Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BRCA1 and S phase DNA repair pathways restrict LINE-1 retrotransposition in human cells

Abstract

Long interspersed element-1 (LINE-1, or L1) is the only autonomous retrotransposon that is active in human cells. Different host factors have been shown to influence L1 mobility; however, systematic analyses of these factors are limited. Here, we developed a high-throughput microscopy-based retrotransposition assay that identified the double-stranded break (DSB) repair and Fanconi anemia (FA) factors active in the S/G2 phase as potent inhibitors and regulators of L1 activity. In particular, BRCA1, an E3 ubiquitin ligase with a key role in several DNA repair pathways, directly affects L1 retrotransposition frequency and structure and plays a distinct role in controlling L1 ORF2 protein translation through L1 mRNA binding. These results suggest the existence of a ‘battleground’ at the DNA replication fork between homologous recombination (HR) factors and L1 retrotransposons and reveal a potential role for L1 in the genotypic evolution of tumors characterized by BRCA1 and HR repair deficiencies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A whole-genome siRNA knockdown screen for L1 regulators.
Fig. 2: Secondary validations of the DNA repair factors.
Fig. 3: Evidence that L1 uses and induces stalled replication forks.
Fig. 4: Re-expression of wild-type BRCA1 represses L1 retrotransposition in UWB1.289 ovarian carcinoma cells.
Fig. 5: HR/FA pathways repress L1 endonuclease-dependent and independent retrotransposition through BRCA1-mediated DNA resection.
Fig. 6: Mechanism of BRCA1-mediated repression of L1 retrotransposition.
Fig. 7: BRCA1 inhibits ORF2 translation in the cytoplasm.
Fig. 8: Model of BRCA1 inhibition of L1 retrotransposition.

Similar content being viewed by others

Data availability

All the raw data of the primary and secondary screens are provided in the Supplementary Tables.

References

  1. Burns, K. H. & Boeke, J. D. Human transposon tectonics. Cell 149, 740–752 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huang, C. R. L., Burns, K. H. & Boeke, J. D. Active transposition in genomes. Annu. Rev. Genet. 46, 651–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sassaman, D. M. et al. Many human L1 elements are capable of retrotransposition. Nat. Genet. 16, 37–43 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Martin, S. L. & Bushman, F. D. Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon. Mol. Cell Biol. 21, 467–475 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cost, G. J., Feng, Q., Jacquier, A. & Boeke, J. D. Human L1 element target-primed reverse transcription in vitro. EMBO J. 21, 5899–5910 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Feng, Q., Moran, J. V., Kazazian, H. H. & Boeke, J. D. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87, 905–916 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Mita, P. et al. LINE-1 protein localization and functional dynamics during the cell cycle. eLife 7, 210–210 (2018).

    Article  Google Scholar 

  8. Alisch, R. S., Garcia-Perez, J. L., Muotri, A. R., Gage, F. H. & Moran, J. V. Unconventional translation of mammalian LINE-1 retrotransposons. Genes Dev. 20, 210–224 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Luan, D. D., Korman, M. H., Jakubczak, J. L. & Eickbush, T. H. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition. Cell 72, 595–605 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Jurka, J. & Klonowski, P. Integration of retroposable elements in mammals: selection of target sites. J. Mol. Evol. 43, 685–689 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Gilbert, N., Lutz, S., Morrish, T. A. & Moran, J. V. Multiple fates of L1 retrotransposition intermediates in cultured human cells. Mol. Cell. Biol. 25, 7780–7795 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moran, J. V. et al. High frequency retrotransposition in cultured mammalian cells. Cell 87, 917–927 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Symer, D. E. et al. Human l1 retrotransposition is associated with genetic instability in vivo. Cell 110, 327–338 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Goodier, J. L. Restricting retrotransposons: a review. Mob. DNA 7, 16–16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gasior, S. L., Wakeman, T. P., Xu, B. & Deininger, P. L. The human LINE-1 retrotransposon creates DNA double-strand breaks. J. Mol. Biol. 357, 1383–1393 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Coufal, N. G. et al. Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotransposition in human neural stem cells. PNAS 108, 20382–20387 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Suzuki, J. et al. Genetic evidence that the non-homologous end-joining repair pathway is involved in LINE retrotransposition. PLoS Genet. 5, e1000461–e1000461 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Morrish, T. A. et al. DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat. Genet. 31, 159–165 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Servant, G. et al. The nucleotide excision repair pathway limits L1 retrotransposition. Genetics 205, 139–153 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Brégnard, C. et al. Upregulated LINE-1 activity in the Fanconi anemia cancer susceptibility syndrome leads to spontaneous pro-inflammatory cytokine production. EBioMedicine 8, 184–194 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu, N. et al. Selective silencing of euchromatic L1s revealed by genome-wide screens for L1 regulators. Nature 553, 228–232 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Hampf, H. & Gossen, M. Promoter crosstalk effects on gene expression. J. Mol. Biol. 365, 911–920 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Taylor, M. S. et al. Affinity proteomics reveals human host factors implicated in discrete stages of LINE-1 retrotransposition. Cell 155, 1034–1048 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. An, W. et al. Characterization of a synthetic human LINE-1 retrotransposon ORFeus -Hs. Mob. DNA 2, 1–1 (2011).

    Article  CAS  Google Scholar 

  25. Szklarczyk, D. et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Ardeljan, D. et al. Cell fitness screens reveal a conflict between LINE-1 retrotransposition and DNA replication. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-020-0372-1 (2020).

  27. Krejci, L., Altmannova, V., Spirek, M. & Zhao, X. Homologous recombination and its regulation. Nucleic Acids Res. 40, 5795–5818 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, X. & Heyer, W.-D. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res. 18, 99–113 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Ceccaldi, R., Sarangi, P. & D’Andrea, A. D. The Fanconi anaemia pathway: new players and new functions. Nat. Rev. Mol. Cell 17, 337–349 (2016).

    Article  CAS  Google Scholar 

  30. Dungrawala, H. & Cortez, D. Purification of proteins on newly synthesized DNA using iPOND. Methods Mol. Biol. 1228, 123–131 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Michl, J., Zimmer, J. & Tarsounas, M. Interplay between Fanconi anemia and homologous recombination pathways in genome integrity. EMBO J. 35, 909–923 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schlacher, K., Wu, H. & Jasin, M. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 22, 106–116 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. DelloRusso, C. et al. Functional characterization of a novel BRCA1-null ovarian cancer cell line in response to ionizing radiation. Mol. Cancer Res. 5, 35–45 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Morrish, T. A. et al. Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres. Nature 446, 208–212 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Ruffner, H., Joazeiro, C. A., Hemmati, D., Hunter, T. & Verma, I. M. Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc. Natl Acad. Sci. USA 98, 5134–5139 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shen, S. X. et al. A targeted disruption of the murine Brca1 gene causes gamma-irradiation hypersensitivity and genetic instability. Oncogene 17, 3115–3124 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Huertas, P. & Jackson, S. P. Human CtIP mediates cell cycle control of DNA end resection and double strand break repair. J. Biol. Chem. 284, 9558–9565 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. You, Z. & Bailis, J. M. DNA damage and decisions: CtIP coordinates DNA repair and cell cycle checkpoints. Trends Cell Biol. 20, 402–409 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Przetocka, S. et al. CtIP-mediated fork protection synergizes with BRCA1 to suppress genomic instability upon DNA replication stress. Mol. Cell 72, 568–582 e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Her, J., Ray, C., Altshuler, J., Zheng, H. & Bunting, S. F. 53BP1 mediates ATR-Chk1 signaling and protects replication forks under conditions of replication stress. Mol. Cell Biol. https://doi.org/10.1128/MCB.00472-17 (2018).

  41. Villa, M., Bonetti, D., Carraro, M. & Longhese, M. P. Rad9/53BP1 protects stalled replication forks from degradation in Mec1/ATR-defective cells. EMBO Rep. 19, 351–367 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bunting, S. F. et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141, 243–254 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Polato, F. et al. CtIP-mediated resection is essential for viability and can operate independently of BRCA1. J. Exp. Med. 211, 1027–1036 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Beyer, A., Bandyopadhyay, S. & Ideker, T. Integrating physical and genetic maps: from genomes to interaction networks. Nat. Rev. Genet. 8, 699–710 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Higgs, M. R. et al. BOD1L is required to suppress deleterious resection of stressed replication forks. Mol. Cell 59, 462–477 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Xu, S. et al. Abro1 maintains genome stability and limits replication stress by protecting replication fork stability. Genes Dev. 31, 1469–1482 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Poole, L. A. & Cortez, D. Functions of SMARCAL1, ZRANB3, and HLTF in maintaining genome stability. Crit. Rev. Biochem. Mol. Biol. 52, 696–714 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fungtammasan, A., Walsh, E., Chiaromonte, F., Eckert, K. A. & Makova, K. D. A genome-wide analysis of common fragile sites: What features determine chromosomal instability in the human genome? Genome Res. 22, 993–1005 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Arlt, M. F. et al. BRCA1 is required for common-fragile-site stability via its G2/M checkpoint function. Mol. Cell. Biol. 24, 6701–6709 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gilbert, N., Lutz-Prigge, S. & Moran, J. V. Genomic deletions created upon LINE-1 retrotransposition. Cell 110, 315–325 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Jensen, S., Gassama, M. P. & Heidmann, T. Retransposition of the drosophilia LINE I element can induce deletion in the target DNA: A simple model also accounting for the variability of the normally observed target site duplications. Biochem. Biophys. Res. Commun. 202, 111–119 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Santos, A., Wernersson, R. & Jensen, L. J. Cyclebase 3.0: a multi-organism database on cell-cycle regulation and phenotypes. Nucleic Acids Res. 43, D1140–D1144 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Dacheux, E. et al. BRCA1-dependent translational regulation in breast cancer cells. PLoS One 8, e67313–e67313 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mao, Z., Bozzella, M., Seluanov, A. & Gorbunova, V. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle 7, 2902–2906 (2014).

    Article  Google Scholar 

  55. Dai, L., Taylor, M. S., O’Donnell, K. A. & Boeke, J. D. Poly(A) binding protein C1 Is essential for efficient L1 retrotransposition and affects L1 RNP formation. Mol. Cell Biol. 32, 4323–4336 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kalva, S., Boeke, J. D. & Mita, P. Gibson Deletion: a novel application of isothermal in vitro recombination. Biol. Proced. Online 20, 2 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Xie, Y., Rosser, J. M., Thompson, T. L., Boeke, J. D. & An, W. Characterization of L1 retrotransposition with high-throughput dual-luciferase assays. Nucleic Acids Res. 39, e16 (2011).

    Article  PubMed  CAS  Google Scholar 

  58. Xie, Y. et al. Cell division promotes efficient retrotransposition in a stable L1 reporter cell line. Mob. DNA 4, 10 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hasson, S. A. et al. High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature 504, 291–295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pasetto, M. et al. Whole-genome RNAi screen highlights components of the endoplasmic reticulum/Golgi as a source of resistance to immunotoxin-mediated cytotoxicity. Proc. Natl Acad. Sci. USA 112, E1135–E1142 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Grohar, P. J. et al. Identification of an inhibitor of the EWS-FLI1 oncogenic transcription factor by high-throughput screening. J. Natl Cancer Inst. 103, 962–978 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vassilev, A. et al. Identification of genes that are essential to restrict genome duplication to once per cell division. Oncotarget 7, 34956–34976 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Xiao, S. et al. Genome-scale RNA interference screen identifies antizyme 1 (OAZ1) as a target for improvement of recombinant protein production in mammalian cells. Biotechnol. Bioeng. 113, 2403–2415 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sivan, G., Ormanoglu, P., Buehler, E. C., Martin, S. E. & Moss, B. Identification of restriction factors by human genome-wide RNA interference screening of viral host range mutants exemplified by discovery of SAMD9 and WDR6 as inhibitors of the vaccinia virus K1L-C7L- mutant. MBio 6, e01122 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rodić, N. et al. Long interspersed element-1 protein expression is a hallmark of many human cancers. Am. J. Pathol. 184, 1280–1286 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Grimm, J. B. et al. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12, 244–250 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Huang and K. H. Burns for helpful discussions and comments on the manuscript. This work was supported by NIH grants P50GM107632 to J.D.B. and P01AG051449 to J. Sedivy.

Author information

Authors and Affiliations

Authors

Contributions

P.M., X.S. and J.D.B. conceived the project; P.M. and X.S. performed experiments; P.M., D.J.K. and C.Y. conducted the primary screen; D.L., N.A. and A.W. contributed new reagents/approaches; P.M., X.S., D.F., D.J.K., S.K., J.S.B, C.Y. and J.D.B. analyzed results; P.M., X.S. and J.D.B. wrote the manuscript; All authors read and commented on the manuscript.

Corresponding authors

Correspondence to Paolo Mita or Jef D. Boeke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Beth Moorefield was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information including Supplementary Note and 10 Supplementary Figures

Reporting Summary

Supplementary Table 1

Raw data and hit lists for the genome-wide siRNA knockdown screen

Supplementary Table 2

Enrichment analysis results for the L1 supporters identified in our screen

Supplementary Table 3

log2 fold changes of the DNA repair factors in 96-well validation screen

Supplementary Table 4

L1 insertion sequences recovered in control cells and cells depleted of BRCA1 or FANCM

Supplementary Table 5

List and description of DNA constructs used in this study

Supplementary Table 6

Oligos and primers used in this study

Supplementary Table 7

Summary table of the epistasis analysis reported in Supplementary Figure 8. Cells are colored red if depletion of the considered gene induced a significant increase of L1 retrotransposition compared to siCtrl (in single knockdowns) or siBRCA1 (in double knockdowns). Cells are colored blue if the depletion of the considered gene induced a significant decrease of L1 retrotransposition compared to siCtrl (in single knockdowns) or siBRCA1 (in double knockdowns). The number of + indicate the magnitude of decrease or increase. X means that depletion of the considered gene did not induce any significant alteration in L1 retrotransposition compared to siCtrl (in single KDs) or siBRCA1 (in double KDs) treatments.

Supplementary Video 1

Live-cell imaging of FUCCI cells expressing ORF2 in G1. FUCCI cells expressing L1 were imaged every 30 min for 48 h. Geminin and Cdt1 peptides are visualized in green and red, respectively. Merged channels, ORF2p (cy5 channel) and bright field are shown as a movie. The merged channel (left panel) shows a cluster of cells in the center of the field starting to express ORF2p in G1 phase (red nuclei).

Supplementary Video 2

Live-cell imaging of FUCCI cells expressing ORF2 in S/G2. FUCCI cells expressing L1 were imaged every 30 min for 48 h. Geminin and Cdt1 peptides are visualized in green and red, respectively. Merged channels, ORF2p (cy5 channel) and bright field are shown as a movie. The merged channel (left panel) shows two cells in the center of the field starting to express ORF2p in S/G2 phase (green nuclei).

Supplementary Data 1

Unprocessed western blots for Figs. 2 and 7 and Supplementary Figs. 3 and 10

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mita, P., Sun, X., Fenyö, D. et al. BRCA1 and S phase DNA repair pathways restrict LINE-1 retrotransposition in human cells. Nat Struct Mol Biol 27, 179–191 (2020). https://doi.org/10.1038/s41594-020-0374-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-020-0374-z

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer