Monoamine transporters: structure, intrinsic dynamics and allosteric regulation

Abstract

Monoamine transporters (MATs) regulate neurotransmission via the reuptake of dopamine, serotonin and norepinephrine from extra-neuronal regions and thus maintain neurotransmitter homeostasis. As targets of a wide range of compounds, including antidepressants, substances of abuse and drugs for neuropsychiatric and neurodegenerative disorders, their mechanism of action and their modulation by small molecules have long been of broad interest. Recent advances in the structural characterization of dopamine and serotonin transporters have opened the way for structure-based modeling and simulations, which, together with experimental data, now provide mechanistic understanding of their transport function and interactions. Here we review recent progress in the elucidation of the structural dynamics of MATs and their conformational landscape and transitions, as well as allosteric regulation mechanisms.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Architecture of MATs, represented by the structures of human serotonin transporter (hSERT) and D. melanogaster dopamine transporter (dDAT).
Fig. 2: The primary site S1 for substrate binding serves as an orthosteric drug-binding site in hSERT and dDAT.
Fig. 3: Neurotransmitter transport cycle of hDAT.
Fig. 4: Conformational space and structural dynamics of hDAT, and signature dynamics of MATs.
Fig. 5: Effect of small molecules bound to orthosteric (S1) sites and allosteric (S2) sites on intrinsic dynamics.

References

  1. 1.

    Penmatsa, A., Wang, K. H. & Gouaux, E. X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 503, 85–90 (2013).

  2. 2.

    Wang, K. H., Penmatsa, A. & Gouaux, E. Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature 521, 322–327 (2015).

  3. 3.

    Penmatsa, A., Wang, K. H. & Gouaux, E. X-ray structures of Drosophila dopamine transporter in complex with nisoxetine and reboxetine. Nat. Struct. Mol. Biol. 22, 506–508 (2015).

  4. 4.

    Coleman, J. A. et al. Serotonin transporter-ibogaine complexes illuminate mechanisms of inhibition and transport. Nature 569, 141–145 (2019).

  5. 5.

    Coleman, J. A. & Gouaux, E. Structural basis for recognition of diverse antidepressants by the human serotonin transporter. Nat. Struct. Mol. Biol. 25, 170–175 (2018).

  6. 6.

    Coleman, J. A., Green, E. M. & Gouaux, E. X-ray structures and mechanism of the human serotonin transporter. Nature 532, 334–339 (2016).

  7. 7.

    Amara, S. G. & Sonders, M. S. Neurotransmitter transporters as molecular targets for addictive drugs. Drug Alcohol Depend. 51, 87–96 (1998).

  8. 8.

    Bermingham, D. P. & Blakely, R. D. Kinase-dependent regulation of monoamine neurotransmitter transporters. Pharmacol. Rev. 68, 888–953 (2016).

  9. 9.

    Pramod, A. B., Foster, J., Carvelli, L. & Henry, L. K. SLC6 transporters: structure, function, regulation, disease association and therapeutics. Mol. Asp. Med. 34, 197–219 (2013).

  10. 10.

    Sitte, H. H. & Freissmuth, M. Amphetamines, new psychoactive drugs and the monoamine transporter cycle. Trends Pharmacol. Sci. 36, 41–50 (2015).

  11. 11.

    Vaughan, R. A. & Foster, J. D. Mechanisms of dopamine transporter regulation in normal and disease states. Trends Pharmacol. Sci. 34, 489–496 (2013).

  12. 12.

    Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437, 215–223 (2005).

  13. 13.

    Krishnamurthy, H. & Gouaux, E. X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature 481, 469–474 (2012).

  14. 14.

    Kazmier, K. et al. Conformational dynamics of ligand-dependent alternating access in LeuT. Nat. Struct. Mol. Biol. 21, 472–479 (2014).

  15. 15.

    Grouleff, J., Ladefoged, L. K., Koldsø, H. & Schiøtt, B. Monoamine transporters: insights from molecular dynamics simulations. Front. Pharmacol. 6, 235 (2015).

  16. 16.

    Rudnick, G., Krämer, R., Blakely, R. D., Murphy, D. L. & Verrey, F. The SLC6 transporters: perspectives on structure, functions, regulation, and models for transporter dysfunction. Eur. J. Physiol. 466, 25–42 (2014).

  17. 17.

    Cheng, M. H. & Bahar, I. Molecular mechanism of dopamine transport by human dopamine transporter. Structure 23, 2171–2181 (2015).

  18. 18.

    Hong, W. C. & Amara, S. G. Membrane cholesterol modulates the outward facing conformation of the dopamine transporter and alters cocaine binding. J. Biol. Chem. 285, 32616–32626 (2010).

  19. 19.

    Fantini, J. & Barrantes, F. J. How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front. Physiol. 4, 31 (2013).

  20. 20.

    Zeppelin, T., Ladefoged, L. K., Sinning, S., Periole, X. & Schiøtt, B. A direct interaction of cholesterol with the dopamine transporter prevents its out-to-inward transition. PLoS Comput. Biol. 14, e1005907 (2018).

  21. 21.

    Scanlon, S. M., Williams, D. C. & Schloss, P. Membrane cholesterol modulates serotonin transporter activity. Biochemistry 40, 10507–10513 (2001).

  22. 22.

    Das, A. K. et al. Dopamine transporter forms stable dimers in the live cell plasma membrane in a phosphatidylinositol 4,5-bisphosphate-independent manner. J. Biol. Chem. 294, 5632–5642 (2019).

  23. 23.

    Anderluh, A. et al. Single molecule analysis reveals coexistence of stable serotonin transporter monomers and oligomers in the live cell plasma membrane. J. Biol. Chem. 289, 4387–4394 (2014).

  24. 24.

    Anderluh, A. et al. Direct PIP2 binding mediates stable oligomer formation of the serotonin transporter. Nat. Commun. 8, 14089 (2017).

  25. 25.

    Sorkina, T., Ma, S., Larsen, M. B., Watkins, S. C. & Sorkin, A. Small molecule induced oligomerization, clustering and clathrin-independent endocytosis of the dopamine transporter. eLife 7, e32293 (2018).

  26. 26.

    Sitte, H. H., Farhan, H. & Javitch, J. A. Sodium-dependent neurotransmitter transporters: oligomerization as a determinant of transporter function and trafficking. Mol. Interv. 4, 38–47 (2004).

  27. 27.

    Robertson, S. D., Matthies, H. J. & Galli, A. A closer look at amphetamine-induced reverse transport and trafficking of the dopamine and norepinephrine transporters. Mol. Neurobiol. 39, 73–80 (2009).

  28. 28.

    Pizzo, A. B. et al. Amphetamine-induced behavior requires CaMKII-dependent dopamine transporter phosphorylation. Mol. Psychiatry 19, 279–281 (2014).

  29. 29.

    Saunders, C. et al. Amphetamine-induced loss of human dopamine transporter activity: an internalization-dependent and cocaine-sensitive mechanism. Proc. Natl Acad. Sci. USA 97, 6850–6855 (2000).

  30. 30.

    Garcia-Olivares, J. et al. Gβγ subunit activation promotes dopamine efflux through the dopamine transporter. Mol. Psychiatry 22, 1673–1679 (2017).

  31. 31.

    Fog, J. U. et al. Calmodulin kinase II interacts with the dopamine transporter C terminus to regulate amphetamine-induced reverse transport. Neuron 51, 417–429 (2006).

  32. 32.

    Johnson, L. A., Guptaroy, B., Lund, D., Shamban, S. & Gnegy, M. E. Regulation of amphetamine-stimulated dopamine efflux by protein kinase C β. J. Biol. Chem. 280, 10914–10919 (2005).

  33. 33.

    Hamilton, P. J. et al. PIP2 regulates psychostimulant behaviors through its interaction with a membrane protein. Nat. Chem. Biol. 10, 582–589 (2014).

  34. 34.

    Buchmayer, F. et al. Amphetamine actions at the serotonin transporter rely on the availability of phosphatidylinositol-4,5-bisphosphate. Proc. Natl Acad. Sci. USA 110, 11642–11647 (2013).

  35. 35.

    Haliloglu, T. & Bahar, I. Adaptability of protein structures to enable functional interactions and evolutionary implications. Curr. Opin. Struct. Biol. 35, 17–23 (2015).

  36. 36.

    Ponzoni, L., Zhang, S., Cheng, M. H. & Bahar, I. Shared dynamics of LeuT superfamily members and allosteric differentiation by structural irregularities and multimerization. Philos. Trans. R. Soc. Lond. B 373, 20170177 (2018).

  37. 37.

    Abramyan, A. M. et al. Computation-guided analysis of paroxetine binding to hSERT reveals functionally important structural elements and dynamics. Neuropharmacology https://doi.org/10.1016/j.neuropharm.2018.10.040 (2018).

  38. 38.

    Razavi, A. M., Khelashvili, G. & Weinstein, H. How structural elements evolving from bacterial to human SLC6 transporters enabled new functional properties. BMC Biol. 16, 31 (2018).

  39. 39.

    Periole, X., Zeppelin, T. & Schiøtt, B. Dimer interface of the human serotonin transporter and effect of the membrane composition. Sci. Rep. 8, 5080 (2018).

  40. 40.

    Cheng, M. H., Kaya, C. & Bahar, I. Quantitative assessment of the energetics of dopamine translocation by human dopamine transporter. J. Phys. Chem. B 122, 5336–5346 (2018).

  41. 41.

    Jayaraman, K. et al. Dopamine transporter oligomerization involves the scaffold domain, but spares the bundle domain. PLoS Comput. Biol. 14, e1006229 (2018).

  42. 42.

    Cheng, M. H., Garcia-Olivares, J., Wasserman, S., DiPietro, J. & Bahar, I. Allosteric modulation of human dopamine transporter activity under conditions promoting its dimerization. J. Biol. Chem. 292, 12471–12482 (2017).

  43. 43.

    Khelashvili, G. et al. Spontaneous inward opening of the dopamine transporter is triggered by PIP2-regulated dynamics of the N-terminus. ACS Chem. Neurosci. 6, 1825–1837 (2015).

  44. 44.

    Fenollar-Ferrer, C. et al. Structure and regulatory interactions of the cytoplasmic terminal domains of serotonin transporter. Biochemistry 53, 5444–5460 (2014).

  45. 45.

    Forrest, L. R. et al. Mechanism for alternating access in neurotransmitter transporters. Proc. Natl Acad. Sci. USA 105, 10338–10343 (2008).

  46. 46.

    Kristensen, A. S. et al. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol. Rev. 63, 585–640 (2011).

  47. 47.

    Beuming, T. et al. The binding sites for cocaine and dopamine in the dopamine transporter overlap. Nat. Neurosci. 11, 780–789 (2008).

  48. 48.

    Larsen, M. B. et al. Dopamine transport by the serotonin transporter: a mechanistically distinct mode of substrate translocation. J. Neurosci. 31, 6605–6615 (2011).

  49. 49.

    Sandtner, W. et al. Binding mode selection determines the action of ecstasy homologs at monoamine transporters. Mol. Pharmacol. 89, 165–175 (2016).

  50. 50.

    Wang, H. et al. Structural basis for action by diverse antidepressants on biogenic amine transporters. Nature 503, 141–145 (2013).

  51. 51.

    Sørensen, L. et al. Interaction of antidepressants with the serotonin and norepinephrine transporters: mutational studies of the S1 substrate binding pocket. J. Biol. Chem. 287, 43694–43707 (2012).

  52. 52.

    Cheng, M. H. et al. Insights into the modulation of dopamine transporter function by amphetamine, orphenadrine and cocaine binding. Front. Neurol. 6, 134 (2015).

  53. 53.

    Wennogle, L. P. & Meyerson, L. R. Serotonin modulates the dissociation of [3H]imipramine from human platelet recognition sites. Eur. J. Pharmacol. 86, 303–307 (1982).

  54. 54.

    Larsen, M. A. et al. Structure-activity relationship studies of citalopram derivatives: examining substituents conferring selectivity for the allosteric site in the 5-HT transporter. Br. J. Pharmacol. 173, 925–936 (2016).

  55. 55.

    Cheng, M. H. & Bahar, I. Coupled global and local changes direct substrate translocation by neurotransmitter-sodium symporter ortholog LeuT. Biophys. J. 105, 630–639 (2013).

  56. 56.

    Singh, S. K., Yamashita, A. & Gouaux, E. Antidepressant binding site in a bacterial homologue of neurotransmitter transporters. Nature 448, 952–956 (2007).

  57. 57.

    Zhou, Z. et al. Antidepressant specificity of serotonin transporter suggested by three LeuT-SSRI structures. Nat. Struct. Mol. Biol. 16, 652–657 (2009).

  58. 58.

    Shi, L., Quick, M., Zhao, Y., Weinstein, H. & Javitch, J. A. The mechanism of a neurotransmitter:sodium symporter–inward release of Na+ and substrate is triggered by substrate in a second binding site. Mol. Cell 30, 667–677 (2008).

  59. 59.

    Abramyan, A. M., Quick, M., Xue, C., Javitch, J. A. & Shi, L. Exploring substrate binding in the extracellular vestibule of MhsT by atomistic simulations and Markov models. J. Chem. Inf. Model. 58, 1244–1252 (2018).

  60. 60.

    Quick, M. et al. The LeuT-fold neurotransmitter:sodium symporter MhsT has two substrate sites. Proc. Natl Acad. Sci. USA 115, E7924–E7931 (2018).

  61. 61.

    Nyola, A. et al. Substrate and drug binding sites in LeuT. Curr. Opin. Struct. Biol. 20, 415–422 (2010).

  62. 62.

    Kantcheva, A. K. et al. Chloride binding site of neurotransmitter sodium symporters. Proc. Natl Acad. Sci. USA 110, 8489–8494 (2013).

  63. 63.

    Zomot, E. et al. Mechanism of chloride interaction with neurotransmitter:sodium symporters. Nature 449, 726–730 (2007).

  64. 64.

    Jardetzky, O. Simple allosteric model for membrane pumps. Nature 211, 969–970 (1966).

  65. 65.

    Forrest, L. R. & Rudnick, G. The rocking bundle: a mechanism for ion-coupled solute flux by symmetrical transporters. Physiol. (Bethesda) 24, 377–386 (2009).

  66. 66.

    Drew, D. & Boudker, O. Shared molecular mechanisms of membrane transporters. Annu. Rev. Biochem. 85, 543–572 (2016).

  67. 67.

    Zomot, E., Gur, M. & Bahar, I. Microseconds simulations reveal a new sodium-binding site and the mechanism of sodium-coupled substrate uptake by LeuT. J. Biol. Chem. 290, 544–555 (2015).

  68. 68.

    Claxton, D. P. et al. Ion/substrate-dependent conformational dynamics of a bacterial homolog of neurotransmitter:sodium symporters. Nat. Struct. Mol. Biol. 17, 822–829 (2010).

  69. 69.

    Malinauskaite, L. et al. A mechanism for intracellular release of Na+ by neurotransmitter/sodium symporters. Nat. Struct. Mol. Biol. 21, 1006–1012 (2014).

  70. 70.

    Tavoulari, S. et al. Two Na+ sites control conformational change in a neurotransmitter transporter homolog. J. Biol. Chem. 291, 1456–1471 (2016).

  71. 71.

    Cheng, M. H. & Bahar, I. Complete mapping of substrate translocation highlights the role of LeuT N-terminal segment in regulating transport cycle. PLoS Comput. Biol. 10, e1003879 (2014).

  72. 72.

    Eyal, E., Lum, G. & Bahar, I. The anisotropic network model web server at 2015 (ANM 2.0). Bioinformatics 31, 1487–1489 (2015).

  73. 73.

    Dehnes, Y. et al. Conformational changes in dopamine transporter intracellular regions upon cocaine binding and dopamine translocation. Neurochem. Int. 73, 4–15 (2014).

  74. 74.

    Zou, M. F. et al. Structure-activity relationship studies on a series of 3α-[bis(4-fluorophenyl)methoxy]tropanes and 3α-[bis(4-fluorophenyl)methylamino]tropanes as novel atypical dopamine transporter (DAT) inhibitors for the treatment of cocaine use disorders. J. Med. Chem. 60, 10172–10187 (2017).

  75. 75.

    Schlessinger, A. et al. Structure-based discovery of prescription drugs that interact with the norepinephrine transporter, NET. Proc. Natl Acad. Sci. USA 108, 15810–15815 (2011).

  76. 76.

    Andersen, J. et al. Molecular basis for selective serotonin reuptake inhibition by the antidepressant agent fluoxetine (Prozac). Mol. Pharmacol. 85, 703–714 (2014).

  77. 77.

    Möller, I. R. et al. Conformational dynamics of the human serotonin transporter during substrate and drug binding. Nat. Commun. 10, 1687 (2019).

  78. 78.

    Bulling, S. et al. The mechanistic basis for noncompetitive ibogaine inhibition of serotonin and dopamine transporters. J. Biol. Chem. 287, 18524–18534 (2012).

  79. 79.

    Quick, M., Shi, L., Zehnpfennig, B., Weinstein, H. & Javitch, J. A. Experimental conditions can obscure the second high-affinity site in LeuT. Nat. Struct. Mol. Biol. 19, 207–211 (2012).

  80. 80.

    Shan, J., Javitch, J. A., Shi, L. & Weinstein, H. The substrate-driven transition to an inward-facing conformation in the functional mechanism of the dopamine transporter. PLoS One 6, e16350 (2011).

  81. 81.

    Plenge, P. et al. Steric hindrance mutagenesis in the conserved extracellular vestibule impedes allosteric binding of antidepressants to the serotonin transporter. J. Biol. Chem. 287, 39316–39326 (2012).

  82. 82.

    Rannversson, H. et al. Importance of the extracellular loop 4 in the human serotonin transporter for inhibitor binding and substrate translocation. J. Biol. Chem. 290, 14582–14594 (2015).

  83. 83.

    Hovde, M. J., Larson, G. H., Vaughan, R. A. & Foster, J. D. Model systems for analysis of dopamine transporter function and regulation. Neurochem. Int. 123, 13–21 (2019).

  84. 84.

    Laursen, L. et al. Cholesterol binding to a conserved site modulates conformation, pharmacology and transport kinetics of the human serotonin transporter. J. Biol. Chem. M117, 809046 (2018).

  85. 85.

    Torres, G. E., Gainetdinov, R. R. & Caron, M. G. Plasma membrane monoamine transporters: structure, regulation and function. Nat. Rev. Neurosci. 4, 13–25 (2003).

  86. 86.

    Schulze, S., Köster, S., Geldmacher, U., Terwisscha van Scheltinga, A. C. & Kühlbrandt, W. Structural basis of Na+-independent and cooperative substrate/product antiport in CaiT. Nature 467, 233–236 (2010).

  87. 87.

    Koshy, C. et al. Structural evidence for functional lipid interactions in the betaine transporter BetP. EMBO J. 32, 3096–3105 (2013).

  88. 88.

    Ma, S. et al. Targeting of dopamine transporter to filopodia requires an outward-facing conformation of the transporter. Sci. Rep. 7, 5399 (2017).

  89. 89.

    Bakan, A. & Bahar, I. The intrinsic dynamics of enzymes plays a dominant role in determining the structural changes induced upon inhibitor binding. Proc. Natl Acad. Sci. USA 106, 14349–14354 (2009).

  90. 90.

    Meireles, L., Gur, M., Bakan, A. & Bahar, I. Pre-existing soft modes of motion uniquely defined by native contact topology facilitate ligand binding to proteins. Protein Sci. 20, 1645–1658 (2011).

  91. 91.

    Walther, D., Shalabi, A. R., Baumann, M. H. & Glennon, R. A. Systematic structure–activity studies on selected 2-, 3-, and 4-monosubstituted synthetic methcathinone analogs as monoamine transporter releasing agents. ACS Chem. Neurosci. 10, 740–745 (2019).

  92. 92.

    Mayer, F. P. et al. Stereochemistry of phase-1 metabolites of mephedrone determines their effectiveness as releasers at the serotonin transporter. Neuropharmacology 148, 199–209 (2019).

  93. 93.

    Newman, A. H. et al. Translating the atypical dopamine uptake inhibitor hypothesis toward therapeutics for treatment of psychostimulant use disorders. Neuropsychopharmacology https://doi.org/10.1038/s41386-019-0366-z (2019).

  94. 94.

    Kalaba, P. et al. Heterocyclic analogues of modafinil as novel, atypical dopamine transporter inhibitors. J. Med. Chem. 60, 9330–9348 (2017).

  95. 95.

    Schmitt, K. C., Rothman, R. B. & Reith, M. E. Nonclassical pharmacology of the dopamine transporter: atypical inhibitors, allosteric modulators, and partial substrates. J. Pharmacol. Exp. Ther. 346, 2–10 (2013).

  96. 96.

    Liu, J. J. et al. Regulation of monoamine transporters and receptors by lipid microdomains: implications for depression. Neuropsychopharmacology 43, 2165–2179 (2018).

  97. 97.

    Zhang, Y. W., Turk, B. E. & Rudnick, G. Control of serotonin transporter phosphorylation by conformational state. Proc. Natl Acad. Sci. USA 113, E2776–E2783 (2016).

  98. 98.

    Kulich, S. M. & Chu, C. T. Sustained extracellular signal-regulated kinase activation by 6-hydroxydopamine: implications for Parkinson’s disease. J. Neurochem. 77, 1058–1066 (2001).

  99. 99.

    Dagda, R. K., Zhu, J., Kulich, S. M. & Chu, C. T. Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson’s disease. Autophagy 4, 770–782 (2008).

  100. 100.

    Richardson, B. D. et al. Membrane potential shapes regulation of dopamine transporter trafficking at the plasma membrane. Nat. Commun. 7, 10423 (2016).

  101. 101.

    Mackie, P. et al. The dopamine transporter: An unrecognized nexus for dysfunctional peripheral immunity and signaling in Parkinson’s disease. Brain Behav. Immun. 70, 21–35 (2018).

  102. 102.

    Wheeler, D. S. et al. Amphetamine activates Rho GTPase signaling to mediate dopamine transporter internalization and acute behavioral effects of amphetamine. Proc. Natl Acad. Sci. USA 112, E7138–E7147 (2015).

  103. 103.

    Zhen, J. et al. Dopamine transporter oligomerization: impact of combining protomers with differential cocaine analog binding affinities. J. Neurochem. 133, 167–173 (2015).

  104. 104.

    Siciliano, C. A. et al. Amphetamine reverses escalated cocaine intake via restoration of dopamine transporter conformation. J. Neurosci. 38, 484–497 (2018).

  105. 105.

    Hansen, F. H. et al. Missense dopamine transporter mutations associate with adult parkinsonism and ADHD. J. Clin. Invest. 124, 3107–3120 (2014).

  106. 106.

    Hamilton, P. J. et al. De novo mutation in the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder. Mol. Psychiatry 18, 1315–1323 (2013).

  107. 107.

    Campbell, N. G. et al. Structural, functional, and behavioral insights of dopamine dysfunction revealed by a deletion in SLC6A3. Proc. Natl Acad. Sci. USA 116, 3853–3862 (2019).

  108. 108.

    Sakrikar, D. et al. Attention deficit/hyperactivity disorder-derived coding variation in the dopamine transporter disrupts microdomain targeting and trafficking regulation. J. Neurosci. 32, 5385–5397 (2012).

  109. 109.

    Cartier, E. et al. Rare autism-associated variants implicate syntaxin 1 (STX1 R26Q) phosphorylation and the dopamine transporter (hDAT R51W) in dopamine neurotransmission and behaviors. EBioMedicine 2, 135–146 (2015).

  110. 110.

    Ponzoni, L. & Bahar, I. Structural dynamics is a determinant of the functional significance of missense variants. Proc. Natl Acad. Sci. USA 115, 4164–4169 (2018).

  111. 111.

    Forrest, L. R., Tavoulari, S., Zhang, Y. W., Rudnick, G. & Honig, B. Identification of a chloride ion binding site in Na+/Cl-dependent transporters. Proc. Natl Acad. Sci. USA 104, 12761–12766 (2007).

  112. 112.

    Kniazeff, J. et al. An intracellular interaction network regulates conformational transitions in the dopamine transporter. J. Biol. Chem. 283, 17691–17701 (2008).

  113. 113.

    Yang, J.-W. et al. Dephosphorylation of human dopamine transporter at threonine 48 by protein phosphatase PP1/2A upregulates transport velocity. J. Biol. Chem. 294, 3419–3431 (2019).

  114. 114.

    Cooper, A., Woulfe, D. & Kilic, F. Post-translational modifications of serotonin transporter. Pharmacol. Res. 140, 7–13 (2019).

Download references

Acknowledgements

Supported by the US National Institutes of Health awards P41GM103712 and P30DA035778 (I.B.). The authors thank S. Zhang for generating Fig. 4d.

Author information

Correspondence to Ivet Bahar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Katarzyna Marcinkiewicz was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading