Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.


Dynein tails: how to hitch a ride on an IFT train

Researchers have sought to understand the function and regulation of the motor protein dynein since its discovery more than 50 years ago1. Dynein-2 is one of the motors that move the intraflagellar transport (IFT) trains ― large protein complexes that are needed for the assembly and function of eukaryotic cilia and flagella. Toropova et al. report the single-particle cryo-EM structure of the human dynein-2 complex2, which unexpectedly reveals two different conformations of the motor subunit tails. One tail forms a zigzag that matches the periodicity of the IFT trains, which reinforces the auto-inhibition of dynein motor activity and the binding of multiple dynein-2 complexes along the train during anterograde transport.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The tails of the dynein-2 homodimer subunits show different conformations.


  1. Gibbons, I. R. & Rowe, A. J. Science 149, 424–426 (1965).

    Article  CAS  Google Scholar 

  2. Toropova, K. et al. Nat. Struct. Mol. Biol. (2019).

  3. Li, J. B. et al. Cell 117, 541–552 (2004).

    Article  CAS  Google Scholar 

  4. Hoh, R. A., Stowe, T. R., Turk, E. & Stearns, T. PLoS One 7, e52166 (2012).

    Article  CAS  Google Scholar 

  5. Blackburn, K., Bustamante-Marin, X., Yin, W., Goshe, M. B. & Ostrowski, L. E. J. Proteome Res. 16, 1579–1592 (2017).

    Article  CAS  Google Scholar 

  6. Rosenbaum, J. L. & Witman, G. B. Nat. Rev. Mol. Cell Biol. 3, 813–825 (2002).

    Article  CAS  Google Scholar 

  7. Reiter, J. F. & Leroux, M. R. Nat. Rev. Mol. Cell Biol. 18, 533–547 (2017).

    Article  CAS  Google Scholar 

  8. Jordan, M. A., Diener, D. R., Stepanek, L. & Pigino, G. Nat. Cell Biol. 20, 1250–1255 (2018).

    Article  CAS  Google Scholar 

  9. Taschner, M. & Lorentzen, E. Cold Spring Harb. Perspect. Biol. 8, a028092 (2016).

    Article  Google Scholar 

  10. Iomini, C., Babaev-Khaimov, V., Sassaroli, M. & Piperno, G. J. Cell Biol. 153, 13–24 (2001).

    Article  CAS  Google Scholar 

  11. Roberts, A. J. Biochem. Soc. Trans. 46, 967–982 (2018).

    Article  CAS  Google Scholar 

  12. Schmidts, M. et al. J. Med. Genet. 50, 309–323 (2013).

    Article  CAS  Google Scholar 

  13. Schmidts, M. et al. Am. J. Hum. Genet. 93, 932–944 (2013).

    Article  CAS  Google Scholar 

  14. McInerney-Leo, A. M. et al. Am. J. Hum. Genet. 93, 515–523 (2013).

    Article  CAS  Google Scholar 

  15. Kessler, K. et al. Sci. Rep. 5, 11649 (2015).

    Article  Google Scholar 

  16. Schmidts, M. et al. Nat. Commun. 6, 7074 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Susan K. Dutcher.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutcher, S.K. Dynein tails: how to hitch a ride on an IFT train. Nat Struct Mol Biol 26, 760–761 (2019).

Download citation

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing