Structure of a proton-dependent lipid transporter involved in lipoteichoic acids biosynthesis


Lipoteichoic acids (LTAs) are essential cell-wall components in Gram-positive bacteria, including the human pathogen Staphylococcus aureus, contributing to cell adhesion, cell division and antibiotic resistance. Genetic evidence has suggested that LtaA is the flippase that mediates the translocation of the lipid-linked disaccharide that anchors LTA to the cell membrane, a rate-limiting step in S. aureus LTA biogenesis. Here, we present the structure of LtaA, describe its flipping mechanism and show its functional relevance for S. aureus fitness. We demonstrate that LtaA is a proton-coupled antiporter flippase that contributes to S. aureus survival under physiological acidic conditions. Our results provide foundations for the development of new strategies to counteract S. aureus infections.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: LtaA-catalyzed anchor-LLD flipping.
Fig. 2: S. aureus LtaA structure.
Fig. 3: Amphiphilic cavity characterization.
Fig. 4: LtaA proton coupling and S. aureusltaA growth under acidic conditions.
Fig. 5: Morphology of S. aureus NCTC8325 WT and ∆ltaA mutant, and LTA abundance.
Fig. 6: LtaA anchor-LLD flipping mechanism.

Data availability

Atomic coordinates have been deposited in the Protein Data Bank under accession code PDB 6S7V. Source data for Figs. 1c, 3b,c,e,f, 4a–c and 5c and Extended Fig. 1 are available with the paper online.


  1. 1.

    Rivera, A. M. & Boucher, H. W. Current concepts in antimicrobial therapy against select Gram-positive organisms: methicillin-resistant Staphylococcus aureus, penicillin-resistant pneumococci, and vancomycin-resistant enterococci. Mayo Clin. Proc. 86, 1230–1243 (2011).

    CAS  Google Scholar 

  2. 2.

    Cosgrove, S. E. et al. The impact of methicillin resistance in Staphylococcus aureus bacteremia on patient outcomes: mortality, length of stay, and hospital charges. Infect. Control Hosp. Epidemiol. 26, 166–174 (2005).

    Google Scholar 

  3. 3.

    Turner, N. A. et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat. Rev. Microbiol. 17, 203–218 (2019).

    CAS  Google Scholar 

  4. 4.

    Brown, S. et al. Methicillin resistance in Staphylococcus aureus requires glycosylated wall teichoic acids. Proc. Natl Acad. Sci. USA 109, 18909–18914 (2012).

    CAS  Google Scholar 

  5. 5.

    Percy, M. G. & Grundling, A. Lipoteichoic acid synthesis and function in Gram-positive bacteria. Annu. Rev. Microbiol. 68, 81–100 (2014).

    CAS  Google Scholar 

  6. 6.

    Brown, S., Santa Maria, J. P. Jr. & Walker, S. Wall teichoic acids of Gram-positive bacteria. Annu. Rev. Microbiol. 67, 313–336 (2013).

    CAS  Google Scholar 

  7. 7.

    Xia, G., Kohler, T. & Peschel, A. The wall teichoic acid and lipoteichoic acid polymers of Staphylococcus aureus. Int. J. Med. Microbiol. 300, 148–154 (2010).

    CAS  Google Scholar 

  8. 8.

    Reichmann, N. T. et al. Differential localization of LTA synthesis proteins and their interaction with the cell division machinery in Staphylococcus aureus. Mol. Microbiol. 92, 273–286 (2014).

    CAS  Google Scholar 

  9. 9.

    Sewell, E. W. & Brown, E. D. Taking aim at wall teichoic acid synthesis: new biology and new leads for antibiotics. J. Antibiot. (Tokyo) 67, 43–51 (2014).

    CAS  Google Scholar 

  10. 10.

    Lee, J. H. et al. Surface glycopolymers are crucial for in vitro anti-wall teichoic acid IgG-mediated complement activation and opsonophagocytosis of Staphylococcus aureus. Infect. Immun. 83, 4247–4255 (2015).

    CAS  Google Scholar 

  11. 11.

    Gautam, S., Kim, T., Lester, E., Deep, D. & Spiegel, D. A. Wall teichoic acids prevent antibody binding to epitopes within the cell wall of Staphylococcus aureus. ACS Chem. Biol. 11, 25–30 (2016).

    CAS  Google Scholar 

  12. 12.

    Bucher, T., Oppenheimer-Shaanan, Y., Savidor, A., Bloom-Ackermann, Z. & Kolodkin-Gal, I. Disturbance of the bacterial cell wall specifically interferes with biofilm formation. Environ. Microbiol. Rep. 7, 990–1004 (2015).

    CAS  Google Scholar 

  13. 13.

    Campbell, J. et al. Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus. ACS Chem. Biol. 6, 106–116 (2011).

    CAS  Google Scholar 

  14. 14.

    Peschel, A. et al. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J. Biol. Chem. 274, 8405–8410 (1999).

    CAS  Google Scholar 

  15. 15.

    Reichmann, N. T. & Grundling, A. Location, synthesis and function of glycolipids and polyglycerolphosphate lipoteichoic acid in Gram-positive bacteria of the phylum Firmicutes. FEMS Microbiol. Lett. 319, 97–105 (2011).

    CAS  Google Scholar 

  16. 16.

    Hong, S. W. et al. Lipoteichoic acid of Streptococcus mutans interacts with Toll-like receptor 2 through the lipid moiety for induction of inflammatory mediators in murine macrophages. Mol. Immunol. 57, 284–291 (2014).

    CAS  Google Scholar 

  17. 17.

    Kang, S.-S., Sim, J.-R., Yun, C.-H. & Han, S. H. Lipoteichoic acids as a major virulence factor causing inflammatory responses via Toll-like receptor 2. Arch. Pharm. Res. 39, 1519–1529 (2016).

    CAS  Google Scholar 

  18. 18.

    Fischer, W., Koch, H. U., Rosel, P., Fiedler, F. & Schmuck, L. Structural requirements of lipoteichoic acid carrier for recognition by the poly(ribitol phosphate) polymerase from Staphylococcus aureus H. A study of various lipoteichoic acids, derivatives, and related compounds. J. Biol. Chem. 255, 4550–4556 (1980).

    CAS  Google Scholar 

  19. 19.

    Grundling, A. & Schneewind, O. Genes required for glycolipid synthesis and lipoteichoic acid anchoring in Staphylococcus aureus. J. Bacteriol. 189, 2521–2530 (2007).

    CAS  Google Scholar 

  20. 20.

    Jorasch, P., Wolter, F. P., Zahringer, U. & Heinz, E. A UDP glucosyltransferase from Bacillus subtilis successively transfers up to four glucose residues to 1,2-diacylglycerol: expression of ypfP in Escherichia coli and structural analysis of its reaction products. Mol. Microbiol. 29, 419–430 (1998).

    CAS  Google Scholar 

  21. 21.

    Kiriukhin, M. Y., Debabov, D. V., Shinabarger, D. L. & Neuhaus, F. C. Biosynthesis of the glycolipid anchor in lipoteichoic acid of Staphylococcus aureus RN4220: role of YpfP, the diglucosyldiacylglycerol synthase. J. Bacteriol. 183, 3506–3514 (2001).

    CAS  Google Scholar 

  22. 22.

    Grundling, A. & Schneewind, O. Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus. Proc. Natl Acad. Sci. USA 104, 8478–8483 (2007).

    Google Scholar 

  23. 23.

    Lu, D. et al. Structure-based mechanism of lipoteichoic acid synthesis by Staphylococcus aureus LtaS. Proc. Natl Acad. Sci. USA 106, 1584–1589 (2009).

    CAS  Google Scholar 

  24. 24.

    Reddy, V. S., Shlykov, M. A., Castillo, R., Sun, E. I. & Saier, M. H. Jr. The major facilitator superfamily (MFS) revisited. FEBS J. 279, 2022–2035 (2012).

    CAS  Google Scholar 

  25. 25.

    Cura, A. J. & Carruthers, A. Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis. Compr. Physiol. 2, 863–914 (2012).

    Google Scholar 

  26. 26.

    Smith, D. E., Clemencon, B. & Hediger, M. A. Proton-coupled oligopeptide transporter family SLC15: physiological, pharmacological and pathological implications. Mol. Aspects Med. 34, 323–336 (2013).

    CAS  Google Scholar 

  27. 27.

    Quistgaard, E. M., Low, C., Guettou, F. & Nordlund, P. Understanding transport by the major facilitator superfamily (MFS): structures pave the way. Nat. Rev. Mol. Cell Biol. 17, 123–132 (2016).

    CAS  Google Scholar 

  28. 28.

    Iancu, C. V., Zamoon, J., Woo, S. B., Aleshin, A. & Choe, J.-Y. Crystal structure of a glucose/H+ symporter and its mechanism of action. Proc. Natl Acad. Sci. USA 110, 17862–17867 (2013).

    CAS  Google Scholar 

  29. 29.

    Deng, D. et al. Molecular basis of ligand recognition and transport by glucose transporters. Nature 526, 391–396 (2015).

    CAS  Google Scholar 

  30. 30.

    Sun, L. et al. Crystal structure of a bacterial homologue of glucose transporters GLUT1–4. Nature 490, 361–366 (2012).

    CAS  Google Scholar 

  31. 31.

    Pedersen, B. P. et al. Crystal structure of a eukaryotic phosphate transporter. Nature 496, 533–536 (2013).

    CAS  Google Scholar 

  32. 32.

    Zheng, H., Wisedchaisri, G. & Gonen, T. Crystal structure of a nitrate/nitrite exchanger. Nature 497, 647–651 (2013).

    CAS  Google Scholar 

  33. 33.

    Yan, H. et al. Structure and mechanism of a nitrate transporter. Cell Rep. 3, 716–723 (2013).

    CAS  Google Scholar 

  34. 34.

    Newstead, S. et al. Crystal structure of a prokaryotic homologue of the mammalian oligopeptide-proton symporters, PepT1 and PepT2. EMBO J. 30, 417–426 (2011).

    CAS  Google Scholar 

  35. 35.

    Menon, I. et al. Opsin is a phospholipid flippase. Curr. Biol. 21, 149–153 (2011).

    CAS  Google Scholar 

  36. 36.

    Brunner, J. D., Lim, N. K., Schenck, S., Duerst, A. & Dutzler, R. X-ray structure of a calcium-activated TMEM16 lipid scramblase. Nature 516, 207–212 (2014).

    CAS  Google Scholar 

  37. 37.

    Malvezzi, M. et al. Ca2+-dependent phospholipid scrambling by a reconstituted TMEM16 ion channel. Nat .Commun. 4, 2367 (2013).

    Google Scholar 

  38. 38.

    Hanson, B. L. & Bunick, G. J. Annealing macromolecular crystals. Methods Mol. Biol. 364, 31–42 (2007).

    CAS  Google Scholar 

  39. 39.

    Nagarathinam, K. et al. Outward open conformation of a major facilitator superfamily multidrug/H+ antiporter provides insights into switching mechanism. Nat. Commun. 9, 4005 (2018).

    Google Scholar 

  40. 40.

    Bibi, E. & Kaback, H. R. In vivo expression of the lacY gene in two segments leads to functional lac permease. Proc. Natl Acad. Sci. USA 87, 4325–4329 (1990).

    CAS  Google Scholar 

  41. 41.

    Varela, M. F., Sansom, C. E. & Griffith, J. K. Mutational analysis and molecular modelling of an amino acid sequence motif conserved in antiporters but not symporters in a transporter superfamily. Mol. Membr. Biol. 12, 313–319 (1995).

    CAS  Google Scholar 

  42. 42.

    Smirnova, I. N., Kasho, V. & Kaback, H. R. Protonation and sugar binding to LacY. Proc. Natl Acad. Sci. USA 105, 8896–8901 (2008).

    CAS  Google Scholar 

  43. 43.

    Feng, L., Campbell, E. B. & MacKinnon, R. Molecular mechanism of proton transport in CLC Cl/H+ exchange transporters. Proc. Natl Acad. Sci. USA 109, 11699–11704 (2012).

    CAS  Google Scholar 

  44. 44.

    du Plessis, J. L., Stefaniak, A. B. & Wilhelm, K. P. Measurement of skin surface pH. Curr. Probl. Dermatol. 54, 19–25 (2018).

    Google Scholar 

  45. 45.

    Frank, D. N. et al. The human nasal microbiota and Staphylococcus aureus carriage. PLoS ONE 5, e10598 (2010).

    Google Scholar 

  46. 46.

    Harell, M., Mover-Lev, H., Levy, D. & Sade, J. Gas composition of the human nose and nasopharyngeal space. Acta Otolaryngol. 116, 82–84 (1996).

    CAS  Google Scholar 

  47. 47.

    Williams, M. R., Nakatsuji, T. & Gallo, R. L. Staphylococcus aureus: master manipulator of the skin. Cell Host Microbe 22, 579–581 (2017).

    CAS  Google Scholar 

  48. 48.

    Law, C. J., Maloney, P. C. & Wang, D. N. Ins and outs of major facilitator superfamily antiporters. Annu. Rev. Microbiol. 62, 289–305 (2008).

    CAS  Google Scholar 

  49. 49.

    Jardetzky, O. Simple allosteric model for membrane pumps. Nature 211, 969–970 (1966).

    CAS  Google Scholar 

  50. 50.

    Kuk, A. C., Mashalidis, E. H. & Lee, S.-Y. Crystal structure of the MOP flippase MurJ in an inward-facing conformation. Nat. Struct. Mol. Biol. 24, 171–176 (2017).

    CAS  Google Scholar 

  51. 51.

    Zheng, S. et al. Structure and mutagenic analysis of the lipid II flippase MurJ from Escherichia coli. Proc. Natl Acad. Sci. USA 115, 6709–6714 (2018).

    CAS  Google Scholar 

  52. 52.

    Sham, L. T. et al. Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science 345, 220–222 (2014).

    CAS  Google Scholar 

  53. 53.

    Timcenko, M. et al. Structure and autoregulation of a P4-ATPase lipid flippase. Nature 571, 366–370 (2019).

    CAS  Google Scholar 

  54. 54.

    Hiraizumi, M., Yamashita, K., Nishizawa, T. & Nureki, O. Cryo-EM structures capture the transport cycle of the P4-ATPase flippase. Science 365, 1149–1155 (2019).

  55. 55.

    Perez, C. et al. Structure and mechanism of an active lipid-linked oligosaccharide flippase. Nature 524, 433–438 (2015).

    CAS  Google Scholar 

  56. 56.

    Mi, W. et al. Structural basis of MsbA-mediated lipopolysaccharide transport. Nature 549, 233–237 (2017).

    CAS  Google Scholar 

  57. 57.

    Bi, Y., Mann, E., Whitfield, C. & Zimmer, J. Architecture of a channel-forming O-antigen polysaccharide ABC transporter. Nature 553, 361–365 (2018).

    CAS  Google Scholar 

  58. 58.

    Kalienkova, V. et al. Stepwise activation mechanism of the scramblase nhTMEM16 revealed by cryo-EM. Elife 8, e44364 (2019).

    Google Scholar 

  59. 59.

    Rubino, F. A., Kumar, S., Ruiz, N., Walker, S. & Kahne, D. E. Membrane potential is required for MurJ function. J. Am. Chem. Soc. 140, 4481–4484 (2018).

    CAS  Google Scholar 

  60. 60.

    Mirza, O., Guan, L., Verner, G., Iwata, S. & Kaback, H. R. Structural evidence for induced fit and a mechanism for sugar/H+ symport in LacY. EMBO J. 25, 1177–1183 (2006).

    CAS  Google Scholar 

  61. 61.

    Zhang, B. & Perez, C. Stabilization and crystallization of a membrane protein involved in lipid transport. Methods Mol. Biol. 2127, 283–292 (2020).

    Google Scholar 

  62. 62.

    Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    CAS  Google Scholar 

  63. 63.

    Karplus, P. A. & Diederichs, K. Linking crystallographic model and data quality. Science 336, 1030–1033 (2012).

    CAS  Google Scholar 

  64. 64.

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr, 66, 213–221 (2010).

    CAS  Google Scholar 

  65. 65.

    Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A Found. Adv. 64, 112–122 (2008).

    CAS  Google Scholar 

  66. 66.

    Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  67. 67.

    Skubak, P. et al. A new MR-SAD algorithm for the automatic building of protein models from low-resolution X-ray data and a poor starting model. IUCrJ 5, 166–171 (2018).

    CAS  Google Scholar 

  68. 68.

    McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  Google Scholar 

  69. 69.

    Cowtan, K. Recent developments in classical density modification. Acta Crystallogr. D Biol. Crystallogr. 66, 470–478 (2010).

    CAS  Google Scholar 

  70. 70.

    Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).

    CAS  Google Scholar 

  71. 71.

    Jiang, D. et al. Structure of the YajR transporter suggests a transport mechanism based on the conserved motif A. Proc. Natl Acad. Sci. USA 110, 14664–14669 (2013).

    CAS  Google Scholar 

  72. 72.

    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  Google Scholar 

  73. 73.

    Fratamico, P. M. et al. Escherichia coli serogroup O2 and O28ac O-antigen gene cluster sequences and detection of pathogenic E. coli O2 and O28ac by PCR. Can. J. Microbiol. 56, 308–316 (2010).

    CAS  Google Scholar 

  74. 74.

    Peterson, A. C., Russell, J. D., Bailey, D. J., Westphall, M. S. & Coon, J. J. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol. Cell Proteomics 11, 1475–1488 (2012).

    Google Scholar 

  75. 75.

    Ahrne, E. et al. Evaluation and improvement of quantification accuracy in isobaric mass tag-based protein quantification experiments. J. Proteome Res. 15, 2537–2547 (2016).

    CAS  Google Scholar 

  76. 76.

    Ashkenazy, H. et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44, W344–W350 (2016).

    CAS  Google Scholar 

  77. 77.

    Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    CAS  Google Scholar 

  78. 78.

    Arnaud, M., Chastanet, A. & Debarbouille, M. New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, Gram-positive bacteria. Appl Environ. Microbiol. 70, 6887–6891 (2004).

    CAS  Google Scholar 

  79. 79.

    Stamsas, G.A. et al. CozEa and CozEb play overlapping and essential roles in controlling cell division in Staphylococcus aureus. Mol. Microbiol. 109, 615–632 (2018).

  80. 80.

    Monk, I. R., Tree, J. J., Howden, B. P., Stinear, T. P. & Foster, T. J. Complete bypass of restriction systems for major Staphylococcus aureus lineages. MBio 6, e00308–e00315 (2015).

    CAS  Google Scholar 

Download references


We thank the staff at the PX beamline of the Swiss Light Source, Switzerland. We thank G. Cebrero and N. Bärland for providing a control transporter sample. We thank J. Daraspe and M. Rengifo for contributing to TEM images acquisition. We thank U. Lanner, A. Schmidt and T. Müntener for contributing to HPLC–MS and PRM MS studies. This work was supported by the Swiss National Science Foundation (SNSF) (PP00P3_170607 to C.P and 31003A_172861 to J.W.V.). Further funding came from a JPIAMR grant (40AR40_185533 to J.W.V.) and ERC consolidator grant 771534-PneumoCaTChER (to J.W.V). E.L. was funded by the Biozentrum International PhD Program.

Author information




B.Z. performed purification and crystallization of LtaA. C.P. assisted B.Z. during data collection, structure determination and docking analysis. B.Z., E.L. and C.P. established and performed in vitro flipping assays. C.P., B.Z. and E.L. analyzed the structural and in vitro functional data. E.L. performed reaction products characterization. X.L. and E.L. performed experiments in live cells. X.L, E.L, C.P. and J.W.-V. analyzed in vivo data. G.M. and S.H. performed NMR analysis. C.P. conceived the project and wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Camilo Perez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Katarzyna Marcinkiewicz was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Fluorescence quenching analysis of protein-free liposomes.

Representative traces of quenching of liposomes containing NBD-anchor-LLD or NBD-DAG (n ≥ 3). Asterisk marks addition of dithionite. Source data are available with the paper online. F correspond to the fluorescence intensity measured for each time point. Fmax is the average fluorescence measured during the first 200 seconds.

Extended Data Fig. 2 S. aureus LtaA crystallization.

a, SDS-PAGE of samples from different steps of a LtaA purification experiment. Purified protein after cleavage of the His10-tag was used for crystallization. b, Size exclusion chromatography profile of purified LtaA (Superdex 200 10/300 Increase). Gray arrow indicates column void. c, Representative X-ray diffraction images of a LtaA crystal before in situ annealing (left) and after in situ annealing (right). The difference in unit cell dimensions before and after in situ annealing demonstrate shrinking of the unit cell. d, Stereo view (wall-eyed) of the 2Fo-Fc electron density map of the 3.3Å structure of LtaA at 1.0σ level.

Extended Data Fig. 3 2Fo-Fc electron density map.

Individual transmembrane segments of the 3.3Å structure of LtaA at 1.0σ level are shown.

Extended Data Fig. 4 Validation of side-chain register of LtaA model.

a and b, Anomalous electron density map define selenomethionine (SeMet) sites. Contour levels is 4.0σ. Anomalous density was observed for 16 out of 19 SeMet residues in LtaA.

Extended Data Fig. 5 LtaA structure analysis.

a, Overall structure of LtaA. The N-terminal domain is shown in light-orange, C-terminal domain is shown in light-blue, the cytoplasmic helical loop connecting the N-terminal and C-terminal domains is shown in gray. b, Vacuum electrostatic surface representation of LtaA showing side views of the protein. c, Top view of LtaA showing residues participating in the motif-G sequence (G345(X)8G(X)3GP(X)2GG363) in TM11 and motif-G-like sequence in TM5.d, Cytoplasmic view of LtaA showing TMs and loops blocking the access to the central cavity.

Extended Data Fig. 6 Sequence conservation analysis.

A multiple sequence alignment of 76 LtaA homologues found in related Staphylococcus species or other Gram-positive bacteria was generated. Top view of LtaA, residues in N-terminal and C-terminal cavity are colored by sequence conservation (ConSurf server).

Extended Data Fig. 7 Docking analysis and structures of compounds used in this study.

a, Models of lipid-linked-disaccharide docked into the amphiphilic cavity of LtaA. Lipid-linked-disaccharide is shown in black and red sticks. Green surface shows the amphiphilic central cavity of LtaA. b, Structures of disaccharides and Anchor-LLD (β-D-Glc-(1→6)-β-D-Glc-(1→3)-diacylglycerol).

Extended Data Fig. 8 Liquid chromatography mass spectrometry (LC-MS) analysis of relative abundance of LtaA and variants in S. aureus membranes.

Chromatographic separation of peptides was carried out using an EASY nano-LC 1000 system. Mass spectrometry analysis was performed on a Q-Exactive mass spectrometer equipped with a nanoelectrospray ion source. Three peptides ions of LtaA, LTNYNTRPVK (2+ and 3+ ion) and MQDSSLNNYANHK (2+) could be confidently identified and were used for label-free parallel reaction monitoring (PRM) quantification. The integrated peak areas of the 3 peptide ions quantified by PRM were summed and employed for LtaA quantification. The histogram shows relative abundances of LtaA and variants from independent experiments (n = 3).

Extended Data Fig. 9 Phenotypes of S. aureus WT, ∆ltaA, and LtaA mutants.

a, Over-expression of LtaA mutants. S. aureus strain NCTC8325 growth on C+Y agar plates in the presence of 0.1 mM IPTG incubated at 37 °C and 5% CO2. b, Over-expression of LtaA mutants. S. aureus strain NCTC8325 growth on C+Y agar plates in the presence of 0.1 mM IPTG incubated at 37 °C under different pH conditions. LtaA WT represents ∆ltaA mutant complemented with wild type ltaA on pLOW vector; Ctrl vector indicates ∆ltaA mutant complemented with pLOW carrying a functionally unrelated gene as vehicle control; the other labels represent ∆ltaA mutant complemented with ltaA with corresponding point mutations. c, Transmission electron microscopy (TEM) images at low magnification showing the morphology of S. aureus NCTC8325 WT and ∆ltaA mutant.

Extended Data Fig. 10 LtaA-catalyzed lipid-linked-disaccharide flipping and proton gradients.

a, Representative traces of flipping assays with a control transporter (bacterial choline transporter) in the presence of different proton gradients, in and out denote pH of buffer inside and outside of liposomes, respectively (n ≥ 3). Asterisk marks addition of dithionite. F correspond to the fluorescence intensity measured for each time point. Fmax is the average fluorescence measured during the first 200 seconds. b, Scheme of LtaA-catalyzed lipid-linked-disaccharide flipping under an outward proton gradient (top), no gradient (center), and an inward proton gradient (bottom). Under application of a pH gradient (H+), LtaA (yellow boxes) translocates NBD-anchor-LLD (red spheres) contrary to the proton gradient. Addition of dithionite (dit.) then reduces exposed and exchanged NBD-anchor-LLD (black spheres). The extent of quenching is in accordance to the direction of the pH gradient. Full fluorescence quenching will be achieved after prolonged incubation (dashed arrows).

Supplementary information

Supplemental Information

Supplementary Notes, Supplementary Figures 1–9 and Supplementary Tables 1–7.

Reporting Summary

Source data

Source Data Fig. 1

Statistical source data

Source Data Fig. 3

Statistical source data

Source Data Fig. 4

Statistical source data

Source Data Fig. 5

Statistical source data

Source Data Extended Data Fig. 1

Statistical source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Liu, X., Lambert, E. et al. Structure of a proton-dependent lipid transporter involved in lipoteichoic acids biosynthesis. Nat Struct Mol Biol 27, 561–569 (2020).

Download citation


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing