Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nucleosome structure and dynamics are coming of age

Abstract

Since the first high-resolution structure of the nucleosome was reported in 1997, the available information on chromatin structure has increased very rapidly. Here, we review insights derived from cutting-edge biophysical and structural approaches applied to the study of nucleosome dynamics and nucleosome-binding factors, with a focus on the experimental advances driving the research. In addition, we highlight emerging challenges in nucleosome structural biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nucleosome structure.
Fig. 2: Dynamics of nucleosome unwrapping.
Fig. 3: Structures of chromatin-binding factor complexes.

Similar content being viewed by others

References

  1. Woodcock, C. L. F., Safer, J. P. & Stanchfield, J. E. Structural repeating units in chromatin. I. Evidence for their general occurrence. Exp. Cell Res. 97, 101–110 (1976).

    Article  CAS  PubMed  Google Scholar 

  2. Kornberg, R. D. Chromatin structure: a repeating unit of histones and DNA. Science 184, 868–871 (1974).

    Article  CAS  PubMed  Google Scholar 

  3. Richmond, T. J., Finch, J. T., Rushton, B., Rhodes, D. & Klug, A. Structure of the nucleosome core particle at 7 Å resolution. Nature 311, 532–537 (1984).

    Article  CAS  PubMed  Google Scholar 

  4. Arents, G., Burlingame, R. W., Wang, B. C., Love, W. E. & Moudrianakis, E. N. The nucleosomal core histone octamer at 3.1 Å resolution: a tripartite protein assembly and a left-handed superhelix. Proc. Natl Acad. Sci. USA 88, 10148–10152 (1991).

  5. Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997). First high-resolution structure of the nucleosome.

    Article  CAS  PubMed  Google Scholar 

  6. Iwasaki, W. et al. Contribution of histone N-terminal tails to the structure and stability of nucleosomes. FEBS Open Bio 3, 363–369 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li, G. & Widom, J. Nucleosomes facilitate their own invasion. Nat. Struct. Mol. Biol. 11, 763–769 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Poirier, M. G., Bussiek, M., Langowski, J. & Widom, J. Spontaneous access to DNA target sites in folded chromatin fibers. J. Mol. Biol. 379, 772–786 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Poirier, M. G., Oh, E., Tims, H. S. & Widom, J. Dynamics and function of compact nucleosome arrays. Nat. Struct. Mol. Biol. 16, 938–944 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, G., Levitus, M., Bustamante, C. & Widom, J. Rapid spontaneous accessibility of nucleosomal DNA. Nat. Struct. Mol. Biol. 12, 46–53 (2005). First determination of the rate constants of spontaneous nucleosome unwrapping and rewrapping.

    Article  CAS  PubMed  Google Scholar 

  11. Shimko, J. C., North, J. A., Bruns, A. N., Poirier, M. G. & Ottesen, J. J. Preparation of fully synthetic histone H3 reveals that acetyl-lysine 56 facilitates protein binding within nucleosomes. J. Mol. Biol. 408, 187–204 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. North, J. A. et al. Regulation of the nucleosome unwrapping rate controls DNA accessibility. Nucleic Acids Res. 40, 10215–10227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Simon, M. et al. Histone fold modifications control nucleosome unwrapping and disassembly. Proc. Natl Acad. Sci. USA 108, 12711–12716 (2011).

  14. Brehove, M. et al. Histone core phosphorylation regulates DNA accessibility. J. Biol. Chem. 290, 22612–22621 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bowman, G. D. & Poirier, M. G. Post-translational modifications of histones that influence nucleosome dynamics. Chem. Rev. 115, 2274–2295 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Nadal, S., Raj, R., Mohammed, S. & Davis, B. G. Synthetic post-translational modification of histones. Curr. Opin. Chem. Biol. 45, 35–47 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Dong, F., Hansen, J. C. & van Holde, K. E. DNA and protein determinants of nucleosome positioning on sea urchin 5S rRNA gene sequences in vitro. Proc. Natl Acad. Sci. USA 87, 5724–5728 (1990).

  18. Lowary, P. T. & Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19–42 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Tóth, K. et al. Histone- and DNA sequence-dependent stability of nucleosomes studied by single-pair FRET. Cytometry A 83, 839–846 (2013).

    Article  PubMed  CAS  Google Scholar 

  20. Chen, Y. et al. Revealing transient structures of nucleosomes as DNA unwinds. Nucleic Acids Res. 42, 8767–8776 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ngo, T. T. M., Zhang, Q., Zhou, R., Yodh, J. G. & Ha, T. Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility. Cell 160, 1135–1144 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, Y. et al. Asymmetric unwrapping of nucleosomal DNA propagates asymmetric opening and dissociation of the histone core. Proc. Natl Acad. Sci. USA 114, 334–339 (2017).

  23. Shlyakhtenko, L. S., Lushnikov, A. Y. & Lyubchenko, Y. L. Dynamics of nucleosomes revealed by time-lapse atomic force microscopy. Biochemistry 48, 7842–7848 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Bilokapic, S., Strauss, M. & Halic, M. Histone octamer rearranges to adapt to DNA unwrapping. Nat. Struct. Mol. Biol. 25, 101–108 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Engeholm, M. et al. Nucleosomes can invade DNA territories occupied by their neighbors. Nat. Struct. Mol. Biol. 16, 151–158 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kato, D. et al. Crystal structure of the overlapping dinucleosome composed of hexasome and octasome. Science 356, 205–208 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Henikoff, J. G., Belsky, J. A., Krassovsky, K., MacAlpine, D. M. & Henikoff, S. Epigenome characterization at single base-pair resolution. Proc. Natl Acad. Sci. USA 108, 18318–18323 (2011).

  28. Kato, H. et al. Architecture of the high mobility group nucleosomal protein 2-nucleosome complex as revealed by methyl-based NMR. Proc. Natl Acad. Sci. USA 108, 12283–12288 (2011).

  29. Sinha, K. K., Gross, J. D. & Narlikar, G. J. Distortion of histone octamer core promotes nucleosome mobilization by a chromatin remodeler. Science 355, eaaa3761 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Guo, L. Y. et al. Centromeres are maintained by fastening CENP-A to DNA and directing an arginine anchor-dependent nucleosome transition. Nat. Commun. 8, 15775 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kitevski-LeBlanc, J. L. et al. Investigating the dynamics of destabilized nucleosomes using methyl-TROSY NMR. J. Am. Chem. Soc. 140, 4774–4777 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Zhou, B.-R. et al. Histone H4 K16Q mutation, an acetylation mimic, causes structural disorder of its N-terminal basic patch in the nucleosome. J. Mol. Biol. 421, 30–37 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gao, M. et al. Histone H3 and H4 N-terminal tails in nucleosome arrays at cellular concentrations probed by magic angle spinning NMR spectroscopy. J. Am. Chem. Soc. 135, 15278–15281 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Karch, K. R. et al. Hydrogen-deuterium exchange coupled to top- and middle-down mass spectrometry reveals histone tail dynamics before and after nucleosome assembly. Structure. https://doi.org/10.1016/j.str.2018.08.006 (2018).

  35. Edayathumangalam, R. S., Weyermann, P., Gottesfeld, J. M., Dervan, P. B. & Luger, K. Molecular recognition of the nucleosomal “supergroove”. Proc. Natl Acad. Sci. USA 101, 6864–6869 (2004).

  36. Edayathumangalam, R. S., Weyermann, P., Dervan, P. B., Gottesfeld, J. M. & Luger, K. Nucleosomes in solution exist as a mixture of twist-defect states. J. Mol. Biol. 345, 103–114 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Pryciak, P. M. & Varmus, H. E. Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection. Cell 69, 769–780 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Maskell, D. P. et al. Structural basis for retroviral integration into nucleosomes. Nature 523, 366–369 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zaret, K. S., Lerner, J. & Iwafuchi-Doi, M. Chromatin scanning by dynamic binding of pioneer factors. Mol. Cell 62, 665–667 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Takizawa, Y. et al. Cryo-EM structure of the nucleosome containing the ALB1 enhancer DNA sequence. Open Biol. 8, 170255 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Tremethick, D. J. Higher-order structures of chromatin: the elusive 30 nm fiber. Cell 128, 651–654 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Bednar, J. et al. Structure and dynamics of a 197 bp nucleosome in complex with linker histone H1. Mol. Cell 66, 384–397.e8 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Song, F. et al. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science 344, 376–380 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Barbera, A. J. et al. The nucleosomal surface as a docking station for Kaposi’s sarcoma herpesvirus LANA. Science 311, 856–861 (2006). First crystal structure of a chromatin-binding factor in complex with the nucleosome.

    Article  CAS  PubMed  Google Scholar 

  45. Fang, Q. et al. Human cytomegalovirus IE1 protein alters the higher-order chromatin structure by targeting the acidic patch of the nucleosome. eLife 5, e11911 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lesbats, P. et al. Structural basis for spumavirus GAG tethering to chromatin. Proc. Natl Acad. Sci. USA 114, 5509–5514 (2017).

  47. Kalashnikova, A. A., Porter-Goff, M. E., Muthurajan, U. M., Luger, K. & Hansen, J. C. The role of the nucleosome acidic patch in modulating higher order chromatin structure. J. R. Soc. Interface 10, 20121022 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Gordon, F., Luger, K. & Hansen, J. C. The core histone N-terminal tail domains function independently and additively during salt-dependent oligomerization of nucleosomal arrays. J. Biol. Chem. 280, 33701–33706 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Chodaparambil, J. V. et al. A charged and contoured surface on the nucleosome regulates chromatin compaction. Nat. Struct. Mol. Biol. 14, 1105–1107 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Makde, R. D., England, J. R., Yennawar, H. P. & Tan, S. Structure of RCC1 chromatin factor bound to the nucleosome core particle. Nature 467, 562–566 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Armache, K.-J., Garlick, J. D., Canzio, D., Narlikar, G. J. & Kingston, R. E. Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 Å resolution. Science 334, 977–982 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Morgan, M. T. et al. Structural basis for histone H2B deubiquitination by the SAGA DUB module. Science 351, 725–728 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fradet-Turcotte, A. et al. 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. Nature 499, 50–54 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wilson, M. D. et al. The structural basis of modified nucleosome recognition by 53BP1. Nature 536, 100–103 (2016). First near-atomic-resolution structure of a chromatin-binding factor in complex with a nucleosome determined by single-particle cryo-EM.

    Article  CAS  PubMed  Google Scholar 

  55. McGinty, R. K., Henrici, R. C. & Tan, S. Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome. Nature 514, 591–596 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Poepsel, S., Kasinath, V. & Nogales, E. Cryo-EM structures of PRC2 simultaneously engaged with two functionally distinct nucleosomes. Nat. Struct. Mol. Biol. 25, 154–162 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kitevski-LeBlanc, J. et al. The RNF168 paralog RNF169 defines a new class of ubiquitylated histone reader involved in the response to DNA damage. eLife 6, e23872 (2017). Complementary use of NMR and cryo-EM.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Stellfox, M. E., Bailey, A. O. & Foltz, D. R. Putting CENP-A in its place. Cell. Mol. Life Sci. 70, 387–406 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Kato, H. et al. A conserved mechanism for centromeric nucleosome recognition by centromere protein CENP-C. Science 340, 1110–1113 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pentakota, S. et al. Decoding the centromeric nucleosome through CENP-N. eLife 6, e33442 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chittori, S. et al. Structural mechanisms of centromeric nucleosome recognition by the kinetochore protein CENP-N. Science 359, 339–343 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Tian, T. et al. Molecular basis for CENP-N recognition of CENP-A nucleosome on the human kinetochore. Cell Res. 28, 374–378 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Clapier, C. R. & Cairns, B. R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Liu, X., Li, M., Xia, X., Li, X. & Chen, Z. Mechanism of chromatin remodelling revealed by the Snf2-nucleosome structure. Nature 544, 440–445 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Farnung, L., Vos, S. M., Wigge, C. & Cramer, P. Nucleosome–Chd1 structure and implications for chromatin remodelling. Nature 550, 539–542 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sundaramoorthy, R. et al. Structural reorganization of the chromatin remodeling enzyme Chd1 upon engagement with nucleosomes. eLife 6, e22510 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Eustermann, S. et al. Structural basis for ATP-dependent chromatin remodelling by the INO80 complex. Nature 556, 386–390 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ayala, R. et al. Structure and regulation of the human INO80–nucleosome complex. Nature 556, 391–395 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Willhoft, O. et al. Structure and dynamics of the yeast SWR1-nucleosome complex. Science 362, eaat7716 (2018).

    Article  PubMed  CAS  Google Scholar 

  70. Kujirai, T. et al. Structural basis of the nucleosome transition during RNA polymerase II passage. Science 362, 595–598 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Farnung, L., Vos, S.M. & Cramer, P. Structure of transcribing RNA polymerase II-nucleosome complex. Preprint at https://www.biorxiv.org/content/early/2018/10/07/437574 (2018).

  72. Tokuda, J. M. et al. The ATPase motor of the Chd1 chromatin remodeler stimulates DNA unwrapping from the nucleosome. Nucleic Acids Res. 46, 4978–4990 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schwarz, M. et al. Single-molecule nucleosome remodeling by INO80 and effects of histone tails. FEBS Lett. 592, 318–331 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Gamarra, N., Johnson, S. L., Trnka, M. J., Burlingame, A. L. & Narlikar, G. J. The nucleosomal acidic patch relieves auto-inhibition by the ISWI remodeler SNF2h. eLife 7, e35322 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ou, H. D. et al. ChromEMT: visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science 357, eaag0025 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Dekker, J. et al. The 4D nucleome project. Nature 549, 219–226 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Eltsov, M. et al. Nucleosome conformational variability in solution and in interphase nuclei evidenced by cryo-electron microscopy of vitreous sections. Nucleic Acids Res. 46, 9189–9200 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Davey, C. A., Sargent, D. F., Luger, K., Maeder, A. W. & Richmond, T. J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J. Mol. Biol. 319, 1097–1113 (2002).

  79. Schalch, T., Duda, S., Sargent, D. F. & Richmond, T. J. X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436, 138–141 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Receveur-Brechot, V. & Durand, D. How random are intrinsically disordered proteins? A small angle scattering perspective. Curr. Protein Pept. Sci. 13, 55–75 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bertin, A., Durand, D., Renouard, M., Livolant, F. & Mangenot, S. H2A and H2B tails are essential to properly reconstitute nucleosome core particles. Eur. Biophys. J. 36, 1083–1094 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Yang, C., van der Woerd, M. J., Muthurajan, U. M., Hansen, J. C. & Luger, K. Biophysical analysis and small-angle X-ray scattering-derived structures of MeCP2-nucleosome complexes. Nucleic Acids Res. 39, 4122–4135 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Arimura, Y., Tachiwana, H., Oda, T., Sato, M. & Kurumizaka, H. Structural analysis of the hexasome, lacking one histone H2A/H2B dimer from the conventional nucleosome. Biochemistry 51, 3302–3309 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Sugiyama, M. et al. Solution structure of variant H2A.Z.1 nucleosome investigated by small-angle X-ray and neutron scatterings. Biochem. Biophys. Rep. 4, 28–32 (2015).

    PubMed  PubMed Central  Google Scholar 

  85. Tokuda, J. M., Pabit, S. A. & Pollack, L. Protein-DNA and ion-DNA interactions revealed through contrast variation SAXS. Biophys. Rev. 8, 139–149 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tóth, K., Brun, N. & Langowski, J. Trajectory of nucleosomal linker DNA studied by fluorescence resonance energy transfer. Biochemistry 40, 6921–6928 (2001).

    Article  PubMed  CAS  Google Scholar 

  87. Park, Y.-J., Dyer, P. N., Tremethick, D. J. & Luger, K. A new fluorescence resonance energy transfer approach demonstrates that the histone variant H2AZ stabilizes the histone octamer within the nucleosome. J. Biol. Chem. 279, 24274–24282 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Buning, R. & van Noort, J. Single-pair FRET experiments on nucleosome conformational dynamics. Biochimie 92, 1729–1740 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Zhang, H. & van Ingen, H. Isotope-labeling strategies for solution NMR studies of macromolecular assemblies. Curr. Opin. Struct. Biol. 38, 75–82 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Liokatis, S. Reconstitution of nucleosomes with differentially isotope-labeled sister histones. J. Vis. Exp. https://doi.org/10.3791/55349 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hansen, D. F., Feng, H., Zhou, Z., Bai, Y. & Kay, L. E. Selective characterization of microsecond motions in proteins by NMR relaxation. J. Am. Chem. Soc. 131, 16257–16265 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kay, L. E. New views of functionally dynamic proteins by solution NMR spectroscopy. J. Mol. Biol. 428, 323–331 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Xiang, S. et al. Site-specific studies of nucleosome interactions by solid-state NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 57, 4571–4575 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shi, X. et al. Structure and dynamics in the nucleosome revealed by solid-state NMR. Angew. Chem. Int. Ed. Engl. 57, 9734–9738 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Oganesyan, I., Lento, C. & Wilson, D. J. Contemporary hydrogen deuterium exchange mass spectrometry. Methods 144, 27–42 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Makowski, M. M. et al. Global profiling of protein-DNA and protein-nucleosome binding affinities using quantitative mass spectrometry. Nat. Commun. 9, 1653 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Falk, S. J. et al. CENP-C directs a structural transition of CENP-A nucleosomes mainly through sliding of DNA gyres. Nat. Struct. Mol. Biol. 23, 204–208 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Muschielok, A. et al. A nano-positioning system for macromolecular structural analysis. Nat. Methods 5, 965–971 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Mihardja, S., Spakowitz, A. J., Zhang, Y. & Bustamante, C. Effect of force on mononucleosomal dynamics. Proc. Natl Acad. Sci. USA 103, 15871–15876 (2006).

  100. Chien, F.-T. & van der Heijden, T. Characterization of nucleosome unwrapping within chromatin fibers using magnetic tweezers. Biophys. J. 107, 373–383 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Vlijm, R., Kim, S. H., De Zwart, P. L., Dalal, Y. & Dekker, C. The supercoiling state of DNA determines the handedness of both H3 and CENP-A nucleosomes. Nanoscale 9, 1862–1870 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hall, M. A. et al. High-resolution dynamic mapping of histone-DNA interactions in a nucleosome. Nat. Struct. Mol. Biol. 16, 124–129 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Filenko, N. A., Palets, D. B. & Lyubchenko, Y. L. Structure and dynamics of dinucleosomes assessed by atomic force microscopy. J. Amino Acids 2012, 650840 (2012).

    Article  PubMed  CAS  Google Scholar 

  104. White, A. E., Hieb, A. R. & Luger, K. A quantitative investigation of linker histone interactions with nucleosomes and chromatin. Sci. Rep. 6, 19122 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Stumme-Diers, M. P., Banerjee, S., Hashemi, M., Sun, Z. & Lyubchenko, Y. L. Nanoscale dynamics of centromere nucleosomes and the critical roles of CENP-A. Nucleic Acids Res. 46, 94–103 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Miyagi, A., Ando, T. & Lyubchenko, Y. L. Dynamics of nucleosomes assessed with time-lapse high-speed atomic force microscopy. Biochemistry 50, 7901–7908 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Katan, A. J., Vlijm, R., Lusser, A. & Dekker, C. Dynamics of nucleosomal structures measured by high-speed atomic force microscopy. Small 11, 976–984 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Ordu, O., Lusser, A. & Dekker, N. H. Recent insights from in vitro single-molecule studies into nucleosome structure and dynamics. Biophys. Rev. 8 (Suppl. 1), 33–49 (2016).

  109. Oudet, P., Gross-Bellard, M. & Chambon, P. Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell 4, 281–300 (1975).

    Article  CAS  PubMed  Google Scholar 

  110. Frado, L.-L. Y., Annunziato, A. T. & Woodcock, C. L. F. Structural repeating units in chromatin. III. A comparison of chromatin subunits from vertebrate, cilliate and angiosperm species. Biochim. Biophys. Acta 475, 514–520 (1977).

    Article  CAS  PubMed  Google Scholar 

  111. Bai, X. C., McMullan, G. & Scheres, S. H. W. How cryo-EM is revolutionizing structural biology. Trends Biochem. Sci. 40, 49–57 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Chua, E. Y. D. et al. 3.9 Å structure of the nucleosome core particle determined by phase-plate cryo-EM. Nucleic Acids Res. 44, 8013–8019 (2016). First high-resolution (better than 4.0-Å resolution) single-particle cryo-EM map of a nucleosome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wilson, M. D. & Costa, A. Cryo-electron microscopy of chromatin biology. Acta Crystallogr. D Struct. Biol. 73, 541–548 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank our colleagues J. W. Markert and U. M. Muthurajan for critical reading of this Review. Research in the laboratory of K.L. is supported by the Howard Hughes Medical Institute and by the NIH (CA218255).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karolin Luger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, K., Gaullier, G. & Luger, K. Nucleosome structure and dynamics are coming of age. Nat Struct Mol Biol 26, 3–13 (2019). https://doi.org/10.1038/s41594-018-0166-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-018-0166-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing