Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

50+ years of eukaryotic transcription: an expanding universe of factors and mechanisms

Abstract

The landmark 1969 discovery of nuclear RNA polymerases I, II and III in diverse eukaryotes represented a major turning point in the field that, with subsequent elucidation of the distinct structures and functions of these enzymes, catalyzed an avalanche of further studies. In this Review, written from a personal and historical perspective, I highlight foundational biochemical studies that led to the discovery of an expanding universe of the components of the transcriptional and regulatory machineries, and a parallel complexity in gene-specific mechanisms that continue to be explored to the present day.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: General initiation factors and PIC assembly pathways for Pol III-transcribed genes with internal promoter elements, and activation by a gene-specific activator.
Fig. 2: General initiation factors and PIC assembly pathway for a Pol II-transcribed gene with a strong TATA-containing core promoter, and regulation by gene-specific factors and interacting cofactors.

Similar content being viewed by others

References

  1. Jacob, F. & Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318–356 (1961).

    Article  CAS  PubMed  Google Scholar 

  2. Weiss, S. B. & Gladstone, L. A mammalian system for the incorporation of cytidine triphosphate into ribonucleic acid. J. Am. Chem. Soc. 81, 4118–4119 (1959).

    Article  CAS  Google Scholar 

  3. Weiss, S. B. Enzymatic incorporation of ribonucleoside triphosphates into the interpolynucleotide linkages of ribonucleic acid. Proc. Natl Acad. Sci. USA 46, 1020–1030 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hurwitz, J. The discovery of RNA polymerase. J. Biol. Chem. 280, 42477–42485 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Burgess, R. R., Travers, A. A., Dunn, J. J. & Bautz, E. K. Factor stimulating transcription by RNA polymerase. Nature 221, 43–46 (1969).

    Article  CAS  PubMed  Google Scholar 

  6. Roeder, R. G. & Rutter, W. J. Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms. Nature 224, 234–237 (1969).

    Article  CAS  PubMed  Google Scholar 

  7. Widnell, C. C. & Tata, J. R. Evidence for two DNA-dependent RNA polymerase activities in isolated rat liver nuclei. Biochim. Biophys. Acta 87, 531–533 (1964).

    CAS  PubMed  Google Scholar 

  8. Roeder, R.G. Multiple RNA Polymerases and RNA Synthesis in Eukaryotic Systems. Ph.D. Thesis. University of Washington (1969).

  9. Roeder, R. G. & Rutter, W. J. DNA dependent RNA polymerase in sea urchin development. Fed. Proc. 28, 599 (1969).

    Google Scholar 

  10. Kedinger, C., Gniazdowski, M., Mandel, J. L. Jr., Gissinger, F. & Chambon, P. Alpha-amanitin: a specific inhibitor of one of two DNA-dependent RNA polymerase activities from calf thymus. Biochem. Biophys. Res. Commun. 38, 165–171 (1970).

    Article  CAS  PubMed  Google Scholar 

  11. Lindell, T. J., Weinberg, F., Morris, P. W., Roeder, R. G. & Rutter, W. J. Specific inhibition of nuclear RNA polymerase II by alpha-amanitin. Science 170, 447–449 (1970).

    Article  CAS  PubMed  Google Scholar 

  12. Blatti, S. P. et al. Structure and Regulatory Properties of Eucaryotic RNA Polymerase. Cold Spring Harb. Symp. Quant. Biol. 35, 649–657 (1970).

    Article  CAS  Google Scholar 

  13. Chambon, P. et al. Purification and Properties of Calf Thymus DNA-Dependent RNA Polymerases A and B. Cold Spring Harb. Symp. Quant. Biol. 35, 693–707 (1970).

    Article  CAS  Google Scholar 

  14. Roeder, R. G. & Rutter, W. J. Specific nucleolar and nucleoplasmic RNA polymerases. Proc. Natl Acad. Sci. USA 65, 675–682 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roeder, R. G., Reeder, R. H. & Brown, D. D. Multiple forms of RNA polymerase in Xenopus laevis: Their relationship to RNA synthesis in vivo and their fidelity of transcription in vitro. Cold Spring Harb. Symp. Quant. Biol. 35, 727–735 (1970).

    Article  CAS  Google Scholar 

  16. Sklar, V. E., Schwartz, L. B. & Roeder, R. G. Distinct molecular structures of nuclear class I, II, and III DNA-dependent RNA polymerases. Proc. Natl Acad. Sci. USA 72, 348–352 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Weinmann, R., Raskas, H. J. & Roeder, R. G. Role of DNA-dependent RNA polymerases II and III in transcription of the adenovirus genome late in productive infection. Proc. Natl Acad. Sci. USA 71, 3426–3439 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weinmann, R. & Roeder, R. G. Role of DNA-dependent RNA polymerase 3 in the transcription of the tRNA and 5S RNA genes. Proc. Natl Acad. Sci. USA 71, 1790–1794 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sentenac, A. et al. Yeast RNA polymerase subunits and genes, 27–54 (Cold Spring Harbor Press, Cold Spring Harbor Laboratory, N.Y., 1992).

  20. Young, R. A. RNA polymerase II. Annu. Rev. Biochem. 60, 689–715 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Vannini, A. & Cramer, P. Conservation between the RNA polymerase I, II, and III transcription initiation machineries. Mol. Cell 45, 439–446 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Cramer, P. et al. Architecture of RNA polymerase II and implications for the transcription mechanism. Science 288, 640–649 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Cramer, P., Bushnell, D. A. & Kornberg, R. D. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 292, 1863–1876 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Kuhn, C. D. et al. Functional architecture of RNA polymerase I. Cell 131, 1260–1272 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Pilsl, M. et al. Structure of the initiation-competent RNA polymerase I and its implication for transcription. Nat. Commun. 7, 12126 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jasiak, A. J., Armache, K. J., Martens, B., Jansen, R. P. & Cramer, P. Structural biology of RNA polymerase III: subcomplex C17/25 X-ray structure and 11 subunit enzyme model. Mol. Cell 23, 71–81 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, G. et al. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution. Cell 98, 811–824 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Parker, C.S., Ng, S.Y. & Roeder, R.G. Selective transcription of the 5S RNA genes in isolated chromatin by RNA polymerase III. in Molecular Mechanisms in the Control of Gene Expression (eds. Nierlich, D.P., Rutter, W.J. & Fox, C.F.) 223–42 (Academic Press, New York, 1976).

  29. Parker, C. S. & Roeder, R. G. Selective and accurate transcription of the Xenopus laevis 5S RNA genes in isolated chromatin by purified RNA polymerase III. Proc. Natl Acad. Sci. USA 74, 44–48 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ng, S. Y., Parker, C. S. & Roeder, R. G. Transcription of cloned Xenopus 5S RNA genes by X. laevis RNA polymerase III in reconstituted systems. Proc. Natl Acad. Sci. USA 76, 136–140 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weil, P. A., Luse, D. S., Segall, J. & Roeder, R. G. Selective and accurate initiation of transcription at the Ad2 major late promotor in a soluble system dependent on purified RNA polymerase II and DNA. Cell 18, 469–484 (1979).

    Article  CAS  PubMed  Google Scholar 

  32. Birkenmeier, E. H., Brown, D. D. & Jordan, E. A nuclear extract of Xenopus laevis oocytes that accurately transcribes 5S RNA genes. Cell 15, 1077–1086 (1978).

    Article  CAS  PubMed  Google Scholar 

  33. Wu, G. J. Adenovirus DNA-directed transcription of 5.5S RNA in vitro. Proc. Natl Acad. Sci. USA 75, 2175–2179 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Manley, J. L., Fire, A., Cano, A., Sharp, P. A. & Gefter, M. L. DNA-dependent transcription of adenovirus genes in a soluble whole-cell extract. Proc. Natl Acad. Sci. USA 77, 3855–3859 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grummt, I. Specific transcription of mouse ribosomal DNA in a cell-free system that mimics control in vivo. Proc. Natl Acad. Sci. USA 78, 727–731 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Segall, J., Matsui, T. & Roeder, R. G. Multiple factors are required for the accurate transcription of purified genes by RNA polymerase III. J. Biol. Chem. 255, 11986–11991 (1980).

    Article  CAS  PubMed  Google Scholar 

  37. Matsui, T., Segall, J., Weil, P. A. & Roeder, R. G. Multiple factors required for accurate initiation of transcription by purified RNA polymerase II. J. Biol. Chem. 255, 11992–11996 (1980).

    Article  CAS  PubMed  Google Scholar 

  38. Mishima, Y., Financsek, I., Kominami, R. & Muramatsu, M. Fractionation and reconstitution of factors required for accurate transcription of mammalian ribosomal RNA genes: identification of a species-dependent initiation factor. Nucleic Acids Res. 10, 6659–6670 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dumay-Odelot, H., Durrieu-Gaillard, S., El Ayoubi, L., Parrot, C. & Teichmann, M. Contributions of in vitro transcription to the understanding of human RNA polymerase III transcription. Transcription 5, e27526 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schramm, L. & Hernandez, N. Recruitment of RNA polymerase III to its target promoters. Genes Dev. 16, 2593–2620 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Geiduschek, E. P. & Kassavetis, G. A. The RNA polymerase III transcription apparatus. J. Mol. Biol. 310, 1–26 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Orphanides, G., Lagrange, T. & Reinberg, D. The general transcription factors of RNA polymerase II. Genes Dev. 10, 2657–2683 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Roeder, R. G. The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem. Sci. 21, 327–335 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Thomas, M. C. & Chiang, C. M. The general transcription machinery and general cofactors. Crit. Rev. Biochem. Mol. Biol. 41, 105–178 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Drygin, D., Rice, W. G. & Grummt, I. The RNA polymerase I transcription machinery: an emerging target for the treatment of cancer. Annu. Rev. Pharmacol. Toxicol. 50, 131–156 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Goodfellow, S. J. & Zomerdijk, J. C. Basic mechanisms in RNA polymerase I transcription of the ribosomal RNA. genes. Subcell. Biochem. 61, 211–236 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Lassar, A. B., Martin, P. L. & Roeder, R. G. Transcription of class III genes: formation of preinitiation complexes. Science 222, 740–748 (1983).

    Article  CAS  PubMed  Google Scholar 

  48. Bieker, J. J., Martin, P. L. & Roeder, R. G. Formation of a rate-limiting intermediate in 5S RNA gene transcription. Cell 40, 119–127 (1985).

    Article  CAS  PubMed  Google Scholar 

  49. Van Dyke, M. W., Roeder, R. G. & Sawadogo, M. Physical analysis of transcription preinitiation complex assembly on a class II gene promoter. Science 241, 1335–1338 (1988).

    Article  PubMed  Google Scholar 

  50. Buratowski, S., Hahn, S., Guarente, L. & Sharp, P. A. Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 56, 549–561 (1989).

    Article  CAS  PubMed  Google Scholar 

  51. Flores, O., Lu, H. & Reinberg, D. Factors involved in specific transcription by mammalian RNA polymerase II. Identification and characterization of factor IIH. J. Biol. Chem. 267, 2786–2793 (1992).

    Article  CAS  PubMed  Google Scholar 

  52. Parker, C. S. & Topol, J. A Drosophila RNA polymerase II transcription factor contains a promoter-region-specific DNA-binding activity. Cell 36, 357–369 (1984).

    Article  CAS  PubMed  Google Scholar 

  53. Sawadogo, M. & Roeder, R. G. Interaction of a gene-specific transcription factor with the adenovirus major late promoter upstream of the TATA box region. Cell 43, 165–175 (1985).

    Article  CAS  PubMed  Google Scholar 

  54. Learned, R. M., Cordes, S. & Tjian, R. Purification and characterization of a transcription factor that confers promoter specificity to human RNA polymerase I. Mol. Cell. Biol. 5, 1358–1369 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Clos, J., Buttgereit, D. & Grummt, I. A purified transcription factor (TIF-IB) binds to essential sequences of the mouse rDNA promoter. Proc. Natl Acad. Sci. USA 83, 604–608 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zawel, L., Kumar, K. P. & Reinberg, D. Recycling of the general transcription factors during RNA polymerase II transcription. Genes Dev. 9, 1479–1490 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Rudloff, U., Eberhard, D., Tora, L., Stunnenberg, H. & Grummt, I. TBP-associated factors interact with DNA and govern species specificity of RNA polymerase I transcription. EMBO J. 13, 2611–2616 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Beckmann, H., Chen, J. L., O’Brien, T. & Tjian, R. Coactivator and promoter-selective properties of RNA polymerase I TAFs. Science 270, 1506–1509 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Kadonaga, J. T. Perspectives on the RNA polymerase II core promoter. Wiley Interdiscip. Rev. Dev. Biol. 1, 40–51 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Louder, R. K. et al. Structure of promoter-bound TFIID and model of human pre-initiation complex assembly. Nature 531, 604–609 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Goodrich, J. A. & Tjian, R. Unexpected roles for core promoter recognition factors in cell-type-specific transcription and gene regulation. Nat. Rev. Genet. 11, 549–558 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vermeulen, M. et al. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131, 58–69 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Lauberth, S. M. et al. H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation. Cell 152, 1021–1036 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Luse, D. S. & Roeder, R. G. Accurate transcription initiation on a purified mouse beta-globin DNA fragment in a cell-free system. Cell 20, 691–699 (1980).

    Article  CAS  PubMed  Google Scholar 

  65. Grummt, I. Life on a planet of its own: regulation of RNA polymerase I transcription in the nucleolus. Genes Dev. 17, 1691–1702 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. White, R. J. RNA polymerases I and III, growth control and cancer. Nat. Rev. Mol. Cell Biol. 6, 69–78 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Willis, I. M. & Moir, R. D. Signaling to and from the RNA polymerase III transcription and processing machinery. Annu. Rev. Biochem. 87, 75–100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hu, X. et al. A Mediator-responsive form of metazoan RNA polymerase II. Proc. Natl Acad. Sci. USA 103, 9506–9511 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jishage, M. et al. Architecture of Pol II(G) and molecular mechanism of transcription regulation by Gdown1. Nat. Struct. Mol. Biol. 25, 859–867 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sikorski, T. W. & Buratowski, S. The basal initiation machinery: beyond the general transcription factors. Curr. Opin. Cell Biol. 21, 344–351 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nikolov, D. B. & Burley, S. K. RNA polymerase II transcription initiation: a structural view. Proc. Natl Acad. Sci. USA 94, 15–22 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cramer, P. et al. Structure of eukaryotic RNA polymerases. Annu. Rev. Biophys. 37, 337–352 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Murakami, K. et al. Structure of an RNA polymerase II preinitiation complex. Proc. Natl Acad. Sci. USA 112, 13543–13548 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Robinson, P. J. et al. Structure of a complete mediator-RNA polymerase II pre-initiation complex. Cell 166, 1411–1422.e16 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Plaschka, C. et al. Transcription initiation complex structures elucidate DNA opening. Nature 533, 353–358 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. He, Y., Fang, J., Taatjes, D. J. & Nogales, E. Structural visualization of key steps in human transcription initiation. Nature 495, 481–486 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. He, Y. et al. Near-atomic resolution visualization of human transcription promoter opening. Nature 533, 359–365 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Engel, C. et al. Structural basis of RNA polymerase I transcription initiation. Cell 169, 120–131.e22 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. Sadian, Y. et al. Structural insights into transcription initiation by yeast RNA polymerase I. EMBO J. 36, 2698–2709 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Abascal-Palacios, G., Ramsay, E. P., Beuron, F., Morris, E. & Vannini, A. Structural basis of RNA polymerase III transcription initiation. Nature 553, 301–306 (2018).

    Article  CAS  PubMed  Google Scholar 

  81. Zhang, Z. et al. Rapid dynamics of general transcription factor TFIIB binding during preinitiation complex assembly revealed by single-molecule analysis. Genes Dev. 30, 2106–2118 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Darnell, J. E., Jelinek, W. R. & Molloy, G. R. Biogenesis of mRNA: genetic regulation in mammalian cells. Science 181, 1215–1221 (1973).

    Article  CAS  PubMed  Google Scholar 

  83. Engelke, D. R., Ng, S. Y., Shastry, B. S. & Roeder, R. G. Specific interaction of a purified transcription factor with an internal control region of 5S RNA genes. Cell 19, 717–728 (1980).

    Article  CAS  PubMed  Google Scholar 

  84. Sakonju, S., Bogenhagen, D. F. & Brown, D. D. A control region in the center of the 5S RNA gene directs specific initiation of transcription: I. The 5′ border of the region. Cell 19, 13–25 (1980).

    Article  CAS  PubMed  Google Scholar 

  85. Ginsberg, A. M., King, B. O. & Roeder, R. G. Xenopus 5S gene transcription factor, TFIIIA: characterization of a cDNA clone and measurement of RNA levels throughout development. Cell 39, 479–489 (1984).

    Article  CAS  PubMed  Google Scholar 

  86. Miller, J., McLachlan, A. D. & Klug, A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 4, 1609–1614 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lambert, S. A. et al. The human transcription factors. Cell 175, 598–599 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Payvar, F. et al. Purified glucocorticoid receptors bind selectively in vitro to a cloned DNA fragment whose transcription is regulated by glucocorticoids in vivo. Proc. Natl Acad. Sci. USA 78, 6628–6632 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dynan, W. S. & Tjian, R. Isolation of transcription factors that discriminate between different promoters recognized by RNA polymerase II. Cell 32, 669–680 (1983).

    Article  CAS  PubMed  Google Scholar 

  90. Parker, C. S. & Topol, J. A Drosophila RNA polymerase II transcription factor binds to the regulatory site of an hsp 70 gene. Cell 37, 273–283 (1984).

    Article  CAS  PubMed  Google Scholar 

  91. Carthew, R. W., Chodosh, L. A. & Sharp, P. A. An RNA polymerase II transcription factor binds to an upstream element in the adenovirus major late promoter. Cell 43, 439–448 (1985).

    Article  CAS  PubMed  Google Scholar 

  92. Bram, R. J. & Kornberg, R. D. Specific protein binding to far upstream activating sequences in polymerase II promoters. Proc. Natl Acad. Sci. USA 82, 43–47 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Horikoshi, M., Hai, T., Lin, Y. S., Green, M. R. & Roeder, R. G. Transcription factor ATF interacts with the TATA factor to facilitate establishment of a preinitiation complex. Cell 54, 1033–1042 (1988).

    Article  CAS  PubMed  Google Scholar 

  94. Roberts, S. G., Ha, I., Maldonado, E., Reinberg, D. & Green, M. R. Interaction between an acidic activator and transcription factor TFIIB is required for transcriptional activation. Nature 363, 741–744 (1993).

    Article  CAS  PubMed  Google Scholar 

  95. Rochette-Egly, C., Adam, S., Rossignol, M., Egly, J. M. & Chambon, P. Stimulation of RAR alpha activation function AF-1 through binding to the general transcription factor TFIIH and phosphorylation by CDK7. Cell 90, 97–107 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Rio, D., Robbins, A., Myers, R. & Tjian, R. Regulation of simian virus 40 early transcription in vitro by a purified tumor antigen. Proc. Natl Acad. Sci. USA 77, 5706–5710 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Davis, R. L., Weintraub, H. & Lassar, A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000 (1987).

    Article  CAS  PubMed  Google Scholar 

  98. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Schaffner, W. Enhancers, enhancers - from their discovery to today’s universe of transcription enhancers. Biol. Chem. 396, 311–327 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Maniatis, T. et al. Structure and function of the interferon-beta enhanceosome. Cold Spring Harb. Symp. Quant. Biol. 63, 609–620 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Yu, M. & Ren, B. The three-dimensional organization of mammalian genomes. Annu. Rev. Cell Dev. Biol. 33, 265–289 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. van Steensel, B. & Furlong, E. E. M. The role of transcription in shaping the spatial organization of the genome. Nat. Rev. Mol. Cell Biol. 20, 327–337 (2019).

    PubMed  PubMed Central  Google Scholar 

  104. Malik, S. & Roeder, R. G. The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat. Rev. Genet. 11, 761–772 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Allen, B. L. & Taatjes, D. J. The Mediator complex: a central integrator of transcription. Nat. Rev. Mol. Cell Biol. 16, 155–166 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Albright, S. R. & Tjian, R. TAFs revisited: more data reveal new twists and confirm old ideas. Gene 242, 1–13 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Flanagan, P. M., Kelleher, R. J. III, Sayre, M. H., Tschochner, H. & Kornberg, R. D. A mediator required for activation of RNA polymerase II transcription in vitro. Nature 350, 436–438 (1991).

    Article  CAS  PubMed  Google Scholar 

  108. Thompson, C. M., Koleske, A. J., Chao, D. M. & Young, R. A. A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast. Cell 73, 1361–1375 (1993).

    Article  CAS  PubMed  Google Scholar 

  109. Kim, Y. J., Björklund, S., Li, Y., Sayre, M. H. & Kornberg, R. D. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77, 599–608 (1994).

    Article  CAS  PubMed  Google Scholar 

  110. Meisterernst, M., Roy, A. L., Lieu, H. M. & Roeder, R. G. Activation of class II gene transcription by regulatory factors is potentiated by a novel activity. Cell 66, 981–993 (1991).

    Article  CAS  PubMed  Google Scholar 

  111. Malik, S., Gu, W., Wu, W., Qin, J. & Roeder, R. G. The USA-derived transcriptional coactivator PC2 is a submodule of TRAP/SMCC and acts synergistically with other PCs. Mol. Cell 5, 753–760 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Fondell, J. D., Ge, H. & Roeder, R. G. Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc. Natl Acad. Sci. USA 93, 8329–8333 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chen, W. & Roeder, R. G. Mediator-dependent nuclear receptor function. Semin. Cell Dev. Biol. 22, 749–758 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ge, K. et al. Transcription coactivator TRAP220 is required for PPAR gamma 2-stimulated adipogenesis. Nature 417, 563–567 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Malik, S. & Roeder, R. G. Mediator: a drawbridge across the enhancer-promoter divide. Mol. Cell 64, 433–434 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tsai, K. L. et al. Subunit architecture and functional modular rearrangements of the transcriptional mediator complex. Cell 157, 1430–1444 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Cevher, M. A. et al. Reconstitution of active human core Mediator complex reveals a critical role of the MED14 subunit. Nat. Struct. Mol. Biol. 21, 1028–1034 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tsai, K. L. et al. Mediator structure and rearrangements required for holoenzyme formation. Nature 544, 196–201 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Plaschka, C. et al. Architecture of the RNA polymerase II-Mediator core initiation complex. Nature 518, 376–380 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Nozawa, K., Schneider, T. R. & Cramer, P. Core Mediator structure at 3.4 Å extends model of transcription initiation complex. Nature 545, 248–251 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Buratowski, S., Hahn, S., Sharp, P. A. & Guarente, L. Function of a yeast TATA element-binding protein in a mammalian transcription system. Nature 334, 37–42 (1988).

    Article  CAS  PubMed  Google Scholar 

  122. Cavallini, B. et al. A yeast activity can substitute for the HeLa cell TATA box factor. Nature 334, 77–80 (1988).

    Article  CAS  PubMed  Google Scholar 

  123. Hoffman, A. et al. Highly conserved core domain and unique N terminus with presumptive regulatory motifs in a human TATA factor (TFIID). Nature 346, 387–390 (1990).

    Article  CAS  PubMed  Google Scholar 

  124. Pugh, B. F. & Tjian, R. Mechanism of transcriptional activation by Sp1: evidence for coactivators. Cell 61, 1187–1197 (1990).

    Article  CAS  PubMed  Google Scholar 

  125. Chen, W. Y. et al. A TAF4 coactivator function for E proteins that involves enhanced TFIID binding. Genes Dev. 27, 1596–1609 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Patel, A. B. et al. Structure of human TFIID and mechanism of TBP loading onto promoter DNA. Science 362, eaau8872 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Luo, Y., Fujii, H., Gerster, T. & Roeder, R. G. A novel B cell-derived coactivator potentiates the activation of immunoglobulin promoters by octamer-binding transcription factors. Cell 71, 231–241 (1992).

    Article  CAS  PubMed  Google Scholar 

  128. Kim, U. et al. The B-cell-specific transcription coactivator OCA-B/OBF-1/Bob-1 is essential for normal production of immunoglobulin isotypes. Nature 383, 542–547 (1996).

    Article  CAS  PubMed  Google Scholar 

  129. Lin, J., Handschin, C. & Spiegelman, B. M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1, 361–370 (2005).

    Article  PubMed  CAS  Google Scholar 

  130. Wallberg, A. E., Yamamura, S., Malik, S., Spiegelman, B. M. & Roeder, R. G. Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1alpha. Mol. Cell 12, 1137–1149 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Ge, H. & Roeder, R. G. Purification, cloning, and characterization of a human coactivator, PC4, that mediates transcriptional activation of class II genes. Cell 78, 513–523 (1994).

    Article  CAS  PubMed  Google Scholar 

  132. Ge, H., Si, Y. & Roeder, R. G. Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation. EMBO J. 17, 6723–6729 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wysocka, J. & Herr, W. The herpes simplex virus VP16-induced complex: the makings of a regulatory switch. Trends Biochem. Sci. 28, 294–304 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Li, B., Carey, M. & Workman, J. L. The role of chromatin during transcription. Cell 128, 707–719 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Ito, T., Bulger, M., Pazin, M. J., Kobayashi, R. & Kadonaga, J. T. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90, 145–155 (1997).

    Article  CAS  PubMed  Google Scholar 

  136. Knezetic, J. A. & Luse, D. S. The presence of nucleosomes on a DNA template prevents initiation by RNA polymerase II in vitro. Cell 45, 95–104 (1986).

    Article  CAS  PubMed  Google Scholar 

  137. Lorch, Y., LaPointe, J. W. & Kornberg, R. D. Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones. Cell 49, 203–210 (1987).

    Article  CAS  PubMed  Google Scholar 

  138. Workman, J. L. & Roeder, R. G. Binding of transcription factor TFIID to the major late promoter during in vitro nucleosome assembly potentiates subsequent initiation by RNA polymerase II. Cell 51, 613–622 (1987).

    Article  CAS  PubMed  Google Scholar 

  139. Han, M. & Grunstein, M. Nucleosome loss activates yeast downstream promoters in vivo. Cell 55, 1137–1145 (1988).

    Article  CAS  PubMed  Google Scholar 

  140. Workman, J. L., Abmayr, S. M., Cromlish, W. A. & Roeder, R. G. Transcriptional regulation by the immediate early protein of pseudorabies virus during in vitro nucleosome assembly. Cell 55, 211–219 (1988).

    Article  CAS  PubMed  Google Scholar 

  141. Kraus, W. L. & Kadonaga, J. T. p300 and estrogen receptor cooperatively activate transcription via differential enhancement of initiation and reinitiation. Genes Dev. 12, 331–342 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Utley, R. T. et al. Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature 394, 498–502 (1998).

    Article  CAS  PubMed  Google Scholar 

  143. An, W., Palhan, V. B., Karymov, M. A., Leuba, S. H. & Roeder, R. G. Selective requirements for histone H3 and H4 N termini in p300-dependent transcriptional activation from chromatin. Mol. Cell 9, 811–821 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. An, W., Kim, J. & Roeder, R. G. Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell 117, 735–748 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Tang, Z. et al. SET1 and p300 act synergistically, through coupled histone modifications, in transcriptional activation by p53. Cell 154, 297–310 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Gu, W. & Roeder, R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595–606 (1997).

    Article  CAS  PubMed  Google Scholar 

  147. Sheikh, B. N. & Akhtar, A. The many lives of KATs - detectors, integrators and modulators of the cellular environment. Nat. Rev. Genet. 20, 7–23 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Wang, S. P. et al. A UTX-MLL4-p300 Transcriptional Regulatory Network Coordinately Shapes Active Enhancer Landscapes for Eliciting Transcription. Mol. Cell 67, 308–321.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Tan, M. et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146, 1016–1028 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sabari, B. R. et al. Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol. Cell 58, 203–215 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Guermah, M., Palhan, V. B., Tackett, A. J., Chait, B. T. & Roeder, R. G. Synergistic functions of SII and p300 in productive activator-dependent transcription of chromatin templates. Cell 125, 275–286 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Kim, J., Guermah, M. & Roeder, R. G. The human PAF1 complex acts in chromatin transcription elongation both independently and cooperatively with SII/TFIIS. Cell 140, 491–503 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Li, G. et al. Highly compacted chromatin formed in vitro reflects the dynamics of transcription activation in vivo. Mol. Cell 38, 41–53 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Shimada, M. et al. Gene-Specific H1 Eviction through a Transcriptional activator→p300→NAP1→H1 Pathway. Mol. Cell 74, 268–283.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Roeder, R. G. Lasker Basic Medical Research Award. The eukaryotic transcriptional machinery: complexities and mechanisms unforeseen. Nat. Med. 9, 1239–1244 (2003).

    Article  CAS  PubMed  Google Scholar 

  156. Kaikkonen, M. U. & Adelman, K. Emerging roles of non-coding RNA transcription. Trends Biochem. Sci. 43, 654–667 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. Rowley, M. J. & Corces, V. G. Organizational principles of 3D genome architecture. Nat. Rev. Genet. 19, 789–800 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Coleman, R. A. et al. Imaging transcription: past, present, and future. Cold Spring Harb. Symp. Quant. Biol. 80, 1–8 (2015).

    Article  PubMed  Google Scholar 

  159. Wang, H., La Russa, M. & Qi, L. S. CRISPR/Cas9 in genome editing and beyond. Annu. Rev. Biochem. 85, 227–264 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. & Sharp, P. A. A phase separation model for transcriptional control. Cell 169, 13–23 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hahn, S. Phase separation, protein disorder, and enhancer function. Cell 175, 1723–1725 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank S. Malik for a critical reading and suggestions on the manuscript. I am indebted to my mentors W. J. Rutter and D. D. Brown for their support and encouragement in the earliest phase of my scientific career, and to the numerous students and fellows who contributed so profoundly to the studies from my laboratory over the last five decades. I apologize to the many colleagues in the transcription field whose work could not be cited because of space limitations and the focus of the manuscript. Work in my laboratory over the past decades has been generously supported by the National Institutes of Health, the American Cancer Society, the Leukemia and Lymphoma Society, the Starr Cancer Consortuim, many other private foundations and The Rockefeller University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Roeder.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Peer review information: Beth Moorefield was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roeder, R.G. 50+ years of eukaryotic transcription: an expanding universe of factors and mechanisms. Nat Struct Mol Biol 26, 783–791 (2019). https://doi.org/10.1038/s41594-019-0287-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-019-0287-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing