the human ESCRT-I head structure. Alignment was generated using ClustalW and ESPript.

Extended Data Fig. 3 Helical yeast ESCRT-I head tubes.

The trimeric yeast ESCRT-I head forms helical tubes within a crystal (PDB 2CAZ). The crystal is constructed from a series of laterally stacked tubes where each tube is composed of a single, continuous helix of yeast ESCRT-I head protomers. Vps23, Vps28, Vps37 are colored green, purple and magenta respectively. Tube dimensions are labeled.

Supplementary information

Supplementary Information

Supplementary Fig. 1: uncropped gels from Figs. 1, 2, 4 and 5 and Extended Data Fig. 1.

Reporting Summary

Peer Review Information

Supplementary Video 1

Assembly of ESCRT-I templated by a Gag shell with a 54 nm opening. The color representation is same as described in Fig. 6. For each frame, only the largest ESCRT-I oligomer is shown. We note that for some frames there are two largest oligomers of the same size in which both the oligomers are shown. The membrane is not rendered for visual clarity.

Supplementary Note 1

Details of computational methods

Source data

Source Data Fig. 4

Data for scatter plots

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Flower, T.G., Takahashi, Y., Hudait, A. et al. A helical assembly of human ESCRT-I scaffolds reverse-topology membrane scission. Nat Struct Mol Biol 27, 570–580 (2020). https://doi.org/10.1038/s41594-020-0426-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing