Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural and functional characterization of the bestrophin-2 anion channel

Abstract

The bestrophin family of calcium (Ca2+)-activated chloride (Cl) channels, which mediate the influx and efflux of monovalent anions in response to the levels of intracellular Ca2+, comprises four members in mammals (bestrophin 1–4). Here we report cryo-EM structures of bovine bestrophin-2 (bBest2) bound and unbound by Ca2+ at 2.4- and 2.2-Å resolution, respectively. The bBest2 structure highlights four previously underappreciated pore-lining residues specifically conserved in Best2 but not in Best1, illustrating the differences between these paralogs. Structure-inspired electrophysiological analysis reveals that, although the channel is sensitive to Ca2+, it has substantial Ca2+-independent activity for Cl, reflecting the opening at the cytoplasmic restriction of the ion conducting pathway even when Ca2+ is absent. Moreover, the ion selectivity of bBest2 is controlled by multiple residues, including those involved in gating.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cryo-EM structure of bBest2 and comparison to cBest1 and KpBest.
Fig. 2: Ca2+-dependent Cl current mediated by Best1 and Best2.
Fig. 3: Ca2+-dependence and ion selectivity of bBest2.
Fig. 4: The role of the neck and aperture in Ca2+-dependent gating of Cl.
Fig. 5: The role of the neck and aperture in Ca2+-dependent gating of CH3SO3.
Fig. 6: The role of the neck and aperture in Ca2+-dependent gating of I.
Fig. 7: Critical residues for the ion selectivity of bBest2.

Similar content being viewed by others

Data availability

Atomic models are available through the Protein Data Bank with accessions codes 6VX5, 6VX6, 6VX7, 6VX8 and 6VX9; cryo-EM reconstructions are available through the Electron Microscopy Data Bank with accession codes EMD-21430, EMD-21431, EMD-21432, EMD-21433 and EMD-21434.

References

  1. Hartzell, H. C., Qu, Z., Yu, K., Xiao, Q. & Chien, L. T. Molecular physiology of bestrophins: multifunctional membrane proteins linked to Best disease and other retinopathies. Physiol. Rev. 88, 639–672 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Xiao, Q., Hartzell, H. C. & Yu, K. Bestrophins and retinopathies. Pflugers Arch. 460, 559–569 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sun, H., Tsunenari, T., Yau, K. W. & Nathans, J. The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc. Natl Acad. Sci. USA 99, 4008–4013 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tsunenari, T. et al. Structure-function analysis of the bestrophin family of anion channels. J. Biol. Chem. 278, 41114–41125 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Marmorstein, A. D. et al. Bestrophin, the product of the Best vitelliform macular dystrophy gene (VMD2), localizes to the basolateral plasma membrane of the retinal pigment epithelium. Proc. Natl Acad. Sci. USA 97, 12758–12763 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Marquardt, A. et al. Mutations in a novel gene, VMD2, encoding a protein of unknown properties cause juvenile-onset vitelliform macular dystrophy (Best’s disease). Hum. Mol. Genet. 7, 1517–1525 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Petrukhin, K. et al. Identification of the gene responsible for Best macular dystrophy. Nat. Genet. 19, 241–247 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Allikmets, R. et al. Evaluation of the Best disease gene in patients with age-related macular degeneration and other maculopathies. Hum. Genet. 104, 449–453 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Burgess, R. et al. Biallelic mutation of BEST1 causes a distinct retinopathy in humans. Am. J. Hum. Genet. 82, 19–31 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Davidson, A. E. et al. Missense mutations in a retinal pigment epithelium protein, bestrophin-1, cause retinitis pigmentosa. Am. J. Hum. Genet. 85, 581–592 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ji, C. et al. Investigation and restoration of BEST1 activity in patient-derived RPEs with dominant mutations. Sci. Rep. 9, 19026 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kramer, F. et al. Mutations in the VMD2 gene are associated with juvenile-onset vitelliform macular dystrophy (Best disease) and adult vitelliform macular dystrophy but not age-related macular degeneration. Eur J. Hum. Genet. 8, 286–292 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Yang, T., Justus, S., Li, Y. & Tsang, S. H. BEST1: the Best target for gene and cell therapies. Mol. Ther. 23, 1805–1809 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yardley, J. et al. Mutations of VMD2 splicing regulators cause nanophthalmos and autosomal dominant vitreoretinochoroidopathy (ADVIRC). Invest. Ophthalmol. Vis. Sci. 45, 3683–3689 (2004).

    Article  PubMed  Google Scholar 

  15. Bakall, B. et al. Bestrophin-2 is involved in the generation of intraocular pressure. Invest. Ophthalmol. Vis. Sci. 49, 1563–1570 (2008).

    Article  PubMed  Google Scholar 

  16. Zhang, Y., Patil, R. V. & Marmorstein, A. D. Bestrophin 2 is expressed in human non-pigmented ciliary epithelium but not retinal pigment epithelium. Mol. Vis. 16, 200–206 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Heijl, A., Leske, M. C., Bengtsson, B., Hyman, L. & Hussein, M. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch. Ophthalmol. 120, 1268–1279 (2002).

    Article  PubMed  Google Scholar 

  18. Kass, M. A. et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch. Ophthalmol. 120, 701–713 (2002).

    Article  PubMed  Google Scholar 

  19. Lichter, P. R. et al. Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery. Ophthalmology 108, 1943–1953 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Cui, C. Y. et al. Forkhead transcription factor FoxA1 regulates sweat secretion through Bestrophin 2 anion channel and Na-K-Cl cotransporter 1. Proc. Natl Acad. Sci. USA 109, 1199–1203 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu, K., Lujan, R., Marmorstein, A., Gabriel, S. & Hartzell, H. C. Bestrophin-2 mediates bicarbonate transport by goblet cells in mouse colon. J. Clin. Invest. 120, 1722–1735 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kane Dickson, V., Pedi, L. & Long, S. B. Structure and insights into the function of a Ca2+ -activated Cl channel. Nature 516, 213–218 (2014).

    Article  PubMed  CAS  Google Scholar 

  23. Yang, T. et al. Structure and selectivity in bestrophin ion channels. Science 346, 355–359 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vaisey, G., Miller, A. N. & Long, S. B. Distinct regions that control ion selectivity and calcium-dependent activation in the bestrophin ion channel. Proc. Natl Acad. Sci. USA 113, E7399–E7408 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, Y. et al. ATP activates bestrophin ion channels through direct interaction. Nat. Commun. 9, 3126 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Qu, Z., Chien, L. T., Cui, Y. & Hartzell, H. C. The anion-selective pore of the bestrophins, a family of chloride channels associated with retinal degeneration. J. Neurosci. 26, 5411–5419 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qu, Z., Fischmeister, R. & Hartzell, C. Mouse bestrophin-2 is a bona fide Cl channel: identification of a residue important in anion binding and conduction. J. Gen Physiol. 123, 327–340 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Qu, Z. & Hartzell, C. Determinants of anion permeation in the second transmembrane domain of the mouse bestrophin-2 chloride channel. J. Gen. Physiol. 124, 371–382 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, Y. et al. Patient-specific mutations impair BESTROPHIN1’s essential role in mediating Ca2+-dependent Cl currents in human RPE. Elife 6, e29914 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Qu, Z., Wei, R. W., Mann, W. & Hartzell, H. C. Two bestrophins cloned from Xenopus laevis oocytes express Ca2+-activated Cl currents. J. Biol. Chem. 278, 49563–49572 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Ji, C. et al. Dual Ca2+-dependent gates in human Bestrophin1 underlie disease-causing mechanisms of gain-of-function mutations. Commun. Biol. 2, 240 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Miller, A. N., Vaisey, G. & Long, S. B. Molecular mechanisms of gating in the calcium-activated chloride channel bestrophin. Elife 8, e43231 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Civan, M. M., Peterson-Yantorno, K., Sanchez-Torres, J. & Coca-Prados, M. Potential contribution of epithelial Na+ channel to net secretion of aqueous humor. J. Exp. Zool. 279, 498–503 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Jacob, T. J. & Civan, M. M. Role of ion channels in aqueous humor formation. Am. J. Physiol. 271, C703–C720 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Qu, Z. & Hartzell, H. C. Bestrophin Cl channels are highly permeable to HCO3 . Am. J. Physiol. Cell Physiol. 294, C1371–C1377 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Frings, S., Reuter, D. & Kleene, S. J. Neuronal Ca2+-activated Cl channels–homing in on an elusive channel species. Prog. Neurobiol. 60, 247–289 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Kittredge, A., Ward, N., Hopiavuori, A., Zhang, Y. & Yang, T. Expression and purification of mammalian bestrophin ion channels. J. Vis. Exp. 138, e57832 (2018).

    Google Scholar 

  38. Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Rice, W. J. et al. Routine determination of ice thickness for cryo-EM grids. J. Struct. Biol. 204, 38–44 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Terwilliger, T. C., Ludtke, S. J., Read, R. J., Adams, P. D. & Afonine, P. V. Improvement of cryo-EM maps by density modification. Preprint at bioRxiv https://doi.org/10.1101/845032 (2020).

  41. Heymann, J. B. Guidelines for using Bsoft for high resolution reconstruction and validation of biomolecular structures from electron micrographs. Protein Sci. 27, 159–171 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kimanius, D., Forsberg, B. O., Scheres, S. H. & Lindahl, E. Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. Elife 5, e18722 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Asarnow, D., Palovcak, E. & Chen, Y. asarnow/pyem: UCSF pyem v.0.5. (UCSF, 2019).

  47. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, e42166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Benkert, P., Biasini, M. & Schwede, T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27, 343–350 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Bertoni, M., Kiefer, F., Biasini, M., Bordoli, L. & Schwede, T. Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Sci. Rep. 7, 10480 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Bienert, S. et al. The SWISS-MODEL Repository-new features and functionality. Nucleic Acids Res. 45, D313–D319 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Guex, N., Peitsch, M. C. & Schwede, T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis 30, S162–S173 (2009).

    Article  PubMed  Google Scholar 

  52. Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D. Struct. Biol. 74, 531–544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  CAS  Google Scholar 

  55. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D. Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Afonine, P. V. et al. New tools for the analysis and validation of cryo-EM maps and atomic models. Acta Crystallogr. D. Struct. Biol. 74, 814–840 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Barad, B. A. et al. EMRinger: side chain-directed model and map validation for 3D cryo-electron microscopy. Nat. Methods 12, 943–946 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Chovancova, E. et al. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol. 8, e1002708 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Center on Membrane Protein Production and Analysis (New York Structural Biology Center, supported by the National Institutes of Health (NIH) grant no. GM116799) and A. Sobolevsky for help on mammalian bestrophin screening; E. Eng for help on collecting cryo-EM data and R. Grassucci for assistance with microscope operation for initial screening experiments. Cryo-EM data were collected at the Simons Electron Microscopy Center and National Resource for Automated Molecular Microscopy (New York Structural Biology Center), supported by grants from the Simons Foundation (no. 349247), NYSTAR and NIH (no. GM103310). A.P.O. was supported by NIH grant no. (F31) EY030763, Y.S. was supported by the National Key R&D Program of China (2017YFE0103400), W.A.H. was supported by NIH grant no. GM107462 and T.Y. was supported by NIH grant nos. EY025290 and GM127652 and Columbia University start-up funding.

Author information

Authors and Affiliations

Authors

Contributions

A.P.O. designed research, performed protein purification and cryo-EM experiments, analyzed data, made figures and helped with writing the paper. Q.Z. and C.J. performed and analyzed patch clamp recordings, A.K. made constructs and purified proteins, A.H. maintained cells, Z.F. helped with collecting and analyzing cryo-EM data and N.W. made viruses. O.B.C. helped with cryo-EM data processing. Y.S. supervised Q.Z. and edited the manuscript. Y.Z. screened and purified proteins and wrote the paper. W.A.H. designed research and analyzed data. T.Y. designed research, analyzed data, made figures and wrote the paper.

Corresponding authors

Correspondence to Yin Shen, Yu Zhang, Wayne A. Hendrickson or Tingting Yang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Peer review information Katarzyna Marcinkiewicz and Ines Chen were the primary editors on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Structure determination of bBest2 with 250 nM Ca2+.

a, b, FSC curve for masked and unmasked map generated by cryoSPARC v2 non-uniform refinement for Ca2+-bound (a) and Ca2+-unbound (b) states. c, d, Local resolution estimation calculated by blocres as implemented in cryoSPARC v2 for Ca2+-bound (c) and Ca2+-unbound (d) states. e, Viewing angles for particles contributing to final map as implemented by pyem star2bild script for Ca2+-bound state. f, Analysis of sphericity of final maps by 3DFSC server to assess directional anisotropy of specimens with slightly preferred orientation for Ca2+-bound state. g, h, The same format for the Ca2+-unbound state. Blue histogram indicates percentage of per angle FSC. Red solid line indicates directional FSC and green dashed line indicates + /− 1 standard deviation from mean of directional FSC. i, j, Map v. Model FSC curve with and without mask as implemented by Phenix.validation package for Ca2+-bound (i) and Ca2+-unbound (j) states.

Extended Data Fig. 2 Structure determination of bBest2 with EGTA only.

In the same format as Extended Data Fig. 2. Left (a, c, e, f, i), Ca2+-unbound state 1 (N-terminus partially disordered); right (b, d, g, h, j), Ca2+-unbound state 2 (N-terminus completely disordered).

Extended Data Fig. 3 Structure determination of bBest2 with 5 mM Ca2+.

In the same format as Extended Data Figs. 2 and 3. a, FSC curve generated in cryoSPARC. b, Local resolution from blocres. c, Viewing angles for particles contributing to final map. d, Analysis of sphericity. e, Map v. Model FSC curve with and without mask.

Extended Data Fig. 4 Representative cryo-EM density for the two bBest2 cryo-EM structures with 250 nM Ca2+.

a, Architecture of an individual bBest2 protomer (left) and cBest1 protomer (4RDQ, right), both Ca2+-bound and color-coded by segments in accordance with Supplementary Figure 1. bh, Representative map densities for indicated regions are shown with the corresponding atomic model. The Ca2+-bound state (ordered N-terminus) and Ca2+-unbound state (completely disordered N-terminus) structures are shown in orange (left) and blue (right), respectively. Green dot, a Ca2+ ion. i, j, Stereo images of bBest2, presenting the aperture region for divergent “wall-eyed” viewing. Orange, Ca2+-bound (i); blue, Ca2+-unbound (j). Green dot, a Cl- ion.

Extended Data Fig. 5 Representative cryo-EM density for bBest2 cryo-EM structures with EGTA only and 5 mM Ca2+.

ag, Representative map densities for indicated regions are shown with the corresponding atomic model. The Ca2+-unbound state 1 (partially disordered N-terminus, EGTA only), Ca2+-unbound state 2 (completely disordered N-terminus, EGTA only) and Ca2+-bound state (ordered N-terminus, 5 mM Ca2+) structures are shown in green (left), pumpkin (middle) and purple (right), respectively. Green dot, a Ca2+ ion.

Extended Data Fig. 6 Critical residues in Best1 and Best2.

a, b, Population steady-state current density-voltage relationships from HEK293 cells expressing hBest2 S205I (a) or bBest2 G205I (b) in the absence (gray) and presence (black) of 1.2 μM [Ca2+]i; n = 9–20 for each point. c, Bar chart showing the steady-state current densities from HEK293 cells expressing the indicated Best1 and Best2 channels in the absence (gray) and presence (black) of 1.2 μM [Ca2+]i, n = 5–20 for each bar. *P < 0.05 compared to currents without Ca2+ under the same condition, using two-tailed unpaired Student t test. d, e, Population steady-state current density-voltage relationships from HEK293 cells expressing WT bBest2 in the presence of 1.2 μM [Ca2+]i with 120 mM NaCl in the internal solution, and 30 mM NaCl (d) or 120 mM NaSCN (e) in the external solution; n = 5 for each point. f, Population steady-state current density-voltage relationships from HEK293 cells expressing WT bBest2 in the presence of 1.2 μM [Ca2+]i with 120 and 30 mM NaCl in the internal and external solutions, respectively. Results from solutions buffered with NMDG (open circle) were compared to those from solutions buffered with NaOH (solid circle, the same data set as in d); n = 5–6 for each point. g, Population steady-state current density-voltage relationships from HEK293 cells expressing WT bBest2 in the presence of 1.2 μM [Ca2+]i with 120 mM NMDG-Cl and NMDG-CH3SO3 in the internal and external solutions, respectively (open circle), compared to results from 120 mM NaCl and NaCH3SO3 in the internal and external solutions, respectively (solid circle); n = 5–6 for each point. h, Reversal potentials from HEK293 cells expressing bBest2 WT, 3A, H91A, G199A, K208A and K265A. n = 5–18 for each point, the same color labels as in Fig. 3d. The graphs are plotted using the same set of data as in Figs. 3 and 7. All error bars in this figure represent s.e.m.

Extended Data Fig. 7 Expression and membrane trafficking of bBest2 mutants.

a, Top, Western blot showing the transient expression levels of bBest2 WT and mutants in HEK293 whole-cell lysate; Bottom, β-Actin loading control from the same gel. b, Top, cell surface expression levels of bBest2 WT and mutants in HEK293 cells were detected by immunoblotting. Membrane extractions were generated from the same batch of cell pellets as in a; Bottom, quantitation of the levels of bBest2 in plasma membrane from three independent experiments. Data were normalized to the global bBest2 level and then compared to WT. All error bars in this figure represent s.e.m.

Extended Data Fig. 8 A two-gate activation model of bBest2.

ac, Cartoon showing the effect of Ca2+ on the permeation of Cl- (a), CH3SO3 (b) and I (c). The number indicates the radius (Å) of the dehydrated anion. The thickness of the arrows reflect conductance of the channel.

Extended Data Fig. 9 A putative anion binding site within the aperture of bBest2.

Left, the molecular model of bBest2. Right, representative map densities with the corresponding atomic model for EGTA Ca2+-unbound state 1 (green), EGTA Ca2+-unbound state 2 (pumpkin), and 5 mM Ca2+-bound state (purple). a, Map processed with C5 symmetry, view from inside the channel towards the aperture, as depicted in the ribbon cartoon (left). b, Map processed with C5 symmetry, view from the side of the aperture, sliced to exclude one protomer, as depicted in the ribbon cartoon (left). c, Map processed with C1 symmetry using the same particle set as its respective C5 map above, same view as in a.

Supplementary information

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Owji, A.P., Zhao, Q., Ji, C. et al. Structural and functional characterization of the bestrophin-2 anion channel. Nat Struct Mol Biol 27, 382–391 (2020). https://doi.org/10.1038/s41594-020-0402-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-020-0402-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing