Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.


Assembly en route

A growing body of evidence suggests that cotranslational folding occurs from bacteria to mammalian cells, in particular for multi-domain proteins. In the assembly of yeast proteasomes, the initial interaction of Rpt1 and Rpt2 subunits has been found to take place on the translating ribosomes, coordinated by elongation pausing and involving the formation of Not1-containing compartments.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multiple layers of regulatory mechanisms operate during cotranslational folding and assembly of protein complexes.

Similar content being viewed by others


  1. Sosnick, T. R. & Barrick, D. Curr. Opin. Struct. Biol. 21, 12–24 (2011).

    Article  CAS  Google Scholar 

  2. Kramer, G., Boehringer, D., Ban, N. & Bukau, B. Nat. Struct. Mol. Biol. 16, 589–597 (2009).

    Article  CAS  Google Scholar 

  3. Kramer, G., Shiber, A. & Bukau, B. Annu. Rev. Biochem. (2018).

  4. Balchin, D., Hayer-Hartl, M. & Hartl, F. U. Science 353, aac4354 (2016).

    Article  Google Scholar 

  5. Natan, E., Wells, J. N., Teichmann, S. A. & Marsh, J. A. Curr. Opin. Struct. Biol. 42, 90–97 (2017).

    Article  CAS  Google Scholar 

  6. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. & Weissman, J. S. Science 324, 218–223 (2009).

    Article  CAS  Google Scholar 

  7. Oh, E. et al. Cell 147, 1295–1308 (2011).

    Article  CAS  Google Scholar 

  8. Han, Y. et al. Proc. Natl Acad. Sci. USA 109, 12467–12472 (2012).

  9. Shieh, Y. W. et al. Science 350, 678–680 (2015).

    Article  CAS  Google Scholar 

  10. Shiber, A. et al. Nature 561, 268–272 (2018).

    Article  CAS  Google Scholar 

  11. Bard, J. A. M. et al. Annu. Rev. Biochem. 87, 697–724 (2018).

    Article  CAS  Google Scholar 

  12. Collins, G. A. & Goldberg, A. L. Cell 169, 792–806 (2017).

    Article  CAS  Google Scholar 

  13. Panasenko, O.O. et al. Nat. Struct. Mol. Biol. (2019).

  14. Doerfel, L. K. et al. Science 339, 85–88 (2013).

    Article  CAS  Google Scholar 

  15. Gutierrez, E. et al. Mol. Cell 51, 35–45 (2013).

    Article  CAS  Google Scholar 

  16. Zhang, G., Hubalewska, M. & Ignatova, Z. Nat. Struct. Mol. Biol. 16, 274–280 (2009).

    Article  CAS  Google Scholar 

  17. Inobe, T. & Genmei, R. PLoS One 10, e0134056 (2015).

    Article  Google Scholar 

  18. Panasenko, O. O. & Collart, M. A. Mol. Cell. Biol. 31, 1610–1623 (2011).

    Article  CAS  Google Scholar 

  19. Collart, M. A. Wiley Interdiscip. Rev. RNA 7, 438–454 (2016).

    Article  CAS  Google Scholar 

  20. Yamaguchi, T. et al. Sci. Signal. 11, eaan3638 (2018).

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Shu-Bing Qian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, XM., Qian, SB. Assembly en route. Nat Struct Mol Biol 26, 89–91 (2019).

Download citation

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing