Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

CRISPR

Enzymatic anti-CRISPRs improve the bacteriophage arsenal

Bacteriophage-encoded anti-CRISPR (Acr) proteins were previously thought to inhibit CRISPR-mediated immunity by acting as physical barriers against the binding or cleavage of DNA. Two new studies report that recently discovered type V Acr proteins use enzymatic activities to shut down the Cas12a endonuclease, providing a multi-turnover ‘off switch’ for CRISPR-based immunity and technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Alternative mechanisms for disabling Cas effectors.
Fig. 2: AcrVA1 and AcrVA5 are enzymatic inhibitors of Cas12a.

References

  1. Marraffini, L. A. Nature 526, 55–61 (2015).

    Article  CAS  Google Scholar 

  2. Bondy-Denomy, J., Pawluk, A., Maxwell, K. L. & Davidson, A. R. Nature 493, 429–432 (2013).

    Article  CAS  Google Scholar 

  3. Borges, A. L., Davidson, A. R. & Bondy-Denomy, J. Annu. Rev. Virol. 4, 37–59 (2017).

    Article  CAS  Google Scholar 

  4. Stanley, S. Y. & Maxwell, K. L. Annu. Rev. Genet. 52, 445–464 (2018).

    Article  CAS  Google Scholar 

  5. Murugan, K., Babu, K., Sundaresan, R., Rajan, R. & Sashital, D. G. Mol. Cell 68, 15–25 (2017).

    Article  CAS  Google Scholar 

  6. Wright, A. V., Nuñez, J. K. & Doudna, J. A. Cell 164, 29–44 (2016).

    Article  CAS  Google Scholar 

  7. Watters, K. E., Fellmann, C., Bai, H. B., Ren, S. M. & Doudna, J. A. Science 362, 236–239 (2018).

    Article  CAS  Google Scholar 

  8. Marino, N. D. et al. Science 362, 240–242 (2018).

    Article  CAS  Google Scholar 

  9. Knott, G. J. et al. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-019-0208-z (2019).

    Article  PubMed  Google Scholar 

  10. Dong, L. et al. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-019-0206-1 (2019).

  11. Landsberger, M. et al. Cell 174, 908–916.e12 (2018).

    Article  CAS  Google Scholar 

  12. Borges, A. L. et al. Cell 174, 917–925.e10 (2018).

    Article  CAS  Google Scholar 

  13. Gleditzsch, D. et al. RNA Biol. https://doi.org/10.1080/15476286.2018.1504546 (2018).

  14. Yamano, T. et al. Cell 165, 949–962 (2016).

    Article  CAS  Google Scholar 

  15. Stella, S. et al. Cell 175, 1856–1871.e21 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipali G. Sashital.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh, S.K., Murugan, K. & Sashital, D.G. Enzymatic anti-CRISPRs improve the bacteriophage arsenal. Nat Struct Mol Biol 26, 250–251 (2019). https://doi.org/10.1038/s41594-019-0210-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-019-0210-5

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology