Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bromodomain biology and drug discovery

Abstract

The bromodomain (BrD) is a conserved structural module found in chromatin- and transcription-associated proteins that acts as the primary reader for acetylated lysine residues. This basic activity endows BrD proteins with versatile functions in the regulation of protein-protein interactions mediating chromatin-templated gene transcription, DNA recombination, replication and repair. Consequently, BrD proteins are involved in the pathogenesis of numerous human diseases. In this Review, we highlight our current understanding of BrD biology, and discuss the latest development of small-molecule inhibitors targeting BrDs as emerging epigenetic therapies for cancer and inflammatory disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Three-dimensional structure and Kac binding mode of the bromodomain.
Fig. 2: Classification of BrD-containing proteins based on major known functions.
Fig. 3: 3D structures of representative BrDs in different forms.
Fig. 4: Representative small-molecule inhibitors and PROTACs for selected BrDs.
Fig. 5: Illustrative diagram highlighting representative functions of nine subclasses of human BrD proteins.

Similar content being viewed by others

References

  1. Allfrey, V. G., Faulkner, R. & Mirsky, A. E. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl. Acad. Sci. USA 51, 786–794 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brownell, J. E. et al. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84, 843–851 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Kuo, M. H. et al. Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines. Nature 383, 269–272 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Taunton, J., Hassig, C. A. & Schreiber, S. L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408–411 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Dhalluin, C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491–496 (1999). First three-dimensional structure of the BrD and discovery of the BrD as the lysine-acetylated histone reader.

    Article  CAS  PubMed  Google Scholar 

  6. Haynes, S. R. et al. The bromodomain: a conserved sequence found in human, Drosophila and yeast proteins. Nucleic Acids Res. 20, 2603 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000). First presentation of the histone code hypothesis.

    CAS  PubMed  Google Scholar 

  8. Tan, M. et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146, 1016–1028 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010). Demonstration of BET family BRD4 protein as a new anticancer drug target.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nicodeme, E. et al. Suppression of inflammation by a synthetic histone mimic. Nature 468, 1119–1123 (2010). Demonstration of BET family BRD4 protein as a new anti-inflammation drug target.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Smith, S. G. & Zhou, M. M. The bromodomain: a new target in emerging epigenetic medicine. ACS Chem. Biol. 11, 598–608 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Filippakopoulos, P. & Knapp, S. Targeting bromodomains: epigenetic readers of lysine acetylation. Nat. Rev. Drug Discov. 13, 337–356 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Tamkun, J. W. et al. brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell 68, 561–572 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Presnell, S. R. & Cohen, F. E. Topological distribution of four-alpha-helix bundles. Proc. Natl. Acad. Sci. USA 86, 6592–6596 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jacobson, R. H., Ladurner, A. G., King, D. S. & Tjian, R. Structure and function of a human TAFII250 double bromodomain module. Science 288, 1422–1425 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Owen, D. J. et al. The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. EMBO J. 19, 6141–6149 (2000). Establishing the key determinants of Kac recognition by the BrD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Filippakopoulos, P. et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149, 214–231 (2012). Demonstrating the conserved left-handed four-helix bundle structure for human BrDs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zeng, L. & Zhou, M. M. Bromodomain: an acetyl-lysine binding domain. FEBS Lett. 513, 124–128 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Dancy, B. M. & Cole, P. A. Protein lysine acetylation by p300/CBP. Chem. Rev. 115, 2419–2452 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ortega, E. et al. Transcription factor dimerization activates the p300 acetyltransferase. Nature 562, 538–544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Burley, S. K. & Roeder, R. G. Biochemistry and structural biology of transcription factor IID (TFIID). Annu. Rev. Biochem. 65, 769–799 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Avvakumov, N. & Côté, J. The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene 26, 5395–5407 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Vezzoli, A. et al. Molecular basis of histone H3K36me3 recognition by the PWWP domain of Brpf1. Nat. Struct. Mol. Biol. 17, 617–619 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Ullah, M. et al. Molecular architecture of quartet MOZ/MORF histone acetyltransferase complexes. Mol. Cell. Biol. 28, 6828–6843 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Perez-Campo, F. M., Borrow, J., Kouskoff, V. & Lacaud, G. The histone acetyl transferase activity of monocytic leukemia zinc finger is critical for the proliferation of hematopoietic precursors. Blood 113, 4866–4874 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Panagopoulos, I. et al. Fusion of the MORF and CBP genes in acute myeloid leukemia with the t(10;16)(q22; p13). Hum. Mol. Genet. 10, 395–404 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Mishima, Y. et al. The Hbo1-Brd1/Brpf2 complex is responsible for global acetylation of H3K14 and required for fetal liver erythropoiesis. Blood 118, 2443–2453 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Monden, T. et al. p120 acts as a specific coactivator for 9-cis-retinoic acid receptor (RXR) on peroxisome proliferator-activated receptor-gamma/RXR heterodimers. Mol. Endocrinol. 13, 1695–1703 (1999).

    CAS  PubMed  Google Scholar 

  29. Yamada, H. Y. & Rao, C. V. BRD8 is a potential chemosensitizing target for spindle poisons in colorectal cancer therapy. Int. J. Oncol. 35, 1101–1109 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Mashtalir, N. et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell 175, 1272–1288.e20 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ho, L. & Crabtree, G. R. Chromatin remodelling during development. Nature 463, 474–484 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dirscherl, S. S. & Krebs, J. E. Functional diversity of ISWI complexes. Biochem. Cell Biol. 82, 482–489 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Thompson, P. J., Norton, K. A., Niri, F. H., Dawe, C. E. & McDermid, H. E. CECR2 is involved in spermatogenesis and forms a complex with SNF2H in the testis. J. Mol. Biol. 415, 793–806 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Xiao, A. et al. WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature 457, 57–62 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Koo, S. J. et al. ATAD2 is an epigenetic reader of newly synthesized histone marks during DNA replication. Oncotarget 7, 70323–70335 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wu, S. Y. & Chiang, C. M. The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation. J. Biol. Chem. 282, 13141–13145 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Rahman, S. et al. The Brd4 extraterminal domain confers transcription activation independent of pTEFb by recruiting multiple proteins, including NSD3. Mol. Cell. Biol. 31, 2641–2652 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shen, C. et al. NSD3-short is an adaptor protein that couples BRD4 to the CHD8 chromatin remodeler. Mol. Cell 60, 847–859 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, Q. et al. Structural mechanism of transcriptional regulator NSD3 recognition by the ET domain of BRD4. Structure 24, 1201–1208 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Morinière, J. et al. Cooperative binding of two acetylation marks on a histone tail by a single bromodomain. Nature 461, 664–668 (2009).

    Article  PubMed  CAS  Google Scholar 

  42. Shi, J. et al. Disrupting the interaction of BRD4 with diacetylated Twist suppresses tumorigenesis in basal-like breast cancer. Cancer Cell 25, 210–225 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schröder, S. et al. Two-pronged binding with bromodomain-containing protein 4 liberates positive transcription elongation factor b from inactive ribonucleoprotein complexes. J. Biol. Chem. 287, 1090–1099 (2012).

    Article  PubMed  CAS  Google Scholar 

  44. Delmore, J. E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904–917 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dawson, M. A. et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478, 529–533 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zuber, J. et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478, 524–528 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jain, A. K. & Barton, M. C. Regulation of p53: TRIM24 enters the RING. Cell Cycle 8, 3668–3674 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Sanchez, R. & Zhou, M. M. The PHD finger: a versatile epigenome reader. Trends Biochem. Sci. 36, 364–372 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zeng, L. et al. Structural insights into human KAP1 PHD finger-bromodomain and its role in gene silencing. Nat. Struct. Mol. Biol. 15, 626–633 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ivanov, A. V. et al. PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol. Cell 28, 823–837 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xi, Q. et al. A poised chromatin platform for TGF-β access to master regulators. Cell 147, 1511–1524 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xue, J. et al. Tumour suppressor TRIM33 targets nuclear β-catenin degradation. Nat. Commun. 6, 6156 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Khetchoumian, K. et al. TIF1delta, a novel HP1-interacting member of the transcriptional intermediary factor 1 (TIF1) family expressed by elongating spermatids. J. Biol. Chem. 279, 48329–48341 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Gibson, T. J., Ramu, C., Gemünd, C. & Aasland, R. The APECED polyglandular autoimmune syndrome protein, AIRE-1, contains the SAND domain and is probably a transcription factor. Trends Biochem. Sci. 23, 242–244 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Granito, A. et al. PML nuclear body component Sp140 is a novel autoantigen in primary biliary cirrhosis. Am. J. Gastroenterol. 105, 125–131 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Seeler, J. S. et al. Common properties of nuclear body protein SP100 and TIF1alpha chromatin factor: role of SUMO modification. Mol. Cell. Biol. 21, 3314–3324 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bottomley, M. J. et al. The SAND domain structure defines a novel DNA-binding fold in transcriptional regulation. Nat. Struct. Biol. 8, 626–633 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Fossey, S. C. et al. Identification and characterization of PRKCBP1, a candidate RACK-like protein. Mamm. Genome 11, 919–925 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Malovannaya, A. et al. Analysis of the human endogenous coregulator complexome. Cell 145, 787–799 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ansieau, S. & Sergeant, A. BS69 and RACK7, a potential novel class of tumor suppressor genes. Pathol. Biol. (Paris) 51, 397–399 (2003).

    Article  CAS  Google Scholar 

  62. Wen, H. et al. ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression. Nature 508, 263–268 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Savitsky, P. et al. Multivalent histone and DNA engagement by a PHD/BRD/PWWP triple reader cassette recruits ZMYND8 to K14ac-rich chromatin. Cell Rep. 17, 2724–2737 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yao, N. et al. The structure of the ZMYND8/Drebrin complex suggests a cytoplasmic sequestering mechanism of ZMYND8 by Drebrin. Structure 25, 1657–1666.e3 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Li, D. & Roberts, R. WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cell. Mol. Life Sci. 58, 2085–2097 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Huang, H., Rambaldi, I., Daniels, E. & Featherstone, M. Expression of the Wdr9 gene and protein products during mouse development. Dev. Dyn. 227, 608–614 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Kim, Y. J. et al. WDR11-mediated Hedgehog signalling defects underlie a new ciliopathy related to Kallmann syndrome. EMBO Rep. 19, 269–289 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Zeng, L. et al. Selective small molecules blocking HIV-1 Tat and coactivator PCAF association. J. Am. Chem. Soc. 127, 2376–2377 (2005). First report of small-molecule BrD inhibitors and the druggability of the BrD.

    Article  CAS  PubMed  Google Scholar 

  69. Sachchidanand et al. Target structure-based discovery of small molecules that block human p53 and CREB binding protein association. Chem. Biol. 13, 81–90 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Adachi, K. et al. Thienotriazolodiazepine compound and medicinal use thereof. PCT/JP2006/310709 (Mitsubishi Tanabe Pharma Corporation, Japan, 2006).

  71. Miyoshi, S., Ooike, S., Iwata, K., Hikawa, H. & Sugahara, K. Antitumor agent. US 2010/0286127 A1 (Mitsubishi Tanabe Pharma Corporation, Japan, 2008).

  72. Smith, S. G., Sanchez, R. & Zhou, M.-M. Privileged diazepine compounds and their emergence as bromodomain inhibitors. Chem. Biol. 21, 573–583 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. French, C. A. et al. BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer Res. 63, 304–307 (2003).

    CAS  PubMed  Google Scholar 

  74. Zhang, G. et al. Down-regulation of NF-κB transcriptional activity in HIV-associated kidney disease by BRD4 inhibition. J. Biol. Chem. 287, 28840–28851 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Moros, A. et al. Synergistic antitumor activity of lenalidomide with the BET bromodomain inhibitor CPI203 in bortezomib-resistant mantle cell lymphoma. Leukemia 28, 2049–2059 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Wong, C. et al. The bromodomain and extra-terminal inhibitor CPI203 enhances the antiproliferative effects of rapamycin on human neuroendocrine tumors. Cell Death Dis. 5, e1450 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Noel, J. K. et al. Development of the BET bromodomain inhibitor OTX015. Mol. Cancer Ther. 12, C244 (2013).

    Google Scholar 

  78. Hewings, D. S. et al. 3,5-dimethylisoxazoles act as acetyl-lysine-mimetic bromodomain ligands. J. Med. Chem. 54, 6761–6770 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wyspiańska, B. S. et al. BET protein inhibition shows efficacy against JAK2V617F-driven neoplasms. Leukemia 28, 88–97 (2014).

    Article  PubMed  CAS  Google Scholar 

  80. Gosmini, R. et al. The discovery of I-BET726 (GSK1324726A), a potent tetrahydroquinoline ApoA1 up-regulator and selective BET bromodomain inhibitor. J. Med. Chem. 57, 8111–8131 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Picaud, S. et al. PFI-1, a highly selective protein interaction inhibitor, targeting BET bromodomains. Cancer Res. 73, 3336–3346 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Picaud, S. et al. RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain. Proc. Natl. Acad. Sci. USA 110, 19754–19759 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cheung, K. L. et al. Distinct roles of Brd2 and Brd4 in potentiating the transcriptional program for Th17 cell differentiation. Mol. Cell 65, 1068–1080.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schröder, S. et al. Acetylation of RNA polymerase II regulates growth-factor-induced gene transcription in mammalian cells. Mol. Cell 52, 314–324 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Cheung, K. et al. BET N-terminal bromodomain inhibition selectively blocks Th17 cell differentiation and ameliorates colitis in mice. Proc. Natl. Acad. Sci. USA 114, 2952–2957 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gacias, M. et al. Selective chemical modulation of gene transcription favors oligodendrocyte lineage progression. Chem. Biol. 21, 841–854 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vidler, L. R., Brown, N., Knapp, S. & Hoelder, S. Druggability analysis and structural classification of bromodomain acetyl-lysine binding sites. J. Med. Chem. 55, 7346–7359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wu, Q. et al. A chemical toolbox for the study of bromodomains and epigenetic signaling. Nat. Commun. 10, 1915 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Demont, E. H. et al. 1,3-Dimethyl benzimidazolones are potent, selective inhibitors of the BRPF1 bromodomain. ACS Med. Chem. Lett. 5, 1190–1195 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Palmer, W. S. et al. Structure-guided design of IACS-9571, a selective high-affinity dual TRIM24-BRPF1 bromodomain inhibitor. J. Med. Chem. 59, 1440–1454 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Demont, E. H. et al. Fragment-based discovery of low-micromolar ATAD2 bromodomain inhibitors. J. Med. Chem. 58, 5649–5673 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Harner, M. J., Chauder, B. A., Phan, J. & Fesik, S. W. Fragment-based screening of the bromodomain of ATAD2. J. Med. Chem. 57, 9687–9692 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bamborough, P. et al. A Chemical Probe for the ATAD2 Bromodomain. Angew. Chem. Int. Ed. 55, 11382–11386 (2016).

    Article  CAS  Google Scholar 

  94. Drouin, L. et al. Structure enabled design of BAZ2-ICR, a chemical probe targeting the bromodomains of BAZ2A and BAZ2B. J. Med. Chem. 58, 2553–2559 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ferguson, F. M. et al. Targeting low-druggability bromodomains: fragment based screening and inhibitor design against the BAZ2B bromodomain. J. Med. Chem. 56, 10183–10187 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chen, P. et al. Discovery and characterization of GSK2801, a selective chemical probe for the bromodomains BAZ2A and BAZ2B. J. Med. Chem. 59, 1410–1424 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Clark, P. G. K. et al. LP99: discovery and synthesis of the first selective BRD7/9 bromodomain inhibitor. Angew. Chem. Int. Ed. 54, 6217–6221 (2015).

    Article  CAS  Google Scholar 

  98. Hay, D. A. et al. Design and synthesis of potent and selective inhibitors of BRD7 and BRD9 bromodomains. MedChemComm 6, 1381–1386 (2015).

    Article  CAS  Google Scholar 

  99. Picaud, S. et al. 9H-purine scaffold reveals induced-fit pocket plasticity of the BRD9 bromodomain. J. Med. Chem. 58, 2718–2736 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Theodoulou, N. H. et al. Discovery of I-BRD9, a selective cell active chemical probe for bromodomain containing protein 9 inhibition. J. Med. Chem. 59, 14225–1439 (2016).

    Article  CAS  Google Scholar 

  101. Arnold, L. D., Foreman, K. W., Jin, M., Wanner, J. & Werner, D. Bromodomain ligands capable of dimerizing in an aqueous solution, and methods of using same. US patent 20140243286 (2014).

  102. Waring, M. J. et al. Potent and selective bivalent inhibitors of BET bromodomains. Nat. Chem. Biol. 12, 1097–1104 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Tanaka, M. et al. Design and characterization of bivalent BET inhibitors. Nat. Chem. Biol. 12, 1089–1096 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ren, C. et al. Spatially constrained tandem bromodomain inhibition bolsters sustained repression of BRD4 transcriptional activity for TNBC cell growth. Proc. Natl. Acad. Sci. USA 115, 7949–7954 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Amemiya, S., Yamaguchi, T., Hashimoto, Y. & Noguchi-Yachide, T. Synthesis and evaluation of novel dual BRD4/HDAC inhibitors. Bioorg. Med. Chem. 25, 3677–3684 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Ember, S. W. J. et al. Acetyl-lysine binding site of bromodomain-containing protein 4 (BRD4) interacts with diverse kinase inhibitors. ACS Chem. Biol. 9, 1160–1171 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cromm, P. M. & Crews, C. M. Targeted protein degradation: from chemical biology to drug discovery. Cell Chem. Biol. 24, 1181–1190 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nowak, R. P. et al. Plasticity in binding confers selectivity in ligand-induced protein degradation. Nat. Chem. Biol. 14, 706–714 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lu, J. et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem. Biol. 22, 755–763 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Remillard, D. et al. Degradation of the BAF complex factor BRD9 by heterobifunctional ligands. Angew. Chem. Int. Ed. 56, 5738–5743 (2017).

    Article  CAS  Google Scholar 

  111. Gechijian, L. N. et al. Functional TRIM24 degrader via conjugation of ineffectual bromodomain and VHL ligands. Nat. Chem. Biol. 14, 405–412 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mertz, J. A. et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc. Natl. Acad. Sci. USA 108, 16669–16674 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lockwood, W. W., Zejnullahu, K., Bradner, J. E. & Varmus, H. Sensitivity of human lung adenocarcinoma cell lines to targeted inhibition of BET epigenetic signaling proteins. Proc. Natl. Acad. Sci. USA 109, 19408–19413 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Puissant, A. et al. Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov. 3, 308–323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cheng, Z. et al. Inhibition of BET bromodomain targets genetically diverse glioblastoma. Clin. Cancer Res. 19, 1748–1759 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Asangani, I. A. et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature 510, 278–282 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Boehm, D. et al. BET bromodomain-targeting compounds reactivate HIV from latency via a Tat-independent mechanism. Cell Cycle 12, 452–462 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mele, D. A. et al. BET bromodomain inhibition suppresses TH17-mediated pathology. J. Exp. Med. 210, 2181–2190 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Anand, P. et al. BET bromodomains mediate transcriptional pause release in heart failure. Cell 154, 569–582 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Resverlogix. News Release - Resverlogix officially attains phase 3 status with a European regulatory authority. https://www.resverlogix.com/investors/news?article=521 (2015).

  121. Lewin, J. et al. Phase Ib trial with birabresib, a small-molecule inhibitor of bromodomain and extraterminal proteins, in patients with selected advanced solid tumors. J. Clin. Oncol. 36, 3007–3014 (2018). Key clinical evaluation of pharmacological inhibition of BET BrD proteins for cancer treatment as well as associated dose-limiting toxicities.

    Article  CAS  PubMed  Google Scholar 

  122. Zeng, L. et al. Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b. Nature 466, 258–262 (2010). Another Kac histone reader domain distinct from the BrD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Li, Y. et al. AF9 YEATS domain links histone acetylation to DOT1L-mediated H3K79 methylation. Cell 159, 558–571 (2014). First report of the YEATS domain as acyl-lysine histone reader in gene transcription.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Andrews, F. H., Shanle, E. K., Strahl, B. D. & Kutateladze, T. G. The essential role of acetyllysine binding by the YEATS domain in transcriptional regulation. Transcription 7, 14–20 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Arrowsmith, C. H. & Schapira, M. Targeting non-bromodomain chromatin readers. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-019-0290-2 (2019).

Download references

Acknowledgements

We thank members of the Zhou group for helpful discussion and C. Kim for preparing Supplementary Tables 1 and 2. This work was supported in part by the research grants from the National Institutes of Health (to M.-M.Z. and N.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Ming Zhou.

Ethics declarations

Competing interests

M.-M.Z. is a founder, director and shareholder of Parkside Scientific Inc.

Additional information

Peer review information Anke Sparmann was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaware, N., Zhou, MM. Bromodomain biology and drug discovery. Nat Struct Mol Biol 26, 870–879 (2019). https://doi.org/10.1038/s41594-019-0309-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-019-0309-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research