Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.


ERα condensates: chronic stimulation is hard to ignore

Last year, several studies reported that proteins form biomolecular condensates at gene enhancers. Nair et al. now show that these condensates undergo physical changes over time, which affects their nuclear localization and the transcriptional output of their target genes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Model depicting how enhancer condensates are formed and how they lead to the activation of transcription.


  1. Deroo, B. J. & Korach, K. S. J. Clin. Invest. 116, 561–570 (2006).

    Article  CAS  Google Scholar 

  2. Hua, H., Zhang, H., Kong, Q. & Jiang, Y. Exp. Hematol. Oncol. 7, 24 (2018).

    Article  Google Scholar 

  3. Nair, S. J. et al. Nat. Struct. Mol. Biol. (2019).

  4. Zabidi, M. A. & Stark, A. Trends Genet. 32, 801–814 (2016).

    Article  CAS  Google Scholar 

  5. Whyte, W. A. et al. Cell 153, 307–319 (2013).

    Article  CAS  Google Scholar 

  6. Boehning, M. et al. Nat. Struct. Mol. Biol. 25, 833–840 (2018).

    Article  CAS  Google Scholar 

  7. Sabari, B. R. et al. Science 361, eaar3958 (2018).

    Article  Google Scholar 

  8. Cho, W.-K. et al. Science 361, 412–415 (2018).

    Article  CAS  Google Scholar 

  9. Chong, S. et al. Science 361, eaar2555 (2018).

    Article  Google Scholar 

  10. Boija, A. et al. Cell 175, 1842–1855 (2018).

  11. Liu, Z. et al. Cell 159, 358–373 (2014).

    Article  CAS  Google Scholar 

  12. Yang, F. et al. Mol. Cell 66, 321–331 (2017).

  13. Maharana, S. et al. Science 360, 918–921 (2018).

    Article  CAS  Google Scholar 

  14. Wheeler, R. J. & Hyman, A. A. Science 373, 20170193 (2018).

    Google Scholar 

  15. Isoda, T. et al. Cell 171, 103–119 (2017).

  16. Cisse, I. I. et al. Science 341, 664–667 (2013).

    Article  CAS  Google Scholar 

  17. Cho, W. K. et al. eLife 5, e13617 (2016).

    Article  Google Scholar 

  18. Kroschwald, S., Maharana, S. & Simon, A. Matters 3, e201702000010 (2017).

    Google Scholar 

  19. Schmidt, H. B. & Görlich, D. eLife 4, e04251 (2015).

    Article  Google Scholar 

  20. Woodruff, J. B. et al. Cell 169, 1066–1077 (2017).

    Article  CAS  Google Scholar 

  21. Patel, A. et al. Cell 162, 1066–1077 (2015).

    Article  CAS  Google Scholar 

  22. Galganski, L., Urbanek, M. O. & Krzyzosiak, W. J. Nucleic Acids Res. 45, 10350–10368 (2017).

    Article  CAS  Google Scholar 

  23. Wan, G. et al. Nature 557, 679–683 (2018).

    Article  CAS  Google Scholar 

  24. Feric, M. et al. Cell 165, 1686–1697 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Simon Alberti.

Ethics declarations

Competing interests

S.A. is a scientific advisor of Dewpoint Therapeutics.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wittmann, S., Alberti, S. ERα condensates: chronic stimulation is hard to ignore. Nat Struct Mol Biol 26, 153–154 (2019).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing