Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

INTRAFLAGELLAR TRANSPORT

Dynein tails: how to hitch a ride on an IFT train

Researchers have sought to understand the function and regulation of the motor protein dynein since its discovery more than 50 years ago1. Dynein-2 is one of the motors that move the intraflagellar transport (IFT) trains ― large protein complexes that are needed for the assembly and function of eukaryotic cilia and flagella. Toropova et al. report the single-particle cryo-EM structure of the human dynein-2 complex2, which unexpectedly reveals two different conformations of the motor subunit tails. One tail forms a zigzag that matches the periodicity of the IFT trains, which reinforces the auto-inhibition of dynein motor activity and the binding of multiple dynein-2 complexes along the train during anterograde transport.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The tails of the dynein-2 homodimer subunits show different conformations.

References

  1. 1.

    Gibbons, I. R. & Rowe, A. J. Science 149, 424–426 (1965).

    CAS  Article  Google Scholar 

  2. 2.

    Toropova, K. et al. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-019-0286-y (2019).

  3. 3.

    Li, J. B. et al. Cell 117, 541–552 (2004).

    CAS  Article  Google Scholar 

  4. 4.

    Hoh, R. A., Stowe, T. R., Turk, E. & Stearns, T. PLoS One 7, e52166 (2012).

    CAS  Article  Google Scholar 

  5. 5.

    Blackburn, K., Bustamante-Marin, X., Yin, W., Goshe, M. B. & Ostrowski, L. E. J. Proteome Res. 16, 1579–1592 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    Rosenbaum, J. L. & Witman, G. B. Nat. Rev. Mol. Cell Biol. 3, 813–825 (2002).

    CAS  Article  Google Scholar 

  7. 7.

    Reiter, J. F. & Leroux, M. R. Nat. Rev. Mol. Cell Biol. 18, 533–547 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    Jordan, M. A., Diener, D. R., Stepanek, L. & Pigino, G. Nat. Cell Biol. 20, 1250–1255 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    Taschner, M. & Lorentzen, E. Cold Spring Harb. Perspect. Biol. 8, a028092 (2016).

    Article  Google Scholar 

  10. 10.

    Iomini, C., Babaev-Khaimov, V., Sassaroli, M. & Piperno, G. J. Cell Biol. 153, 13–24 (2001).

    CAS  Article  Google Scholar 

  11. 11.

    Roberts, A. J. Biochem. Soc. Trans. 46, 967–982 (2018).

    CAS  Article  Google Scholar 

  12. 12.

    Schmidts, M. et al. J. Med. Genet. 50, 309–323 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    Schmidts, M. et al. Am. J. Hum. Genet. 93, 932–944 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    McInerney-Leo, A. M. et al. Am. J. Hum. Genet. 93, 515–523 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    Kessler, K. et al. Sci. Rep. 5, 11649 (2015).

    Article  Google Scholar 

  16. 16.

    Schmidts, M. et al. Nat. Commun. 6, 7074 (2015).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Susan K. Dutcher.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dutcher, S.K. Dynein tails: how to hitch a ride on an IFT train. Nat Struct Mol Biol 26, 760–761 (2019). https://doi.org/10.1038/s41594-019-0285-z

Download citation

Search

Quick links