Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptome

Abstract

Simultaneous profiling of transcriptome and chromatin accessibility within single cells is a powerful approach to dissect gene regulatory programs in complex tissues. However, current tools are limited by modest throughput. We now describe an ultra high-throughput method, Paired-seq, for parallel analysis of transcriptome and accessible chromatin in millions of single cells. We demonstrate the utility of Paired-seq for analyzing the dynamic and cell-type-specific gene regulatory programs in complex tissues by applying it to mouse adult cerebral cortex and fetal forebrain. The joint profiles of a large number of single cells allowed us to deconvolute the transcriptome and open chromatin landscapes in the major cell types within these brain tissues, infer putative target genes of candidate enhancers, and reconstruct the trajectory of cellular lineages within the developing forebrain.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Paired-seq enables simultaneous profiling of accessible chromatin and gene expression in millions of single cells.
Fig. 2: Paired-seq identified major cell types in the mouse cerebral cortex.
Fig. 3: Paired-seq links candidate CREs to their putative target genes.
Fig. 4: Analysis of cellular trajectory in the developing mouse forebrain.

Code Availability

MAPS is freely available at https://github.com/ijuric/MAPS. Custom scripts used in this study can be downloaded from https://github.com/cxzhu/paired-seq.

Data Availability

The sequencing data obtained in this study have been deposited to the NCBI Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE130399. Source data for Figs. 1e–g, 2b,e,f, 3a,b and 4b–d are available with the paper online. External data sets used in this study are available from GEO: ENCODE DNase-seq (GSE37074), PolyA-RNA-seq (GSE39524) of mouse NIH/3T3 cells, sci-CAR mixed cells datasets (GSE117089), SPLiT-seq (GSE110823), sci-RNA-seq (GSE98561), Drop-seq (GSE63269), sci-ATAC-seq (GSE67446), and dscATAC-seq (GSE123581); or from the 10X genomics website, 10X scRNA-seq (https://www.10xgenomics.com, 1k_hgmm_v3_nextgem dataset). All other data are available upon reasonable request.

References

  1. 1.

    de Laat, W. & Duboule, D. Topology of mammalian developmental enhancers and their regulatory landscapes. Nature 502, 499–506 (2013).

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Crawford, G. E. et al. Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res. 16, 123–131 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Yue, F. et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature 515, 355–364 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  7. 7.

    Kelsey, G., Stegle, O. & Reik, W. Single-cell epigenomics: Recording the past and predicting the future. Science 358, 69–75 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Cusanovich, D. A. et al. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Jin, W. et al. Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples. Nature 528, 142–146 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Rotem, A. et al. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat. Biotechnol. 33, 1165–1172 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Harada, A. et al. A chromatin integration labelling method enables epigenomic profiling with lower input. Nat. Cell Biol. 21, 287–296 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Hainer, S. J., Boskovic, A., McCannell, K. N., Rando, O. J. & Fazzio, T. G. Profiling of pluripotency factors in single cells and early embryos. Cell 177, 1319–1329.e1311 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59–64 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Guo, H. et al. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res. 23, 2126–2135 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Smallwood, S. A. et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods 11, 817–820 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Mooijman, D., Dey, S. S., Boisset, J. C., Crosetto, N. & van Oudenaarden, A. Single-cell 5hmC sequencing reveals chromosome-wide cell-to-cell variability and enables lineage reconstruction. Nat. Biotechnol. 34, 852–856 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Zhu, C. et al. Single-cell 5-formylcytosine landscapes of mammalian early embryos and ESCs at single-base resolution. Cell Stem Cell 20, 720–731.e725 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Wu, X., Inoue, A., Suzuki, T. & Zhang, Y. Simultaneous mapping of active DNA demethylation and sister chromatid exchange in single cells. Genes Dev. 31, 511–523 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Preissl, S. et al. Single-nucleus analysis of accessible chromatin in developing mouse forebrain reveals cell-type-specific transcriptional regulation. Nat. Neurosci. 21, 432–439 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Lake, B. B. et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 36, 70–80 (2018).

    CAS  PubMed  Google Scholar 

  25. 25.

    Luo, C. et al. Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex. Science 357, 600–604 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Grosselin, K. et al. High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer. Nat. Genet. 51, 1060–1066 (2019).

    CAS  PubMed  Google Scholar 

  27. 27.

    Dey, S. S., Kester, L., Spanjaard, B., Bienko, M. & van Oudenaarden, A. Integrated genome and transcriptome sequencing of the same cell. Nat. Biotechnol. 33, 285–289 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Macaulay, I. C. et al. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat. Methods 12, 519–522 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Angermueller, C. et al. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat. Methods 13, 229–232 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Hou, Y. et al. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res. 26, 304–319 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Hu, Y. et al. Simultaneous profiling of transcriptome and DNA methylome from a single cell. Genome Biol. 17, 88 (2016).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Guo, F. et al. Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells. Cell Res. 27, 967–988 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Pott, S. Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells. eLife 6, e23203 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Clark, S. J. et al. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat. Commun. 9, 781 (2018).

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Liu, L. et al. Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity. Nat. Commun. 10, 470 (2019).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Li, G. et al. Joint profiling of DNA methylation and chromatin architecture in single cells. Nat. Methods 16, 991–993 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Lee, D. S. et al. Simultaneous profiling of 3D genome structure and DNA methylation in single human cells. Nat. Methods 16, 999–1006 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Peterson, V. M. et al. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 35, 936–939 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Cao, J. et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 361, 1380–1385 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Chen, S., Lake, B.B. & Zhang, K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat. Biotechnol. https://doi.org/10.1038/s41587-019-0290-0 (2019).

  42. 42.

    Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176–182 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Peng, X. et al. TELP, a sensitive and versatile library construction method for next-generation sequencing. Nucleic Acids Res. 43, e35 (2015).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Lareau, C. A. et al. Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. Nat. Biotechnol. 37, 916–924 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Cao, J. et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357, 661–667 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Fang, R. et al. Fast and accurate clustering of single cell epigenomes reveals cis-regulatory elements in rare cell types. Preprint at bioRxiv https://doi.org/10.1101/615179 (2019).

  47. 47.

    Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19, 335–346 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Khan, A. et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 46, D260–D266 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Lai, T. et al. SOX5 controls the sequential generation of distinct corticofugal neuron subtypes. Neuron 57, 232–247 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Sun, W. et al. SOX9 is an astrocyte-specific nuclear marker in the adult brain outside the neurogenic regions. J. Neurosci. 37, 4493–4507 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Gorkin, D. U. et al. An atlas of dynamic chromatin landscapes in the developing mouse fetus. Nature (in the press).

  53. 53.

    Yu, M. & Ren, B. The three-dimensional organization of mammalian genomes. Annu. Rev. Cell Dev. Biol. 33, 265–289 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Fang, R. et al. Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq. Cell Res. 26, 1345–1348 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Haghverdi, L., Buttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 13, 845–848 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat. Methods 14, 975–978 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Martynoga, B., Drechsel, D. & Guillemot, F. Molecular control of neurogenesis: a view from the mammalian cerebral cortex. Cold Spring Harb. Perspect. Biol. 4, a008359 (2012).

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Mulqueen, R. M. et al. Improved single-cell ATAC-seq reveals chromatin dynamics of in vitro corticogenesis. Preprint at bioRxiv https://doi.org/10.1101/637256 (2019).

  59. 59.

    Pliner, H. A. et al. Cicero predicts cis-regulatory DNA interactions from single-cell chromatin accessibility data. Mol. Cell 71, 858–871.e858 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Dobin, A. & Gingeras, T. R. Mapping RNA-seq reads with STAR. Curr. Protoc. Bioinformatics 51, 11.14.1–11.14.19 (2015).

    Google Scholar 

  62. 62.

    Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Ramirez, F., Dundar, F., Diehl, S., Gruning, B. A. & Manke, T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 42, W187–W191 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Subelj, L. & Bajec, M. Unfolding communities in large complex networks: combining defensive and offensive label propagation for core extraction. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83, 036103 (2011).

    PubMed  Google Scholar 

  67. 67.

    Angerer, P. et al. destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics 32, 1241–1243 (2016).

    CAS  PubMed  Google Scholar 

  68. 68.

    Juric, I. et al. MAPS: Model-based analysis of long-range chromatin interactions from PLAC-seq and HiChIP experiments. PLoS Comput. Biol. 15, e1006982 (2019).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank B. Li for bioinformatic support and S. Kuan for sequencing. We thank the QB3 MacroLab for purifying the Tn5 enzyme. We thank D. U. Gorkin (UC San Diego) for sharing the frozen archived mouse fetal brain tissues. We thank S. Preissl, R. Fang, X. Hou, J. Song, Y. Li, Y. Zhang, and Y. Qiu for discussion. This study was funded by grants 1U19 MH114831, U54 HG006997 and the Ludwig Institute for Cancer Research (to B.R.).

Author information

Affiliations

Authors

Contributions

B.R. and C.Z. conceived and designed the study and wrote the manuscript. C.Z. performed the Paired-seq experiments and data analysis. M.Y. and R.H. performed PLAC-seq experiments. H.H. prepared the nuclei. I.J., A.A., and M.H. performed PLAC-seq data analysis. J.L. and M.M.B. harvested adult mouse cerebral cortex tissues. All authors discussed results and edited the manuscript.

Corresponding author

Correspondence to Bing Ren.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Anke Sparmann was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Quality control for Paired-seq libraries.

a, Sequence of Paired-seq products illustrating the structure of DNA barcode combinations. b, Paired-seq DNA profiles are enriched around the TSSs, whereas (e) RNA profiles are enriched at the TTSs in NIH/3T3 cells. As comparison, DNA and RNA profiles from sci-CAR are also plotted. c, Proportions of DNA and RNA reads in both libraries are shown, n = 3 independent experiments. d,e, Scatter plots showing the correlation of reads from two replicates of Paired-seq (d) DNA profiles or (e) RNA profiles. f,g, Box plots showing (f) the fraction of reads around TSS (-1000 to + 500 bp) and (g) the faction of reads inside known peaks (GSE:49847) of Paired-seq DNA profiles from HEK293T, HepG2 and NIH/3T3 cells. sci-CAR40 datasets (GSE117089) from the same cell types were also used for comparison. h,i, Scatter plot showing the proportion of human and mouse reads in each cell in Paired-seq (h) DNA and (i) RNA profiles. j, Scatter plot showing the proportions of both DNA and RNA reads mapped to genomes in the same single cells. Cells with more than 80% reads mapped to human and mouse genome were colored in red and blue, respectively. k,l, UMAP visualization of HepG2 and HEK293T cells based on (k) DNA and (l) RNA reads. Cells were colored by density-based clustering from each profile and cell identities. The clustering results were also projected to each other. In box plots, center lines indicate the median, box limits indicate the first and third quartiles, and whiskers indicate 1.5× IQR. The sample sizes are provided in the Source Data with this paper online.

Source data

Extended Data Fig. 2 Integrative analysis of Paired-seq DNA and RNA profiles from mouse adult cerebral cortex.

a, UMAP visualization of co-clustering of nuclei from two replicates. b, Comparison of DNA-based, RNA-based, and integrated clustering results. Cells were colored based on unsupervised clustering from integrated clustering and colored the same as Fig. 2b. c, Promoter accessibility and gene expression of several marker genes in the nine major groups. Relative promoter accessibilities and gene expressions are indicated in the size and the color of circles. d, Expression levels of genes of all clusters are plotted in a box plot for each quantile of promoter accessibility. e, For each cell cluster, expression levels of genes are plotted in a box plot for each quantile of promoter accessibility. In box plots center lines indicate the median, box limits indicate the first and third quartiles, and whiskers indicate 1.5× IQR.

Source data

Extended Data Fig. 3 Co-clustering of Paired-seq datasets from mouse E12.5, E16.5 forebrain, and adult cerebral cortex.

a, UMAP visualization of Paired-seq data from two replicates of both mouse E12.5 and E16.5 forebrains showing clustering of cells based on cell types, not replicates. b, UMAP visualization of Paired-seq data of mouse E12.5 and E16.5 forebrains and adult cerebral cortex showing clustering of cells based on cell type, not batches. c, Aggregate chromatin accessibility (blue) and gene expression (green) profiles for each cell clusters at several marker gene loci.

Source data

Extended Data Fig. 4 Paired-seq facilitates the linking of candidate CREs to putative target genes in mouse fetal forebrains.

a, Bar charts show the numbers of gene−CRE links identified in mouse E12.5 and E16.5 forebrain and adult cerebral cortex data sets. b,c, Bar charts show the fractions of gene−CRE pairs (b) identified by Paired-seq and supported by PLAC-seq or (c) identified by PLAC-seq and supported by Paired-seq. P value, two-sided Fisher’s exact test. do, Number of identified CREs linked to each gene, number of identified genes linked to each CRE, number of CREs between CREs and their linked genes, and number of genes between CREs and their linked genes in (dg) E12.5, (hk) E16.5 forebrain and (lo) adult cerebral cortex.

Source data

Extended Data Fig. 5 Dynamics of gene−CRE pairing during mouse brain development.

a,b, Box plots showing the number of linked CREs for genes of each group of (a) E12.5 to E16.5 and (b) E16.5 to adult. P value, two-sided Kolmogorov–Smirnov test test. Genes were classified according the number of linked candidate CREs: genes with a gain of CREs (log2(fold-change) > 3), genes with unchanged number of linked CREs (−1 < log2(fold-change) < 1) and genes with a loss of linked CREs (log2(fold-change) < -3). c, DAVID GO analysis of genes with more than ten linked CREs. d, Top 20 TF genes with the highest number of linked CREs. e, The predicted gene−CRE pair for Dlx1 gene in the dIn2 cluster. The common links shared by two stages of development are shown in gray, and the stage-specific links were shown in light and dark violet red. In the close-up view, the positions of stage-specific CREs ae indicated by a red dashed box. In box plots. center lines indicate the median, box limits indicate the first and third quartiles and whiskers indicate 1.5× interquartile range IQR.

Source data

Extended Data Fig. 6 Analysis of cellular trajectory of developing mouse forebrain.

ac, Diffusion map showing the single-cell trajectories of neurogenesis toward (a) GABAergic neurons, (b) glutamatergic neurons, and (c) astrogenesis. d, The combined diffusion map corresponding to Fig. 4a is also shown. The cells were colored by stages and clusters, respectively. e, Heat map shows the ordering of the chromVAR TF motif enrichments across astrogenesis. The relative expression and promoter accessibility of corresponding TF genes are also shown. f, Line plots showing the relative enrichment of TF motifs, gene expression, and promoter accessibility for STAT3, NFKB1, and SP1 according to the diffusion pseudotime for astrogenesis. The estimated time-of-gain and time-of-loss of TF motifs are indicated by red and green rectangles below. g, Pie charts showing the fraction of TFs with the TF gene promoters became accessible before (TF gene first), synchronized with, or after (Motif first) the TF motifs became accessible, for neurogenesis towards GABAergic neurons, glutamatergic neurons and astrogenesis.

Source data

Supplementary information

Reporting Summary

Supplementary Table 1

Paired-seq primer sequences

Supplementary Table 2

Paired-seq barcode oligo sequences

Supplementary Table 3

Summary of sequenced nuclei

Supplementary Table 4

Identified gene−CRE pairs in mouse fetal forebrains

Supplementary Table 5

Identified gene−CRE pairs in adult cerebral cortex

Source data

Source Data Fig. 1

Statistical Source Data

Source Data Fig. 2

Statistical Source Data

Source Data Fig. 3

Statistical Source Data

Source Data Fig. 4

Statistical Source Data

Source Data Extended Data Fig. 1

Statistical Source Data

Source Data Extended Data Fig. 2

Statistical Source Data

Source Data Extended Data Fig. 3

Statistical Source Data

Source Data Extended Data Fig. 4

Statistical Source Data

Source Data Extended Data Fig. 5

Statistical Source Data

Source Data Extended Data Fig. 6

Statistical Source Data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Yu, M., Huang, H. et al. An ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptome. Nat Struct Mol Biol 26, 1063–1070 (2019). https://doi.org/10.1038/s41594-019-0323-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing