Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Beads on a string—nucleosome array arrangements and folding of the chromatin fiber

Abstract

Understanding how the genome is structurally organized as chromatin is essential for understanding its function. Here, we review recent developments that allowed the readdressing of old questions regarding the primary level of chromatin structure, the arrangement of nucleosomes along the DNA and the folding of the nucleosome fiber in nuclear space. In contrast to earlier views of nucleosome arrays as uniformly regular and folded, recent findings reveal heterogeneous array organization and diverse modes of folding. Local structure variations reflect a continuum of functional states characterized by differences in post-translational histone modifications, associated chromatin-interacting proteins and nucleosome-remodeling enzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Iconic views of the nucleosome fiber.
Fig. 2: Phased nucleosome arrays.
Fig. 3: Nucleosome array organization at expressed versus silent genes.
Fig. 4: Folding of the nucleosome fiber.

Similar content being viewed by others

References

  1. Kornberg, R. D. Structure of chromatin. Annu. Rev. Biochem. 46, 931–954 (1977).

    CAS  PubMed  Google Scholar 

  2. Van Holde, K. Chromatin (Springer-Verlag, 1988).

  3. Olins, D. E. & Olins, A. L. Chromatin history: our view from the bridge. Nat. Rev. Mol. Cell Biol. 4, 809–814 (2003).

    CAS  PubMed  Google Scholar 

  4. Woodcock, C. L., Safer, J. P. & Stanchfield, J. E. Structural repeating units in chromatin. I. Evidence for their general occurrence. Exp. Cell Res. 97, 101–110 (1976).

    CAS  PubMed  Google Scholar 

  5. McKnight, S. L. & Miller, O. L. Jr. Ultrastructural patterns of RNA synthesis during early embryogenesis of Drosophila melanogaster. Cell 8, 305–319 (1976).

    CAS  PubMed  Google Scholar 

  6. Zhou, K., Gaullier, G. & Luger, K. Nucleosome structure and dynamics are coming of age. Nat. Struct. Mol. Biol. 26, 3–13 (2019).

    CAS  PubMed  Google Scholar 

  7. Compton, J. L., Bellard, M. & Chambon, P. Biochemical evidence of variability in the DNA repeat length in the chromatin of higher eukaryotes. Proc. Natl Acad. Sci. USA 73, 4382–4386 (1976).

    CAS  PubMed  Google Scholar 

  8. Godde, J. S. & Widom, J. Chromatin structure of Schizosaccharomyces pombe. A nucleosome repeat length that is shorter than the chromatosomal DNA length. J. Mol. Biol. 226, 1009–1025 (1992).

    CAS  PubMed  Google Scholar 

  9. Eissenberg, J. C., Cartwright, I. L., Thomas, G. H. & Elgin, S. C. Selected topics in chromatin structure. Annu. Rev. Genet. 19, 485–536 (1985).

    CAS  PubMed  Google Scholar 

  10. Blank, T. A. & Becker, P. B. Electrostatic mechanism of nucleosome spacing. J. Mol. Biol. 252, 305–313 (1995).

    CAS  PubMed  Google Scholar 

  11. Noll, M. & Kornberg, R. D. Action of micrococcal nuclease on chromatin and the location of histone H1. J. Mol. Biol. 109, 393–404 (1977).

    CAS  PubMed  Google Scholar 

  12. Rodriguez-Campos, A., Shimamura, A. & Worcel, A. Assembly and properties of chromatin containing histone H1. J. Mol. Biol. 209, 135–150 (1989).

    CAS  PubMed  Google Scholar 

  13. Garcia-Ramirez, M., Dong, F. & Ausio, J. Role of the histone “tails” in the folding of oligonucleosomes depleted of histone H1. J. Biol. Chem. 267, 19587–19595 (1992).

    CAS  PubMed  Google Scholar 

  14. Tremethick, D. J. & Drew, H. R. High mobility group proteins 14 and 17 can space nucleosomes in vitro. J. Biol. Chem. 268, 11389–11393 (1993).

    CAS  PubMed  Google Scholar 

  15. Almouzni, G. & Mechali, M. Assembly of spaced chromatin promoted by DNA synthesis in extracts from Xenopus eggs. EMBO J. 7, 665–672 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Shimamura, A., Tremethick, D. & Worcel, A. Characterization of the repressed 5S DNA minichromosomes assembled in vitro with a high-speed supernatant of Xenopus laevis oocytes. Mol. Cell Biol. 8, 4257–4269 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Becker, P. B. & Wu, C. Cell-free system for assembly of transcriptionally repressed chromatin from Drosophila embryos. Mol. Cell Biol. 12, 2241–2249 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Becker, P. B. & Horz, W. ATP-dependent nucleosome remodeling. Annu. Rev. Biochem. 71, 247–273 (2002).

    CAS  PubMed  Google Scholar 

  19. Yang, J. G., Madrid, T. S., Sevastopoulos, E. & Narlikar, G. J. The chromatin-remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing. Nat. Struct. Mol. Biol. 13, 1078–1083 (2006).

    CAS  PubMed  Google Scholar 

  20. Lieleg, C. et al. Nucleosome spacing generated by ISWI and CHD1 remodelers is constant regardless of nucleosome density. Mol. Cell Biol. 35, 1588–1605 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fazzio, T. G. & Tsukiyama, T. Chromatin remodeling in vivo: evidence for a nucleosome sliding mechanism. Mol. Cell 12, 1333–1340 (2003).

    CAS  PubMed  Google Scholar 

  22. Zhang, Z. et al. A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome. Science 332, 977–980 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Krietenstein, N. et al. Genomic nucleosome organization reconstituted with pure proteins. Cell 167, 709–721.e12 (2016). Phased arrays at yeast promoters were reconstituted with purified components, defining the different activities required to set up promoter-associated arrays.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Becker, P. B. & Workman, J. L. Nucleosome remodeling and epigenetics. Cold Spring Harb. Perspect. Biol. 5, a017905 (2013).

    PubMed  PubMed Central  Google Scholar 

  25. Hargreaves, D. C. & Crabtree, G. R. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res. 21, 396–420 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fletcher, T. M. & Hansen, J. C. The nucleosomal array: structure/function relationships. Crit. Rev. Eukaryot. Gene Expr. 6, 149–188 (1996). A comprehensive review about nucleosome arrays and chromatin folding in the pregenomic era.

    CAS  PubMed  Google Scholar 

  27. Simpson, R. T., Thoma, F. & Brubaker, J. M. Chromatin reconstituted from tandemly repeated cloned DNA fragments and core histones: a model system for study of higher order structure. Cell 42, 799–808 (1985).

    CAS  PubMed  Google Scholar 

  28. Battistini, F., Hunter, C. A., Moore, I. K. & Widom, J. Structure-based identification of new high-affinity nucleosome binding sequences. J. Mol. Biol. 420, 8–16 (2012).

    CAS  PubMed  Google Scholar 

  29. Schwarz, P. M., Felthauser, A., Fletcher, T. M. & Hansen, J. C. Reversible oligonucleosome self-association: dependence on divalent cations and core histone tail domains. Biochemistry 35, 4009–4015 (1996).

    CAS  PubMed  Google Scholar 

  30. Maeshima, K. et al. Nucleosomal arrays self-assemble into supramolecular globular structures lacking 30-nm fibers. EMBO J. 35, 1115–1132 (2016). This study shows that, with increasing cation concentrations, nucleosome arrays reversibly self-assemble into oligmeric structures in vitro instead of forming a 30-nm fiber.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Maeshima, K., Hihara, S. & Eltsov, M. Chromatin structure: does the 30-nm fibre exist in vivo? Curr. Opin. Cell Biol. 22, 291–297 (2010).

    CAS  PubMed  Google Scholar 

  32. Albert, I. et al. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446, 572–576 (2007).

    CAS  PubMed  Google Scholar 

  33. Mavrich, T. N. et al. Nucleosome organization in the Drosophila genome. Nature 453, 358–362 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chodavarapu, R. K. et al. Relationship between nucleosome positioning and DNA methylation. Nature 466, 388–392 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kent, N. A., Adams, S., Moorhouse, A. & Paszkiewicz, K. Chromatin particle spectrum analysis: a method for comparative chromatin structure analysis using paired-end mode next-generation DNA sequencing. Nucleic Acids Res. 39, e26 (2011).

    CAS  PubMed  Google Scholar 

  36. Valouev, A. et al. Determinants of nucleosome organization in primary human cells. Nature 474, 516–520 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Teif, V. B. et al. Genome-wide nucleosome positioning during embryonic stem cell development. Nat. Struct. Mol. Biol. 19, 1185–1192 (2012).

    CAS  PubMed  Google Scholar 

  38. Yuan, G. C. et al. Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309, 626–630 (2005).

    CAS  PubMed  Google Scholar 

  39. Chereji, R. V., Ramachandran, S., Bryson, T. D. & Henikoff, S. Precise genome-wide mapping of single nucleosomes and linkers in vivo. Genome Biol. 19, 19 (2018).

    PubMed  PubMed Central  Google Scholar 

  40. Weiner, A., Hughes, A., Yassour, M., Rando, O. J. & Friedman, N. High-resolution nucleosome mapping reveals transcription-dependent promoter packaging. Genome Res. 20, 90–100 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ocampo, J., Chereji, R. V., Eriksson, P. R. & Clark, D. J. The ISW1 and CHD1 ATP-dependent chromatin remodelers compete to set nucleosome spacing in vivo. Nucleic Acids Res. 44, 4625–4635 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Gkikopoulos, T. et al. A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization. Science 333, 1758–1760 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Oberbeckmann, E. et al. Absolute nucleosome occupancy for the Saccharomyces cerevisiae genome. Genome Biol. 29, 1996–2009 (2019).

    Google Scholar 

  44. Zhang, T., Zhang, W. & Jiang, J. Genome-wide nucleosome occupancy and positioning and their impact on gene expression and evolution in plants. Plant Physiol. 168, 1406–1416 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Baldi, S., Krebs, S., Blum, H. & Becker, P. B. Genome-wide measurement of local nucleosome array regularity and spacing by nanopore sequencing. Nat. Struct. Mol. Biol. 25, 894–901 (2018). Nucleosome array regularity and spacing are measured genome-wide in Drosophila cells, revealing that the phased arrays downstream of active promoters are actually less regular than the ones at silent genes.

    CAS  PubMed  Google Scholar 

  46. Lai, B. et al. Principles of nucleosome organization revealed by single-cell micrococcal nuclease sequencing. Nature 562, 281–285 (2018).

    CAS  PubMed  Google Scholar 

  47. Scacchetti, A. et al. CHRAC/ACF contribute to the repressive ground state of chromatin. Life Sci. Alliance 1, e201800024 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. Chereji, R. V. et al. Genome-wide profiling of nucleosome sensitivity and chromatin accessibility in Drosophila melanogaster. Nucleic Acids Res. 44, 1036–1051 (2016).

    CAS  PubMed  Google Scholar 

  49. Lai, W. K. M. & Pugh, B. F. Understanding nucleosome dynamics and their links to gene expression and DNA replication. Nat. Rev. Mol. Cell Biol. 18, 548–562 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lieleg, C., Krietenstein, N., Walker, M. & Korber, P. Nucleosome positioning in yeasts: methods, maps, and mechanisms. Chromosoma 124, 131–151 (2015).

    CAS  PubMed  Google Scholar 

  51. Kubik, S. et al. Opposing chromatin remodelers control transcription initiation frequency and start site selection. Nat. Struct. Mol. Biol. 26, 744–754 (2019).

    CAS  PubMed  Google Scholar 

  52. Hartley, P. D. & Madhani, H. D. Mechanisms that specify promoter nucleosome location and identity. Cell 137, 445–458 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Iyer, V. & Struhl, K. Poly(dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure. EMBO J. 14, 2570–2579 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kaplan, N. et al. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458, 362–366 (2009).

    CAS  Google Scholar 

  55. Lorch, Y., Maier-Davis, B. & Kornberg, R. D. Role of DNA sequence in chromatin remodeling and the formation of nucleosome-free regions. Genes Dev. 28, 2492–2497 (2014).

    PubMed  PubMed Central  Google Scholar 

  56. Kubik, S. et al. Sequence-directed action of RSC remodeler and general regulatory factors modulates +1 nucleosome position to facilitate transcription. Mol. Cell 71, 89–102.e5 (2018).

    CAS  PubMed  Google Scholar 

  57. Tsankov, A., Yanagisawa, Y., Rhind, N., Regev, A. & Rando, O. J. Evolutionary divergence of intrinsic and trans-regulated nucleosome positioning sequences reveals plastic rules for chromatin organization. Genome Res. 21, 1851–1862 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Badis, G. et al. A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters. Mol. Cell 32, 878–887 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Parnell, T. J., Huff, J. T. & Cairns, B. R. RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes. EMBO J. 27, 100–110 (2008).

    CAS  PubMed  Google Scholar 

  60. Rawal, Y. et al. SWI/SNF and RSC cooperate to reposition and evict promoter nucleosomes at highly expressed genes in yeast. Genes Dev. 32, 695–710 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kubik, S. et al. Nucleosome stability distinguishes two different promoter types at all protein-coding genes in yeast. Mol. Cell 60, 422–434 (2015).

    CAS  PubMed  Google Scholar 

  62. Jiang, C. & Pugh, B. F. A compiled and systematic reference map of nucleosome positions across the Saccharomyces cerevisiae genome. Genome Biol. 10, R109 (2009).

    PubMed  PubMed Central  Google Scholar 

  63. Rhee, H. S., Bataille, A. R., Zhang, L. & Pugh, B. F. Subnucleosomal structures and nucleosome asymmetry across a genome. Cell 159, 1377–1388 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Brahma, S. & Henikoff, S. RSC-associated subnucleosomes define MNase-sensitive promoters in yeast. Mol. Cell 73, 238–249.e3 (2019).

    CAS  PubMed  Google Scholar 

  65. Ganguli, D., Chereji, R. V., Iben, J. R., Cole, H. A. & Clark, D. J. RSC-dependent constructive and destructive interference between opposing arrays of phased nucleosomes in yeast. Genome Res. 24, 1637–1649 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Vasseur, P. et al. Dynamics of nucleosome positioning maturation following genomic replication. Cell Rep. 16, 2651–2665 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Simic, R. et al. Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. EMBO J. 22, 1846–1856 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Smolle, M. et al. Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange. Nat. Struct. Mol. Biol. 19, 884–892 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee, W. et al. A high-resolution atlas of nucleosome occupancy in yeast. Nat. Genet. 39, 1235–1244 (2007).

    CAS  PubMed  Google Scholar 

  70. Challal, D. et al. General regulatory factors control the fidelity of transcription by restricting non-coding and ectopic initiation. Mol. Cell 72, 955–969.e7 (2018).

    CAS  PubMed  Google Scholar 

  71. Fu, Y., Sinha, M., Peterson, C. L. & Weng, Z. The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS Genet 4, e1000138 (2008).

    PubMed  PubMed Central  Google Scholar 

  72. Wiechens, N. et al. The chromatin remodelling enzymes SNF2H and SNF2L position nucleosomes adjacent to CTCF and other transcription factors. PLoS Genet 12, e1005940 (2016).

    PubMed  PubMed Central  Google Scholar 

  73. Nie, Y., Cheng, X., Chen, J. & Sun, X. Nucleosome organization in the vicinity of transcription factor binding sites in the human genome. BMC Genomics 15, 493 (2014).

    PubMed  PubMed Central  Google Scholar 

  74. Wang, J. et al. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Res. 22, 1798–1812 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Gaffney, D. J. et al. Controls of nucleosome positioning in the human genome. PLoS Genet 8, e1003036 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Eaton, M. L., Galani, K., Kang, S., Bell, S. P. & MacAlpine, D. M. Conserved nucleosome positioning defines replication origins. Genes Dev. 24, 748–753 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Baldi, S. et al. Genome-wide rules of nucleosome phasing in Drosophila. Mol. Cell 7, 661–672.e4 (2018). Comprehensive mapping of phased arrays throughout the D. melanogaster genome and genome-wide reconstitutution of chromatin in a cell-free system.

    Google Scholar 

  78. Barisic, D., Stadler, M. B., Iurlaro, M. & Schubeler, D. Mammalian ISWI and SWI/SNF selectively mediate binding of distinct transcription factors. Nature 569, 136–140 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Fyodorov, D. V., Blower, M. D., Karpen, G. H. & Kadonaga, J. T. Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo. Genes Dev. 18, 170–183 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ricci, M. A., Manzo, C., Garcia-Parajo, M. F., Lakadamyali, M. & Cosma, M. P. Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell 160, 1145–1158 (2015).

    CAS  PubMed  Google Scholar 

  81. Hsieh, T. H. et al. Mapping nucleosome resolution chromosome folding in yeast by Micro-C. Cell 162, 108–119 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Boettiger, A. N. et al. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529, 418–422 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ou, H. D. et al. ChromEMT: visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science 357, eaag0025 (2017). Specific DNA staining in electron tomography allows visualization of chromatin ultrastructure in situ.

    PubMed  PubMed Central  Google Scholar 

  84. Risca, V. I., Denny, S. K., Straight, A. F. & Greenleaf, W. J. Variable chromatin structure revealed by in situ spatially correlated DNA cleavage mapping. Nature 541, 237–241 (2017).

    CAS  PubMed  Google Scholar 

  85. Ohno, M. et al. Sub-nucleosomal genome structure reveals distinct nucleosome folding motifs. Cell 176, 520–534.e25 (2019). The combination of MNase-based conformation-capture technology and computational modeling reveals nucleosome array folding in the sub-kilobase range in yeast.

    CAS  PubMed  Google Scholar 

  86. Nozaki, T. et al. Dynamic organization of chromatin domains revealed by super-resolution live-cell imaging. Mol. Cell 67, 282–293.e7 (2017).

    CAS  PubMed  Google Scholar 

  87. Maeshima, K., Ide, S. & Babokhov, M. Dynamic chromatin organization without the 30-nm fiber. Curr. Opin. Cell Biol. 58, 95–104 (2019).

    CAS  PubMed  Google Scholar 

  88. Mirny, L. A. The fractal globule as a model of chromatin architecture in the cell. Chromosome Res. 19, 37–51 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Wiese, O., Marenduzzo, D. & Brackley, C. A. Nucleosome positions alone can be used to predict domains in yeast chromosomes. Proc. Natl Acad. Sci. USA 116, 17307–17315 (2019).

    CAS  PubMed  Google Scholar 

  90. Garcia-Ramirez, M., Rocchini, C. & Ausio, J. Modulation of chromatin folding by histone acetylation. J. Biol. Chem. 270, 17923–17928 (1995).

    CAS  PubMed  Google Scholar 

  91. Gorisch, S. M., Wachsmuth, M., Toth, K. F., Lichter, P. & Rippe, K. Histone acetylation increases chromatin accessibility. J. Cell Sci. 118, 5825–5834 (2005).

    PubMed  Google Scholar 

  92. Azzaz, A. M. et al. Human heterochromatin protein 1α promotes nucleosome associations that drive chromatin condensation. J. Biol. Chem. 289, 6850–6861 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Verschure, P. J. et al. In vivo HP1 targeting causes large-scale chromatin condensation and enhanced histone lysine methylation. Mol. Cell. Biol. 25, 4552–4564 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Francis, N. J., Kingston, R. E. & Woodcock, C. L. Chromatin compaction by a Polycomb group protein complex. Science 306, 1574–1577 (2004).

    CAS  PubMed  Google Scholar 

  95. Eskeland, R. et al. Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol. Cell. 38, 452–464 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Larson, A. G. et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236–240 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Strom, A. R. et al. Phase separation drives heterochromatin domain formation. Nature 547, 241–245 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Plys, A. J. et al. Phase separation of Polycomb-repressive complex 1 is governed by a charged disordered region of CBX2. Genes Dev. 33, 799–813 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Tatavosian, R. et al. Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble through phase separation. J. Biol. Chem. 294, 1451–1463 (2019).

    CAS  PubMed  Google Scholar 

  100. Woodcock, C. L., Skoultchi, A. I. & Fan, Y. Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res. 14, 17–25 (2006).

    CAS  PubMed  Google Scholar 

  101. Braunschweig, U., Hogan, G. J., Pagie, L. & van Steensel, B. Histone H1 binding is inhibited by histone variant H3.3. EMBO J. 28, 3635–3645 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Shimada, M. et al. Gene-specific H1 eviction through a transcriptional activator→p300→NAP1→H1 pathway. Mol. Cell 74, 268–283.e5 (2019).

    CAS  PubMed  Google Scholar 

  103. Hughes, A. L. & Rando, O. J. Comparative genomics reveals Chd1 as a determinant of nucleosome spacing in vivo. G3 (Bethesda) 5, 1889–1897 (2015).

    CAS  Google Scholar 

  104. Gibson, B. A. et al. Organization of chromatin by intrinsic and regulated phase separation. Cell 179, 470–484.e21 (2019).

    CAS  PubMed  Google Scholar 

  105. Fennessy, R. T. & Owen-Hughes, T. Establishment of a promoter-based chromatin architecture on recently replicated DNA can accommodate variable inter-nucleosome spacing. Nucleic Acids Res. 44, 7189–7203 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Ramachandran, S. & Henikoff, S. Transcriptional regulators compete with nucleosomes post-replication. Cell 165, 580–592 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Festuccia, N. et al. Transcription factor activity and nucleosome organization in mitosis. Genome Res. 29, 250–260 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Owens, N. et al. CTCF confers local nucleosome resiliency after DNA replication and during mitosis. Elife 8, e47898 (2019).

    PubMed  PubMed Central  Google Scholar 

  109. van Ruiten, M. S. & Rowland, B. D. SMC complexes: universal DNA looping machines with distinct regulators. Trends Genet. 34, 477–487 (2018).

    PubMed  Google Scholar 

  110. Voong, L. N., Xi, L., Wang, J. P. & Wang, X. Genome-wide mapping of the nucleosome landscape by micrococcal nuclease and chemical mapping. Trends Genet. 33, 495–507 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. Elife 6, e21856 (2017).

    PubMed  PubMed Central  Google Scholar 

  112. Brogaard, K., Xi, L., Wang, J. P. & Widom, J. A map of nucleosome positions in yeast at base-pair resolution. Nature 486, 496–501 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Kilgore, J. A., Hoose, S. A., Gustafson, T. L., Porter, W. & Kladde, M. P. Single-molecule and population probing of chromatin structure using DNA methyltransferases. Methods 41, 320–332 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Schep, A. N. et al. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions. Genome Res. 25, 1757–1770 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter B. Becker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldi, S., Korber, P. & Becker, P.B. Beads on a string—nucleosome array arrangements and folding of the chromatin fiber. Nat Struct Mol Biol 27, 109–118 (2020). https://doi.org/10.1038/s41594-019-0368-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-019-0368-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing