Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structural insights into the regulation of human serine palmitoyltransferase complexes

Abstract

Sphingolipids are essential lipids in eukaryotic membranes. In humans, the first and rate-limiting step of sphingolipid synthesis is catalyzed by the serine palmitoyltransferase holocomplex, which consists of catalytic components (SPTLC1 and SPTLC2) and regulatory components (ssSPTa and ORMDL3). However, the assembly, substrate processing and regulation of the complex are unclear. Here, we present 8 cryo-electron microscopy structures of the human serine palmitoyltransferase holocomplex in various functional states at resolutions of 2.6–3.4 Å. The structures reveal not only how catalytic components recognize the substrate, but also how regulatory components modulate the substrate-binding tunnel to control enzyme activity: ssSPTa engages SPTLC2 and shapes the tunnel to determine substrate specificity. ORMDL3 blocks the tunnel and competes with substrate binding through its amino terminus. These findings provide mechanistic insights into sphingolipid biogenesis governed by the serine palmitoyltransferase complex.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Function and architecture of the human SPT complex.
Fig. 2: Active site and ligand recognition in the SPT complex.
Fig. 3: Regulation by ssSPTa.
Fig. 4: Structure of the human SPT–ORM complex.
Fig. 5: Regulation by ORMDL3.
Fig. 6: Disease mutations on the SPT–ORM complex.
Fig. 7: Regulation mechanism of the serine palmitoyltransferase complexes.

Data availability

The cryo-EM density maps have been deposited in the Electron Microscopy Data Bank under accession codes EMD-22598, EMD-22599, EMD-22600, EMD-22601, EMD-22602, EMD-22604, EMD-22605, EMD-22606, and EMD-22608. The corresponding atomic models have been deposited in the Protein Data Bank under accession codes PDB 7K0I, PDB 7K0J, PDB 7K0K, PDB 7K0L, PDB 7K0M, PDB 7K0N, PDB 7K0O, PDB 7K0P, and PDB 7K0Q. Source data are provided with this paper.

References

  1. 1.

    Hannun, Y. A. & Obeid, L. M. Sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol. 19, 175–191 (2018).

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Ogretmen, B. Sphingolipid metabolism in cancer signalling and therapy. Nat. Rev. Cancer 18, 33–50 (2018).

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Dunn, T. M., Tifft, C. J. & Proia, R. L. A perilous path: the inborn errors of sphingolipid metabolism. J. Lipid Res. 60, 475–483 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Alaamery, M. et al. Role of sphingolipid metabolism in neurodegeneration. J. Neurochem. https://doi.org/10.1111/jnc.15044 (2020).

  5. 5.

    Harrison, P. J., Dunn, T. M. & Campopiano, D. J. Sphingolipid biosynthesis in man and microbes. Nat. Prod. Rep. 35, 921–954 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Hojjati, M. R., Li, Z. & Jiang, X.-C. Serine palmitoyl-CoA transferase (SPT) deficiency and sphingolipid levels in mice. Biochim. Biophys. Acta 1737, 44–51 (2005).

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Bejaoui, K. et al. SPTLC1 is mutated in hereditary sensory neuropathy, type 1. Nat. Genet. 27, 261–262 (2001).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Dawkins, J. L., Hulme, D. J., Brahmbhatt, S. B., Auer-Grumbach, M. & Nicholson, G. A. Mutations in SPTLC1, encoding serine palmitoyltransferase, long chain base subunit-1, cause hereditary sensory neuropathy type I. Nat. Genet. 27, 309–312 (2001).

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Dunn-Giroux, T. et al. SPTLC1 mutations associated with early onset amyotrophic lateral sclerosis. FASEB J. https://doi.org/10.1096/fasebj.2020.34.s1.00143 (2020).

  10. 10.

    Johnson, J. O. et al. Mutations in the SPTLC1 gene are a cause of juvenile amyotrophic lateral sclerosis that may be amenable to serine supplementation. Preprint at bioRxiv https://doi.org/10.1101/770339 (2020).

  11. 11.

    Auer-Grumbach, M. et al. Mutations at Ser331 in the HSN type I gene SPTLC1 are associated with a distinct syndromic phenotype. Eur. J. Med. Genet. 56, 266–269 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Rotthier, A. et al. Mutations in the SPTLC2 subunit of serine palmitoyltransferase cause hereditary sensory and autonomic neuropathy type I. Am. J. Hum. Genet 87, 513–522 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Suriyanarayanan, S. et al. The variant p.(Arg183Trp) in SPTLC2 causes late-onset hereditary sensory neuropathy. Neuromol. Med. 18, 81–90 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    Ernst, D. et al. Novel HSAN1 mutation in serine palmitoyltransferase resides at a putative phosphorylation site that is involved in regulating substrate specificity. Neuromol. Med. 17, 47–57 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Murphy, S. M. et al. Hereditary sensory and autonomic neuropathy type 1 (HSANI) caused by a novel mutation in SPTLC2. Neurology 80, 2106–2111 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Suriyanarayanan, S. et al. A novel variant (Asn177Asp) in SPTLC2 causing hereditary sensory autonomic neuropathy type 1C. Neuromolecular Med. 21, 182–191 (2019).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Bode, H. et al. HSAN1 mutations in serine palmitoyltransferase reveal a close structure–function–phenotype relationship. Hum. Mol. Genet. 25, 853–865 (2016).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Genin, M. J. et al. Imidazopyridine and pyrazolopiperidine derivatives as novel inhibitors of serine palmitoyl transferase. J. Med. Chem. 59, 5904–5910 (2016).

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Kojima, T. et al. Discovery of novel serine palmitoyltransferase inhibitors as cancer therapeutic agents. Bioorg. Medicinal Chem. 26, 2452–2465 (2018).

    CAS  Article  Google Scholar 

  20. 20.

    Muthusamy, T. et al. Serine restriction alters sphingolipid diversity to constrain tumour growth. Nature 586, 790–795 (2020).

  21. 21.

    Yard, B. A. et al. The structure of serine palmitoyltransferase; gateway to sphingolipid biosynthesis. J. Mol. Biol. 370, 870–886 (2007).

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Raman, M. C. C. et al. The external aldimine form of serine palmitoyltransferase. J. Biol. Chem. 284, 17328–17339 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Ikushiro, H. et al. Structural insights into the enzymatic mechanism of serine palmitoyltransferase from Sphingobacterium multivorum. J. Biochem. 146, 549–562 (2009).

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Hornemann, T., Wei, Y. & von Eckardstein, A. Is the mammalian serine palmitoyltransferase a high-molecular-mass complex? Biochem. J. 405, 157–164 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Han, G. et al. Identification of small subunits of mammalian serine palmitoyltransferase that confer distinct acyl-CoA substrate specificities. Proc. Natl Acad. Sci. USA 106, 8186–8191 (2009).

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Siow, D. L. & Wattenberg, B. W. Mammalian ORMDL proteins mediate the feedback response in ceramide biosynthesis. J. Biol. Chem. 287, 40198–40204 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Hjelmqvist, L. et al. ORMDL proteins are a conserved new family of endoplasmic reticulum membrane proteins. Genome Biol. 3, research0027.1 (2002).

    Article  Google Scholar 

  28. 28.

    Han, S., Lone, M. A., Schneiter, R. & Chang, A. Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control. Proc. Natl Acad. Sci. USA 107, 5851–5856 (2010).

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Breslow, D. K. et al. Orm family proteins mediate sphingolipid homeostasis. Nature 463, 1048–1053 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Davis, D. L., Gable, K., Suemitsu, J., Dunn, T. M. & Wattenberg, B. W. The ORMDL/Orm–serine palmitoyltransferase (SPT) complex is directly regulated by ceramide: reconstitution of SPT regulation in isolated membranes. J. Biol. Chem. 294, 5146–5156 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Harmon, J. M. et al. Topological and functional characterization of the ssSPTs, small activating subunits of serine palmitoyltransferase. J. Biol. Chem. 288, 10144–10153 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Zhao, L. et al. Elevation of 20-carbon long chain bases due to a mutation in serine palmitoyltransferase small subunit b results in neurodegeneration. Proc. Natl Acad. Sci. USA 112, 12962–12967 (2015).

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Moffatt, M. F. et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448, 470–473 (2007).

    CAS  Article  Google Scholar 

  34. 34.

    Ono, J. G. et al. Decreased sphingolipid synthesis in children with 17q21 asthma-risk genotypes. J. Clin. Invest. 130, 921–926 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Nagiec, M. M., Lester, R. L. & Dickson, R. C. Sphingolipid synthesis: identification and characterization of mammalian cDNAs encoding the Lcb2 subunit of serine palmitoyltransferase. Gene 177, 237–241 (1996).

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Weiss, B. & Stoffel, W. Human and murine serine-palmitoyl-CoA transferase—cloning, expression and characterization of the key enzyme in sphingolipid synthesis. Eur. J. Biochem. 249, 239–247 (1997).

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Hornemann, T., Richard, S., Rütti, M. F., Wei, Y. & von Eckardstein, A. Cloning and initial characterization of a new subunit for mammalian serine-palmitoyltransferase. J. Biol. Chem. 281, 37275–37281 (2006).

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Rütti, M. F., Richard, S., Penno, A., von Eckardstein, A. & Hornemann, T. An improved method to determine serine palmitoyltransferase activity. J. Lipid Res. 50, 1237–1244 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  39. 39.

    Hanada, K., Hara, T. & Nishijima, M. Purification of the serine palmitoyltransferase complex responsible for sphingoid base synthesis by using affinity peptide chromatography techniques. J. Biol. Chem. 275, 8409–8415 (2000).

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Wadsworth, J. M. et al. The chemical basis of serine palmitoyltransferase inhibition by myriocin. J. Am. Chem. Soc. 135, 14276–14285 (2013).

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Ikushiro, H., Hayashi, H. & Kagamiyama, H. Reactions of serine palmitoyltransferase with serine and molecular mechanisms of the actions of serine derivatives as inhibitors. Biochemistry 43, 1082–1092 (2004).

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Yasuda, S., Nishijima, M. & Hanada, K. Localization, topology, and function of the LCB1 subunit of serine palmitoyltransferase in mammalian cells. J. Biol. Chem. 278, 4176–4183 (2003).

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Han, G. et al. The topology of the Lcb1p subunit of yeast serine palmitoyltransferase. J. Biol. Chem. 279, 53707–53716 (2004).

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Hanada, K. et al. A mammalian homolog of the yeast LCB1 encodes a component of serine palmitoyltransferase, the enzyme catalyzing the first step in sphingolipid synthesis. J. Biol. Chem. 272, 32108–32114 (1997).

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Taouji, S. et al. Phosphorylation of serine palmitoyltransferase long chain-1 (SPTLC1) on tyrosine 164 inhibits its activity and promotes cell survival. J. Biol. Chem. 288, 17190–17201 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Miyake, Y., Kozutsumi, Y., Nakamura, S., Fujita, T. & Kawasaki, T. Serine palmitoyltransferase is the primary target of a sphingosine-like immunosuppressant, ISP-1/myriocin. Biochem. Biophys. Res. Commun. 211, 396–403 (1995).

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Lee, Y.-S. et al. Myriocin, a serine palmitoyltransferase inhibitor, suppresses tumor growth in a murine melanoma model by inhibiting de novo sphingolipid synthesis. Cancer Biol. Ther. 13, 92–100 (2012).

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Hanada, K. Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim. Biophys. Acta 1632, 16–30 (2003).

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Lone, M. A. et al. Subunit composition of the mammalian serine-palmitoyltransferase defines the spectrum of straight and methyl-branched long-chain bases. Proc. Natl Acad. Sci. USA 117, 15591–15598 (2020).

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Clarke, B. A. et al. The Ormdl genes regulate the sphingolipid synthesis pathway to ensure proper myelination and neurologic function in mice. Elife 8, e51067 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Paulenda, T. & Draber, P. The role of ORMDL proteins, guardians of cellular sphingolipids, in asthma. Allergy 71, 918–930 (2016).

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Davis, D., Suemitsu, J. & Wattenberg, B. Transmembrane topology of mammalian ORMDL proteins in the endoplasmic reticulum as revealed by the substituted cysteine accessibility method (SCAMTM). Biochim. Biophys. Acta 1867, 382–395 (2019).

  53. 53.

    Han, G. et al. The ORMs interact with transmembrane domain 1 of Lcb1 and regulate serine palmitoyltransferase oligomerization, activity and localization. Biochim. Biophys. Acta 1864, 245–259 (2019).

  54. 54.

    Gupta, S. D. et al. Expression of the ORMDLS, modulators of serine palmitoyltransferase, is regulated by sphingolipids in mammalian cells. J. Biol. Chem. 290, 90–98 (2015).

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Siow, D., Sunkara, M., Dunn, T. M., Morris, A. J. & Wattenberg, B. ORMDL/serine palmitoyltransferase stoichiometry determines effects of ORMDL3 expression on sphingolipid biosynthesis. J. Lipid Res. 56, 898–908 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Goehring, A. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat. Protoc. 9, 2574–2585 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Weissmann, F. et al. biGBac enables rapid gene assembly for the expression of large multisubunit protein complexes. Proc. Natl Acad. Sci. USA 113, E2564–E2569 (2016).

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Kirchhofer, A. et al. Modulation of protein properties in living cells using nanobodies. Nat. Struct. Mol. Biol. 17, 133–138 (2010).

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Zheng, S. Q. et al. MotionCor2 — anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    CAS  Article  Google Scholar 

  63. 63.

    Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, e42166 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Ramlaul, K., Palmer, C. M., Nakane, T. & Aylett, C. H. S. Mitigating local over-fitting during single particle reconstruction with SIDESPLITTER. J. Struct. Biol. 211, 107545 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Cardone, G., Heymann, J. B. & Steven, A. C. One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions. J. Struct. Biol. 184, 226–236 (2013).

    PubMed  Article  Google Scholar 

  67. 67.

    Biasini, M. et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42, W252–W258 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr D Struct. Biol. 74, 531–544 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol. Crystallogr. 66, 12–21 (2010).

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Laskowski, R. A. & Swindells, M. B. LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51, 2778–2786 (2011).

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14, 673–681 (2006).

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Merrill, A. H., Sullards, M. C., Allegood, J. C., Kelly, S. & Wang, E. Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods 36, 207–224 (2005).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We thank L. Tang and W. Guo at the Cryo-EM Center of St. Jude Children’s Research Hospital for support with data collection and computer infrastructure. We thank C. Kalodimos, S. Blanchard, M. Halic, J. Sun, X. Li, M. Hattori, W. Lü, C. Zhao, J. Lee, and F. Liu for helpful discussions. We thank Z. Luo for assistance with the cartoons. This work was supported by ALSAC.

Author information

Affiliations

Authors

Contributions

Y.W. performed the fluorescence-based activity assays. C.-H.L. expressed and purified the proteins. C.-H.L conducted cryo-EM experiments, processed the data, and built the atomic models. Y.N., Z.Z., and H.Z. assisted in model building and structural analysis. K.G., S.D.G., N.S., G.H., and T.M.D. performed cell-based and microsomal SPT activity assays. A.M. assisted in cryo-EM data collection. Y.W. and R.K. assisted in cell culture. Y.W. and C.-H.L. wrote the manuscript with inputs from all authors.

Corresponding author

Correspondence to Chia-Hsueh Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Structural & Molecular Biology thanks Binks Wattenberg, Ming Zhou, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Florian Ullrich and Anke Sparmann were the primary editors on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Cryo-EM reconstructions of the SPT complex.

a, Summary of image processing procedures of the SPT complex dataset. b, Angular distribution of particles for the final 3D reconstructions. c, Fourier shell correlation (FSC) curves: half map 1 versus half map 2 (black) and model versus summed map (blue). d, Local resolution of cryo-EM maps. In (b), (c), and (d), top panels show the reconstruction of the whole complex and bottom panels show the reconstruction after symmetry expansion and signal subtraction (single protomer). e and f, Cryo-EM map of the SPT complex. In (f), the map is unsharpened and low-pass filtered to show the weaker density of the C-terminal helix of ssSPTa. The identity of the lipids (purple) can not be determined at this resolution.

Extended Data Fig. 2 Comparison of human SPTLCs and their bacterial homolog.

a, Structure of the cytosolic domains of human SPTLC1 and SPTLC2. For clarity, only one local dimer is shown. b, Structure of the serine palmitoyltransferase from Sphingomonas paucimobilis (SpSPT, PDB 2JG2). c, Overlay of the human SPTLCs and their bacterial homolog. d, Structural comparison of human SPTLCs and their bacterial homolog in the active site.

Extended Data Fig. 3 Analysis of SPTLC2 mutations on key residues involved in the dimeric interface.

a, Representative fluorescence-detection size-exclusion chromatography profiles showing that SPTLC2 Arg302Ala, Arg302Ala-Arg305Ala or Arg302Ala-Arg304Ala-Arg305Ala considerably decreased the dimer population. b, SPT activity measured from cells. d18:0, sphinganine. d18:0 P, sphinganine phosphate. d18:1, sphingosine. Newly synthesized sphingolipids were indicated by deuterium-labeled serine (d2) (mean ± SD; n = 3). c, SPT activity measured from microsomes. (mean ± SD; n = 3). Data for graphs in b and c are available as source data.

Source data

Extended Data Fig. 4 Cryo-EM reconstructions and ligand-protein interactions of the SPT complex bound to 3KS or myriocin.

(a to c) SPT-complex bound to 3KS. (d to f) SPT-complex bound to myriocin. a and d, Angular distribution of particles for the final 3D reconstructions. b and e, Fourier shell correlation (FSC) curves: half map 1 versus half map 2 (black) and model versus summed map (blue). c and f, Local resolution of cryo-EM maps. g, Scheme of interactions between 3KS, SPTLC1 (orange), and SPTLC2 (blue). 3KS and PLP are colored black. Dashed lines represent hydrogen bonds and spokes represent hydrophobic interactions. h, Scheme of interactions between myriocin, SPTLC1 (orange), and SPTLC2 (blue). Myriocin and PLP are colored black. i, Densities of 3KS and surrounding residues. j, Densities of myriocin and surrounding residues.

Extended Data Fig. 5 Cryo-EM reconstructions of the SPT-ORM complex.

a, Summary of image processing procedures of the SPT-ORM complex dataset. b, Angular distribution of particles for the final 3D reconstruction (class 1). c, Fourier shell correlation (FSC) curves (class 1): half map 1 versus half map 2 (black) and model versus summed map (blue). d, Local resolution of the cryo-EM map (class 1). e, Cryo-EM map of the SPT-ORM complex. f, Cryo-EM structure of ORMDL3. Four transmembrane helices of ORMDL3 are labeled as S1 to S4. The N- and C- terminus of the ORMDL3 are highlighted by spheres. Lipid-like densities were observed around S1 and S2 (lipid 1 and 2), and between S1 and S3 (lipid 3). The identity of the lipids cannot be determined at this resolution. g, Zoomed-in views of densities of lipids and surrounding residues.

Extended Data Fig. 6 Representative densities of the SPT-ORM complex.

SPTLC1 β sheet 1: residues 382–387, 393–398, 443–448. SPTLC1 β sheet 2: 205–209, 184–188, 239–245, 270–274, 302–306, 316–320, 160-164. SPTLC2 β sheet 1: 458–472, 507–511, 493–497. SPTLC2 β sheet 2: 275–281, 253–259, 308–315, 339–344, 372–377, 386–391, 230–235.

Extended Data Fig. 7 Functional analysis of the SPTLC1 mutation disrupting the interface between the SPTLC S1 helix and ORMDL3.

a to e, Sphingolipid contents from cells were measured as an indication of the SPT activity. SPTLC1 ∆S1 mutant is as active as wild type, but the regulation from ORMDL3 is considerably impaired. Representative results are shown (mean ± SD; n = 2). The experiment was repeated multiple times yielding similar results. Data are available as source data.

Source data

Extended Data Fig. 8 Cryo-EM reconstructions of the SPT-ORM complex in different conformations.

a to c, SPT-ORM complex (class 2). d to e, SPT-ORM complex (class 3). g to i, SPT-ORM complex (class 4). (a, d, and g) Angular distribution of particles for the final 3D reconstructions. (b, e, and h) Fourier shell correlation (FSC) curves: half map 1 versus half map 2 (black) and model versus summed map (blue). (c, f, and i) Local resolution of cryo-EM maps.

Extended Data Fig. 9 SPT-ORM complex in different conformations.

a to c, Two structures of SPT-ORM are overlaid on the left protomer (white) to demonstrate the structural differences of the other protomer (blue or yellow). (a) class 1 versus class 2. (b) class 1 versus class 3. (c) class 1 versus class 3. d, Conformational changes of the membrane dimeric interface among the four structures.

Extended Data Fig. 10 Cryo-EM reconstructions of the SPT-ORM complex bound to myriocin.

a, Angular distribution of particles for the final 3D reconstruction. b, Fourier shell correlation (FSC) curves: half map 1 versus half map 2 (black) and model versus summed map (blue). c, Local resolution of the cryo-EM map.

Supplementary information

Source data

Source Data Extended Data Fig. 3

Statistical data for graphs

Source Data Extended Data Fig. 7

Statistical data for graphs

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Niu, Y., Zhang, Z. et al. Structural insights into the regulation of human serine palmitoyltransferase complexes. Nat Struct Mol Biol 28, 240–248 (2021). https://doi.org/10.1038/s41594-020-00551-9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing