Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

FACT mediates cohesin function on chromatin

Abstract

Cohesin is a regulator of genome architecture with roles in sister chromatid cohesion and chromosome compaction. The recruitment and mobility of cohesin complexes on DNA is restricted by nucleosomes. Here, we show that the role of cohesin in chromosome organization requires the histone chaperone FACT (‘facilitates chromatin transcription’) in Saccharomyces cerevisiae. We find that FACT interacts directly with cohesin, and is dynamically required for its localization on chromatin. Depletion of FACT in metaphase cells prevents cohesin accumulation at pericentric regions and causes reduced binding on chromosome arms. Using the Hi-C technique, we show that cohesin-dependent TAD (topological associated domain)-like structures in G1 and metaphase chromosomes are reduced in the absence of FACT. Sister chromatid cohesion is intact in FACT-depleted cells, although chromosome segregation failure is observed. Our data show that FACT contributes to the formation of cohesin-dependent TADs, thus uncovering a new role for this complex in nuclear organization during interphase and mitotic chromosome folding.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The cohesin complex interacts physically with FACT.
Fig. 2: FACT is necessary for the localization of cohesins in metaphase chromosomes.
Fig. 3: FACT inactivation causes defects in chromosome organization but not sister chromatid cohesion.
Fig. 4: FACT function is important for the establishment cohesin-dependent TAD-like domains.
Fig. 5: Analysis of chromosome segregation in the absence of FACT.

Data availability

ChIP-seq and MNase-seq data supporting the findings of this study have been deposited in the GEO database and are accessible through accession no. GSE118534. Hi-C raw sequences are accessible via the SRA database through accession no. PRJNA486513. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD014896. Source data for Figs. 1b,c, 3d and 5 are available online. Any further data that support the findings of this study are available from the corresponding authors upon request.

References

  1. 1.

    Haarhuis, J. H. I. et al. The cohesin release factor WAPL restricts chromatin loop extension. Cell 169, 693–707 e14 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    Lazar-Stefanita, L. et al. Cohesins and condensins orchestrate the 4D dynamics of yeast chromosomes during the cell cycle. EMBO J. 36, 2684–2697 (2017).

    CAS  Article  Google Scholar 

  3. 3.

    Schalbetter, S. A. et al. SMC complexes differentially compact mitotic chromosomes according to genomic context. Nat. Cell Biol. 19, 1071–1080 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Haering, C. H., Lowe, J., Hochwagen, A. & Nasmyth, K. Molecular architecture of SMC proteins and the yeast cohesin complex. Mol. Cell 9, 773–788 (2002).

    CAS  Article  Google Scholar 

  5. 5.

    Nasmyth, K. Disseminating the genome: joining, resolving and separating sister chromatids during mitosis and meiosis. Annu. Rev. Genet. 35, 673–745 (2001).

    CAS  Article  Google Scholar 

  6. 6.

    Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320 e24 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    Ganji, M. et al. Real-time imaging of DNA loop extrusion by condensin. Science 360, 102–105 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    Stigler, J., Camdere, G. O., Koshland, D. E. & Greene, E. C. Single-molecule imaging reveals a collapsed conformational state for DNA-bound cohesin. Cell Rep. 15, 988–998 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Huang, J., Hsu, J. M. & Laurent, B. C. The RSC nucleosome-remodeling complex is required for cohesin’s association with chromosome arms. Mol. Cell 13, 739–750 (2004).

    CAS  Article  Google Scholar 

  12. 12.

    Litwin, I., Bakowski, T., Maciaszczyk-Dziubinska, E. & Wysocki, R. The LSH/HELLS homolog Irc5 contributes to cohesin association with chromatin in yeast. Nucleic Acids Res. 45, 6404–6416 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Hakimi, M. A. et al. A chromatin remodelling complex that loads cohesin onto human chromosomes. Nature 418, 994–998 (2002).

    CAS  Article  Google Scholar 

  14. 14.

    Megee, P. C., Mistrot, C., Guacci, V. & Koshland, D. The centromeric sister chromatid cohesion site directs Mcd1p binding to adjacent sequences. Mol. Cell 4, 445–450 (1999).

    CAS  Article  Google Scholar 

  15. 15.

    Blat, Y. & Kleckner, N. Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region. Cell 98, 249–259 (1999).

    CAS  Article  Google Scholar 

  16. 16.

    Tanaka, T., Cosma, M. P., Wirth, K. & Nasmyth, K. Identification of cohesin association sites at centromeres and along chromosome arms. Cell 98, 847–858 (1999).

    CAS  Article  Google Scholar 

  17. 17.

    Petela, N. J. et al. Scc2 is a potent activator of cohesin’s ATPase that promotes loading by binding scc1 without Pds5. Mol. Cell 70, 1134–1148 e7 (2018).

    CAS  Article  Google Scholar 

  18. 18.

    Gonzalez, S. et al. Nucleosomal signatures impose nucleosome positioning in coding and noncoding sequences in the genome. Genome Res. 26, 1532–1543 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Yuan, G. C. et al. Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309, 626–630 (2005).

    CAS  Article  Google Scholar 

  20. 20.

    Chen, K. et al. DANPOS: dynamic analysis of nucleosome position and occupancy by sequencing. Genome Res. 23, 341–351 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    Oum, J. H. et al. RSC facilitates Rad59-dependent homologous recombination between sister chromatids by promoting cohesin loading at DNA double-strand breaks. Mol. Cell Biol. 31, 3924–3937 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    Shintomi, K., Takahashi, T. S. & Hirano, T. Reconstitution of mitotic chromatids with a minimum set of purified factors. Nat. Cell Biol. 17, 1014–1023 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Formosa, T. The role of FACT in making and breaking nucleosomes. Biochim. Biophys. Acta 1819, 247–255 (2013).

    Article  Google Scholar 

  24. 24.

    Nishimura, K. & Kanemaki, M. T. Rapid depletion of budding yeast proteins via the fusion of an auxin-inducible degron (AID). Curr. Protoc. Cell Biol. 64, 20.9.1–20.9.16 (2014).

    Article  Google Scholar 

  25. 25.

    Hu, B. et al. Biological chromodynamics: a general method for measuring protein occupancy across the genome by calibrating ChIP-seq. Nucleic Acids Res. 43, e132 (2015).

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Lopez-Serra, L., Kelly, G., Patel, H., Stewart, A. & Uhlmann, F. The Scc2–Scc4 complex acts in sister chromatid cohesion and transcriptional regulation by maintaining nucleosome-free regions. Nat. Genet. 46, 1147–1151 (2014).

    CAS  Article  Google Scholar 

  27. 27.

    Fernius, J. & Marston, A. L. Establishment of cohesion at the pericentromere by the Ctf19 kinetochore subcomplex and the replication fork-associated factor, Csm3. PLoS Genet. 5, e1000629 (2009).

    Article  Google Scholar 

  28. 28.

    Hu, B. et al. ATP hydrolysis is required for relocating cohesin from sites occupied by its Scc2/4 loading complex. Curr. Biol. 21, 12–24 (2011).

    CAS  Article  Google Scholar 

  29. 29.

    Lengronne, A. et al. Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430, 573–578 (2004).

    CAS  Article  Google Scholar 

  30. 30.

    Glynn, E. F. et al. Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol. 2, E259 (2004).

    Article  Google Scholar 

  31. 31.

    Gullerova, M. & Proudfoot, N. J. Cohesin complex promotes transcriptional termination between convergent genes in S. pombe. Cell 132, 983–995 (2008).

    CAS  Article  Google Scholar 

  32. 32.

    Busslinger, G. A. et al. Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl. Nature 544, 503–507 (2017).

    CAS  Article  Google Scholar 

  33. 33.

    Formosa, T. The role of FACT in making and breaking nucleosomes. Biochim. Biophys. Acta 1819, 247–255 (2012).

    CAS  Article  Google Scholar 

  34. 34.

    Saunders, A. et al. Tracking FACT and the RNA polymerase II elongation complex through chromatin in vivo. Science 301, 1094–1096 (2003).

    CAS  Article  Google Scholar 

  35. 35.

    Guacci, V., Koshland, D. & Strunnikov, A. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91, 47–57 (1997).

    CAS  Article  Google Scholar 

  36. 36.

    Michaelis, C., Ciosk, R. & Nasmyth, K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35–45 (1997).

    CAS  Article  Google Scholar 

  37. 37.

    Kemble, D. J., McCullough, L. L., Whitby, F. G., Formosa, T. & Hill, C. P. FACT disrupts nucleosome structure by binding H2A-H2B with conserved peptide motifs. Mol. Cell 60, 294–306 (2015).

    CAS  Article  Google Scholar 

  38. 38.

    Bondarenko, M. T. et al. [Structure and function of histone chaperone FACT]. Mol. Biol. ( Mosk. ) 49, 891–904 (2015).

    CAS  Article  Google Scholar 

  39. 39.

    Simic, R. et al. Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. EMBO J. 22, 1846–1856 (2003).

    CAS  Article  Google Scholar 

  40. 40.

    Boginya, A., Detroja, R., Matityahu, A., Frenkel-Morgenstern, M. & Onn, I. The chromatin remodeler Chd1 regulates cohesin in budding yeast and humans. Sci. Rep. 9, 8929 (2019).

    Article  Google Scholar 

  41. 41.

    Tan, B. C., Chien, C. T., Hirose, S. & Lee, S. C. Functional cooperation between FACT and MCM helicase facilitates initiation of chromatin DNA replication. EMBO J. 25, 3975–3985 (2006).

    CAS  Article  Google Scholar 

  42. 42.

    McCullough, L. L. et al. Establishment and maintenance of chromatin architecture are promoted independent of transcription by the histone chaperone FACT and H3-K56 acetylation in Saccharomyces cerevisiae. Genetics 211, 877–892 (2019).

    CAS  Article  Google Scholar 

  43. 43.

    Heidinger-Pauli, J. M., Mert, O., Davenport, C., Guacci, V. & Koshland, D. Systematic reduction of cohesin differentially affects chromosome segregation, condensation and DNA repair. Curr. Biol. 20, 957–963 (2010).

    CAS  Article  Google Scholar 

  44. 44.

    Belton, J. M. et al. Hi-C: a comprehensive technique to capture the conformation of genomes. Methods 58, 268–276 (2012).

    CAS  Article  Google Scholar 

  45. 45.

    Cournac, A., Marie-Nelly, H., Marbouty, M., Koszul, R. & Mozziconacci, J. Normalization of a chromosomal contact map. BMC Genom. 13, 436 (2012).

    CAS  Article  Google Scholar 

  46. 46.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  Article  Google Scholar 

  47. 47.

    Quintales, L., Vazquez, E. & Antequera, F. Comparative analysis of methods for genome-wide nucleosome cartography. Brief. Bioinform. 16, 576–587 (2015).

    CAS  Article  Google Scholar 

  48. 48.

    Zhang, Y. et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the members of the L.A., R.K. and P.A. laboratories for fruitful discussions and advice. The work in the L.A. laboratory was supported by a Wellcome Trust Senior Investigator award to L.A. (100955, ‘Functional dissection of mitotic chromatin’) and the London Institute of Medical Research (LMS), which receives its core funding from the UK Medical Research Council. This research was further supported by funding from The European Research Council (R.K.), Agence Nationale pour la Recherche (R.K.) and the the Spanish Ministerio de Economía, Industria y Competitividad (BFU2017-89622-P; F.A.).

Author information

Affiliations

Authors

Contributions

J.G.-L. performed all yeast experiments, providing samples for nucleosome mapping, HiC and sequencing. J.G.-L. performed IP and cell biology experiments. L.L.-S. and A.T. performed Hi-C experiments and analysis. A.C. analyzed Hi-C data. A.G., S.G. and M.S. performed and analyzed nucleosome position experiments. M.D. and M.M.K. performed bioinformatic analysis. P.G.-E. performed experiments related to the pulldowns for mass spectrometry and analyzed results data. H.K. and A.M. performed technical mass spectrometry analysis. A.J. performed molecular biology experiments to generate constructs. J.G.-L. and L.A. conceived the project. L.A. wrote the manuscript. L.A., F.A. and R.K. revised the manuscript.

Corresponding authors

Correspondence to Romain Koszul or Luis Aragon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Anke Sparmann was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Integrated supplementary information

Supplementary Figure 1 Auxin-mediated degradation of Spt16 in G2–M arrested cells.

Cells carrying either SMC1-6HA or SMC1-6HA SPT16-AID (which allows auxin-mediated degradation of Spt16) were arrested in metaphase (G2–M-nocodazole) and exposed to auxin to degrade Spt16. Nuclear and cellular morphology was used following auxin addition to confirm that the cell population remained arrested in metaphase (top). Western analysis for Spt16 confirms its degradation in SPT16-AID cells upon auxin addition (bottom). The bar graph data show the mean and error bars the s.d. of three independent experiments.

Supplementary Figure 2 Auxin-mediated degradation of Sth1 in G2–M arrested cells.

Cells carrying either SMC1-6HA or SMC1-6HA STH1-AID (which allows auxin-mediated degradation of Sth1) were arrested in metaphase (G2–M-nocodazole) and exposed to auxin to degrade Sth1. Western analysis for Sth1 confirms its degradation in STH1-AID cells upon auxin addition.

Supplementary Figure 3 FACT function in chromosome organization.

The 16 yeast chromosomes are displayed on Hi-C maps (10 kb bins) obtained from G2–M arrests in the presence of auxin of SMC1-6HA (wild-type, bottom left) and SMC1-6HA SPT16-AID (Spt16-aid) cells (top right). Black to white color scales reflect high to low contact frequencies, respectively (log2). Inset: Magnifications of chr7.

Supplementary Figure 4 FACT function in the establishment of cohesin-dependent structures in G1.

The 16 yeast chromosomes are displayed on Hi-C maps (10 kb bins) obtained from G1 arrests overexpressing MCD1 from the GAL1-10 promoter in the presence of auxin of wild-type (bottom left) and SPT16-AID (Spt16-aid) cells (top right). Black to white color scales reflect high to low contact frequencies, respectively (log2). Inset: magnifications of chr7.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, Supplementary Table 1 and Supplementary Data Set 1

Reporting Summary

Source Data for Fig. 1

Source Data for Fig. 3

Source Data for Fig. 5

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Garcia-Luis, J., Lazar-Stefanita, L., Gutierrez-Escribano, P. et al. FACT mediates cohesin function on chromatin. Nat Struct Mol Biol 26, 970–979 (2019). https://doi.org/10.1038/s41594-019-0307-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing