Beads on a string—nucleosome array arrangements and folding of the chromatin fiber

Abstract

Understanding how the genome is structurally organized as chromatin is essential for understanding its function. Here, we review recent developments that allowed the readdressing of old questions regarding the primary level of chromatin structure, the arrangement of nucleosomes along the DNA and the folding of the nucleosome fiber in nuclear space. In contrast to earlier views of nucleosome arrays as uniformly regular and folded, recent findings reveal heterogeneous array organization and diverse modes of folding. Local structure variations reflect a continuum of functional states characterized by differences in post-translational histone modifications, associated chromatin-interacting proteins and nucleosome-remodeling enzymes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Iconic views of the nucleosome fiber.
Fig. 2: Phased nucleosome arrays.
Fig. 3: Nucleosome array organization at expressed versus silent genes.
Fig. 4: Folding of the nucleosome fiber.

References

  1. 1.

    Kornberg, R. D. Structure of chromatin. Annu. Rev. Biochem. 46, 931–954 (1977).

  2. 2.

    Van Holde, K. Chromatin (Springer-Verlag, 1988).

  3. 3.

    Olins, D. E. & Olins, A. L. Chromatin history: our view from the bridge. Nat. Rev. Mol. Cell Biol. 4, 809–814 (2003).

  4. 4.

    Woodcock, C. L., Safer, J. P. & Stanchfield, J. E. Structural repeating units in chromatin. I. Evidence for their general occurrence. Exp. Cell Res. 97, 101–110 (1976).

  5. 5.

    McKnight, S. L. & Miller, O. L. Jr. Ultrastructural patterns of RNA synthesis during early embryogenesis of Drosophila melanogaster. Cell 8, 305–319 (1976).

  6. 6.

    Zhou, K., Gaullier, G. & Luger, K. Nucleosome structure and dynamics are coming of age. Nat. Struct. Mol. Biol. 26, 3–13 (2019).

  7. 7.

    Compton, J. L., Bellard, M. & Chambon, P. Biochemical evidence of variability in the DNA repeat length in the chromatin of higher eukaryotes. Proc. Natl Acad. Sci. USA 73, 4382–4386 (1976).

  8. 8.

    Godde, J. S. & Widom, J. Chromatin structure of Schizosaccharomyces pombe. A nucleosome repeat length that is shorter than the chromatosomal DNA length. J. Mol. Biol. 226, 1009–1025 (1992).

  9. 9.

    Eissenberg, J. C., Cartwright, I. L., Thomas, G. H. & Elgin, S. C. Selected topics in chromatin structure. Annu. Rev. Genet. 19, 485–536 (1985).

  10. 10.

    Blank, T. A. & Becker, P. B. Electrostatic mechanism of nucleosome spacing. J. Mol. Biol. 252, 305–313 (1995).

  11. 11.

    Noll, M. & Kornberg, R. D. Action of micrococcal nuclease on chromatin and the location of histone H1. J. Mol. Biol. 109, 393–404 (1977).

  12. 12.

    Rodriguez-Campos, A., Shimamura, A. & Worcel, A. Assembly and properties of chromatin containing histone H1. J. Mol. Biol. 209, 135–150 (1989).

  13. 13.

    Garcia-Ramirez, M., Dong, F. & Ausio, J. Role of the histone “tails” in the folding of oligonucleosomes depleted of histone H1. J. Biol. Chem. 267, 19587–19595 (1992).

  14. 14.

    Tremethick, D. J. & Drew, H. R. High mobility group proteins 14 and 17 can space nucleosomes in vitro. J. Biol. Chem. 268, 11389–11393 (1993).

  15. 15.

    Almouzni, G. & Mechali, M. Assembly of spaced chromatin promoted by DNA synthesis in extracts from Xenopus eggs. EMBO J. 7, 665–672 (1988).

  16. 16.

    Shimamura, A., Tremethick, D. & Worcel, A. Characterization of the repressed 5S DNA minichromosomes assembled in vitro with a high-speed supernatant of Xenopus laevis oocytes. Mol. Cell Biol. 8, 4257–4269 (1988).

  17. 17.

    Becker, P. B. & Wu, C. Cell-free system for assembly of transcriptionally repressed chromatin from Drosophila embryos. Mol. Cell Biol. 12, 2241–2249 (1992).

  18. 18.

    Becker, P. B. & Horz, W. ATP-dependent nucleosome remodeling. Annu. Rev. Biochem. 71, 247–273 (2002).

  19. 19.

    Yang, J. G., Madrid, T. S., Sevastopoulos, E. & Narlikar, G. J. The chromatin-remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing. Nat. Struct. Mol. Biol. 13, 1078–1083 (2006).

  20. 20.

    Lieleg, C. et al. Nucleosome spacing generated by ISWI and CHD1 remodelers is constant regardless of nucleosome density. Mol. Cell Biol. 35, 1588–1605 (2015).

  21. 21.

    Fazzio, T. G. & Tsukiyama, T. Chromatin remodeling in vivo: evidence for a nucleosome sliding mechanism. Mol. Cell 12, 1333–1340 (2003).

  22. 22.

    Zhang, Z. et al. A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome. Science 332, 977–980 (2011).

  23. 23.

    Krietenstein, N. et al. Genomic nucleosome organization reconstituted with pure proteins. Cell 167, 709–721.e12 (2016). Phased arrays at yeast promoters were reconstituted with purified components, defining the different activities required to set up promoter-associated arrays.

  24. 24.

    Becker, P. B. & Workman, J. L. Nucleosome remodeling and epigenetics. Cold Spring Harb. Perspect. Biol. 5, a017905 (2013).

  25. 25.

    Hargreaves, D. C. & Crabtree, G. R. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res. 21, 396–420 (2011).

  26. 26.

    Fletcher, T. M. & Hansen, J. C. The nucleosomal array: structure/function relationships. Crit. Rev. Eukaryot. Gene Expr. 6, 149–188 (1996). A comprehensive review about nucleosome arrays and chromatin folding in the pregenomic era.

  27. 27.

    Simpson, R. T., Thoma, F. & Brubaker, J. M. Chromatin reconstituted from tandemly repeated cloned DNA fragments and core histones: a model system for study of higher order structure. Cell 42, 799–808 (1985).

  28. 28.

    Battistini, F., Hunter, C. A., Moore, I. K. & Widom, J. Structure-based identification of new high-affinity nucleosome binding sequences. J. Mol. Biol. 420, 8–16 (2012).

  29. 29.

    Schwarz, P. M., Felthauser, A., Fletcher, T. M. & Hansen, J. C. Reversible oligonucleosome self-association: dependence on divalent cations and core histone tail domains. Biochemistry 35, 4009–4015 (1996).

  30. 30.

    Maeshima, K. et al. Nucleosomal arrays self-assemble into supramolecular globular structures lacking 30-nm fibers. EMBO J. 35, 1115–1132 (2016). This study shows that, with increasing cation concentrations, nucleosome arrays reversibly self-assemble into oligmeric structures in vitro instead of forming a 30-nm fiber.

  31. 31.

    Maeshima, K., Hihara, S. & Eltsov, M. Chromatin structure: does the 30-nm fibre exist in vivo? Curr. Opin. Cell Biol. 22, 291–297 (2010).

  32. 32.

    Albert, I. et al. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446, 572–576 (2007).

  33. 33.

    Mavrich, T. N. et al. Nucleosome organization in the Drosophila genome. Nature 453, 358–362 (2008).

  34. 34.

    Chodavarapu, R. K. et al. Relationship between nucleosome positioning and DNA methylation. Nature 466, 388–392 (2010).

  35. 35.

    Kent, N. A., Adams, S., Moorhouse, A. & Paszkiewicz, K. Chromatin particle spectrum analysis: a method for comparative chromatin structure analysis using paired-end mode next-generation DNA sequencing. Nucleic Acids Res. 39, e26 (2011).

  36. 36.

    Valouev, A. et al. Determinants of nucleosome organization in primary human cells. Nature 474, 516–520 (2011).

  37. 37.

    Teif, V. B. et al. Genome-wide nucleosome positioning during embryonic stem cell development. Nat. Struct. Mol. Biol. 19, 1185–1192 (2012).

  38. 38.

    Yuan, G. C. et al. Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309, 626–630 (2005).

  39. 39.

    Chereji, R. V., Ramachandran, S., Bryson, T. D. & Henikoff, S. Precise genome-wide mapping of single nucleosomes and linkers in vivo. Genome Biol. 19, 19 (2018).

  40. 40.

    Weiner, A., Hughes, A., Yassour, M., Rando, O. J. & Friedman, N. High-resolution nucleosome mapping reveals transcription-dependent promoter packaging. Genome Res. 20, 90–100 (2010).

  41. 41.

    Ocampo, J., Chereji, R. V., Eriksson, P. R. & Clark, D. J. The ISW1 and CHD1 ATP-dependent chromatin remodelers compete to set nucleosome spacing in vivo. Nucleic Acids Res. 44, 4625–4635 (2016).

  42. 42.

    Gkikopoulos, T. et al. A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization. Science 333, 1758–1760 (2011).

  43. 43.

    Oberbeckmann, E. et al. Absolute nucleosome occupancy for the Saccharomyces cerevisiae genome. Genome Biol. 29, 1996–2009 (2019).

  44. 44.

    Zhang, T., Zhang, W. & Jiang, J. Genome-wide nucleosome occupancy and positioning and their impact on gene expression and evolution in plants. Plant Physiol. 168, 1406–1416 (2015).

  45. 45.

    Baldi, S., Krebs, S., Blum, H. & Becker, P. B. Genome-wide measurement of local nucleosome array regularity and spacing by nanopore sequencing. Nat. Struct. Mol. Biol. 25, 894–901 (2018). Nucleosome array regularity and spacing are measured genome-wide in Drosophila cells, revealing that the phased arrays downstream of active promoters are actually less regular than the ones at silent genes.

  46. 46.

    Lai, B. et al. Principles of nucleosome organization revealed by single-cell micrococcal nuclease sequencing. Nature 562, 281–285 (2018).

  47. 47.

    Scacchetti, A. et al. CHRAC/ACF contribute to the repressive ground state of chromatin. Life Sci. Alliance 1, e201800024 (2018).

  48. 48.

    Chereji, R. V. et al. Genome-wide profiling of nucleosome sensitivity and chromatin accessibility in Drosophila melanogaster. Nucleic Acids Res. 44, 1036–1051 (2016).

  49. 49.

    Lai, W. K. M. & Pugh, B. F. Understanding nucleosome dynamics and their links to gene expression and DNA replication. Nat. Rev. Mol. Cell Biol. 18, 548–562 (2017).

  50. 50.

    Lieleg, C., Krietenstein, N., Walker, M. & Korber, P. Nucleosome positioning in yeasts: methods, maps, and mechanisms. Chromosoma 124, 131–151 (2015).

  51. 51.

    Kubik, S. et al. Opposing chromatin remodelers control transcription initiation frequency and start site selection. Nat. Struct. Mol. Biol. 26, 744–754 (2019).

  52. 52.

    Hartley, P. D. & Madhani, H. D. Mechanisms that specify promoter nucleosome location and identity. Cell 137, 445–458 (2009).

  53. 53.

    Iyer, V. & Struhl, K. Poly(dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure. EMBO J. 14, 2570–2579 (1995).

  54. 54.

    Kaplan, N. et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458, 362–366 (2009).

  55. 55.

    Lorch, Y., Maier-Davis, B. & Kornberg, R. D. Role of DNA sequence in chromatin remodeling and the formation of nucleosome-free regions. Genes Dev. 28, 2492–2497 (2014).

  56. 56.

    Kubik, S. et al. Sequence-directed action of RSC remodeler and general regulatory factors modulates +1 nucleosome position to facilitate transcription. Mol. Cell 71, 89–102.e5 (2018).

  57. 57.

    Tsankov, A., Yanagisawa, Y., Rhind, N., Regev, A. & Rando, O. J. Evolutionary divergence of intrinsic and trans-regulated nucleosome positioning sequences reveals plastic rules for chromatin organization. Genome Res. 21, 1851–1862 (2011).

  58. 58.

    Badis, G. et al. A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters. Mol. Cell 32, 878–887 (2008).

  59. 59.

    Parnell, T. J., Huff, J. T. & Cairns, B. R. RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes. EMBO J. 27, 100–110 (2008).

  60. 60.

    Rawal, Y. et al. SWI/SNF and RSC cooperate to reposition and evict promoter nucleosomes at highly expressed genes in yeast. Genes Dev. 32, 695–710 (2018).

  61. 61.

    Kubik, S. et al. Nucleosome stability distinguishes two different promoter types at all protein-coding genes in yeast. Mol. Cell 60, 422–434 (2015).

  62. 62.

    Jiang, C. & Pugh, B. F. A compiled and systematic reference map of nucleosome positions across the Saccharomyces cerevisiae genome. Genome Biol. 10, R109 (2009).

  63. 63.

    Rhee, H. S., Bataille, A. R., Zhang, L. & Pugh, B. F. Subnucleosomal structures and nucleosome asymmetry across a genome. Cell 159, 1377–1388 (2014).

  64. 64.

    Brahma, S. & Henikoff, S. RSC-associated subnucleosomes define MNase-sensitive promoters in yeast. Mol. Cell 73, 238–249.e3 (2019).

  65. 65.

    Ganguli, D., Chereji, R. V., Iben, J. R., Cole, H. A. & Clark, D. J. RSC-dependent constructive and destructive interference between opposing arrays of phased nucleosomes in yeast. Genome Res. 24, 1637–1649 (2014).

  66. 66.

    Vasseur, P. et al. Dynamics of nucleosome positioning maturation following genomic replication. Cell Rep. 16, 2651–2665 (2016).

  67. 67.

    Simic, R. et al. Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. EMBO J. 22, 1846–1856 (2003).

  68. 68.

    Smolle, M. et al. Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange. Nat. Struct. Mol. Biol. 19, 884–892 (2012).

  69. 69.

    Lee, W. et al. A high-resolution atlas of nucleosome occupancy in yeast. Nat. Genet. 39, 1235–1244 (2007).

  70. 70.

    Challal, D. et al. General regulatory factors control the fidelity of transcription by restricting non-coding and ectopic initiation. Mol. Cell 72, 955–969.e7 (2018).

  71. 71.

    Fu, Y., Sinha, M., Peterson, C. L. & Weng, Z. The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS Genet 4, e1000138 (2008).

  72. 72.

    Wiechens, N. et al. The chromatin remodelling enzymes SNF2H and SNF2L position nucleosomes adjacent to CTCF and other transcription factors. PLoS Genet 12, e1005940 (2016).

  73. 73.

    Nie, Y., Cheng, X., Chen, J. & Sun, X. Nucleosome organization in the vicinity of transcription factor binding sites in the human genome. BMC Genomics 15, 493 (2014).

  74. 74.

    Wang, J. et al. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Res. 22, 1798–1812 (2012).

  75. 75.

    Gaffney, D. J. et al. Controls of nucleosome positioning in the human genome. PLoS Genet 8, e1003036 (2012).

  76. 76.

    Eaton, M. L., Galani, K., Kang, S., Bell, S. P. & MacAlpine, D. M. Conserved nucleosome positioning defines replication origins. Genes Dev. 24, 748–753 (2010).

  77. 77.

    Baldi, S. et al. Genome-wide rules of nucleosome phasing in Drosophila. Mol. Cell 7, 661–672.e4 (2018). Comprehensive mapping of phased arrays throughout the D. melanogaster genome and genome-wide reconstitutution of chromatin in a cell-free system.

  78. 78.

    Barisic, D., Stadler, M. B., Iurlaro, M. & Schubeler, D. Mammalian ISWI and SWI/SNF selectively mediate binding of distinct transcription factors. Nature 569, 136–140 (2019).

  79. 79.

    Fyodorov, D. V., Blower, M. D., Karpen, G. H. & Kadonaga, J. T. Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo. Genes Dev. 18, 170–183 (2004).

  80. 80.

    Ricci, M. A., Manzo, C., Garcia-Parajo, M. F., Lakadamyali, M. & Cosma, M. P. Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell 160, 1145–1158 (2015).

  81. 81.

    Hsieh, T. H. et al. Mapping nucleosome resolution chromosome folding in yeast by Micro-C. Cell 162, 108–119 (2015).

  82. 82.

    Boettiger, A. N. et al. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529, 418–422 (2016).

  83. 83.

    Ou, H. D. et al. ChromEMT: visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science 357, eaag0025 (2017). Specific DNA staining in electron tomography allows visualization of chromatin ultrastructure in situ.

  84. 84.

    Risca, V. I., Denny, S. K., Straight, A. F. & Greenleaf, W. J. Variable chromatin structure revealed by in situ spatially correlated DNA cleavage mapping. Nature 541, 237–241 (2017).

  85. 85.

    Ohno, M. et al. Sub-nucleosomal genome structure reveals distinct nucleosome folding motifs. Cell 176, 520–534.e25 (2019). The combination of MNase-based conformation-capture technology and computational modeling reveals nucleosome array folding in the sub-kilobase range in yeast.

  86. 86.

    Nozaki, T. et al. Dynamic organization of chromatin domains revealed by super-resolution live-cell imaging. Mol. Cell 67, 282–293.e7 (2017).

  87. 87.

    Maeshima, K., Ide, S. & Babokhov, M. Dynamic chromatin organization without the 30-nm fiber. Curr. Opin. Cell Biol. 58, 95–104 (2019).

  88. 88.

    Mirny, L. A. The fractal globule as a model of chromatin architecture in the cell. Chromosome Res. 19, 37–51 (2011).

  89. 89.

    Wiese, O., Marenduzzo, D. & Brackley, C. A. Nucleosome positions alone can be used to predict domains in yeast chromosomes. Proc. Natl Acad. Sci. USA 116, 17307–17315 (2019).

  90. 90.

    Garcia-Ramirez, M., Rocchini, C. & Ausio, J. Modulation of chromatin folding by histone acetylation. J. Biol. Chem. 270, 17923–17928 (1995).

  91. 91.

    Gorisch, S. M., Wachsmuth, M., Toth, K. F., Lichter, P. & Rippe, K. Histone acetylation increases chromatin accessibility. J. Cell Sci. 118, 5825–5834 (2005).

  92. 92.

    Azzaz, A. M. et al. Human heterochromatin protein 1α promotes nucleosome associations that drive chromatin condensation. J. Biol. Chem. 289, 6850–6861 (2014).

  93. 93.

    Verschure, P. J. et al. In vivo HP1 targeting causes large-scale chromatin condensation and enhanced histone lysine methylation. Mol. Cell. Biol. 25, 4552–4564 (2005).

  94. 94.

    Francis, N. J., Kingston, R. E. & Woodcock, C. L. Chromatin compaction by a Polycomb group protein complex. Science 306, 1574–1577 (2004).

  95. 95.

    Eskeland, R. et al. Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol. Cell. 38, 452–464 (2010).

  96. 96.

    Larson, A. G. et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236–240 (2017).

  97. 97.

    Strom, A. R. et al. Phase separation drives heterochromatin domain formation. Nature 547, 241–245 (2017).

  98. 98.

    Plys, A. J. et al. Phase separation of Polycomb-repressive complex 1 is governed by a charged disordered region of CBX2. Genes Dev. 33, 799–813 (2019).

  99. 99.

    Tatavosian, R. et al. Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble through phase separation. J. Biol. Chem. 294, 1451–1463 (2019).

  100. 100.

    Woodcock, C. L., Skoultchi, A. I. & Fan, Y. Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res. 14, 17–25 (2006).

  101. 101.

    Braunschweig, U., Hogan, G. J., Pagie, L. & van Steensel, B. Histone H1 binding is inhibited by histone variant H3.3. EMBO J. 28, 3635–3645 (2009).

  102. 102.

    Shimada, M. et al. Gene-specific H1 eviction through a transcriptional activator→p300→NAP1→H1 pathway. Mol. Cell 74, 268–283.e5 (2019).

  103. 103.

    Hughes, A. L. & Rando, O. J. Comparative genomics reveals Chd1 as a determinant of nucleosome spacing in vivo. G3 (Bethesda) 5, 1889–1897 (2015).

  104. 104.

    Gibson, B. A. et al. Organization of chromatin by intrinsic and regulated phase separation. Cell 179, 470–484.e21 (2019).

  105. 105.

    Fennessy, R. T. & Owen-Hughes, T. Establishment of a promoter-based chromatin architecture on recently replicated DNA can accommodate variable inter-nucleosome spacing. Nucleic Acids Res. 44, 7189–7203 (2016).

  106. 106.

    Ramachandran, S. & Henikoff, S. Transcriptional regulators compete with nucleosomes post-replication. Cell 165, 580–592 (2016).

  107. 107.

    Festuccia, N. et al. Transcription factor activity and nucleosome organization in mitosis. Genome Res. 29, 250–260 (2019).

  108. 108.

    Owens, N. et al. CTCF confers local nucleosome resiliency after DNA replication and during mitosis. Elife 8, e47898 (2019).

  109. 109.

    van Ruiten, M. S. & Rowland, B. D. SMC complexes: universal DNA looping machines with distinct regulators. Trends Genet. 34, 477–487 (2018).

  110. 110.

    Voong, L. N., Xi, L., Wang, J. P. & Wang, X. Genome-wide mapping of the nucleosome landscape by micrococcal nuclease and chemical mapping. Trends Genet. 33, 495–507 (2017).

  111. 111.

    Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. Elife 6, e21856 (2017).

  112. 112.

    Brogaard, K., Xi, L., Wang, J. P. & Widom, J. A map of nucleosome positions in yeast at base-pair resolution. Nature 486, 496–501 (2012).

  113. 113.

    Kilgore, J. A., Hoose, S. A., Gustafson, T. L., Porter, W. & Kladde, M. P. Single-molecule and population probing of chromatin structure using DNA methyltransferases. Methods 41, 320–332 (2007).

  114. 114.

    Schep, A. N. et al. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions. Genome Res. 25, 1757–1770 (2015).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter B. Becker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baldi, S., Korber, P. & Becker, P.B. Beads on a string—nucleosome array arrangements and folding of the chromatin fiber. Nat Struct Mol Biol 27, 109–118 (2020). https://doi.org/10.1038/s41594-019-0368-x

Download citation

Further reading