Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

RNA motifs and combinatorial prediction of interactions, stability and localization of noncoding RNAs

Abstract

Although the number of documented noncoding RNAs (ncRNAs) is rapidly increasing, knowledge of their molecular function is lagging behind. The identification of specific RNA motifs that mediate transcript stability, interactions and localization may aid in the prediction of these features in new transcripts and may have potential implications for ncRNA function. Here, we review RNA motifs, focusing on four recent studies identifying nuclear-retention motifs, and discuss the limited specificity of short-RNA motifs and the resulting challenge for effective functional prediction. Future approaches may succeed by integrating combinatorial and cooperative effects of additional partially sequence-based properties.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Screening for RNA localization motifs.
Fig. 2: Combinatorial determinants of RNA-motif function.

References

  1. 1.

    Ulitsky, I. & Bartel, D. P. lincRNAs: genomics, evolution, and mechanisms. Cell 154, 26–46 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Gutschner, T. & Diederichs, S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 9, 703–719 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Zhang, J., Lau, M. W. & Ferré-D’Amaré, A. R. Ribozymes and riboswitches: modulation of RNA function by small molecules. Biochemistry 49, 9123–9131 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Narberhaus, F., Waldminghaus, T. & Chowdhury, S. RNA thermometers. FEMS Microbiol. Rev. 30, 3–16 (2006).

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Salehi-Ashtiani, K., Lupták, A., Litovchick, A. & Szostak, J. W. A genomewide search for ribozymes reveals an HDV-like sequence in the human CPEB3 gene. Science 313, 1788–1792 (2006).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Teixeira, A. et al. Autocatalytic RNA cleavage in the human β-globin pre-mRNA promotes transcription termination. Nature 432, 526–530 (2004).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Ray, D. et al. A compendium of RNA-binding motifs for decoding gene regulation. Nature 499, 172–177 (2013). This study constitutes a systematic analysis of RNA-binding proteins with 205 unique genes in 24 different eukaryotes. The identified motifs display evolutionary conservation and binding specificity, and correlate with in vivo data.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Dreyfus, M. & Régnier, P. The poly(A) tail of mRNAs: bodyguard in eukaryotes, scavenger in bacteria. Cell 111, 611–613 (2002).

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Clerici, M., Faini, M., Muckenfuss, L. M., Aebersold, R. & Jinek, M. Structural basis of AAUAAA polyadenylation signal recognition by the human CPSF complex. Nat. Struct. Mol. Biol. 25, 135–138 (2018).

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Elkon, R., Ugalde, A. P. & Agami, R. Alternative cleavage and polyadenylation: extent, regulation and function. Nat. Rev. Genet. 14, 496–506 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    Marzluff, W. F. & Koreski, K. P. Birth and death of histone mRNAs. Trends Genet. 33, 745–759 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Stoecklin, G., Stoeckle, P., Lu, M., Muehlemann, O. & Moroni, C. Cellular mutants define a common mRNA degradation pathway targeting cytokine AU-rich elements. RNA 7, 1578–1588 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Roy, N., Laflamme, G. & Raymond, V. 5′ untranslated sequences modulate rapid mRNA degradation mediated by 3′ AU-rich element in v-/c-fos recombinants. Nucleic Acids Res. 20, 5753–5762 (1992).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Espel, E. The role of the AU-rich elements of mRNAs in controlling translation. Semin. Cell Dev. Biol. 16, 59–67 (2005).

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Leppek, K. et al. Roquin promotes constitutive mRNA decay via a conserved class of stem-loop recognition motifs. Cell 153, 869–881 (2013).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197 (2004).

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Yang, L., Duff, M. O., Graveley, B. R., Carmichael, G. G. & Chen, L. L. Genomewide characterization of non-polyadenylated RNAs. Genome Biol. 12, R16 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Beaulieu, Y. B., Kleinman, C. L., Landry-Voyer, A. M., Majewski, J. & Bachand, F. Polyadenylation-dependent control of long noncoding RNA expression by the poly(A)-binding protein nuclear 1. PLoS Genet. 8, e1003078 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Booy, E. P. et al. RNA helicase associated with AU-rich element (RHAU/DHX36) interacts with the 3′-tail of the long non-coding RNA BC200 (BCYRN1). J. Biol. Chem. 291, 5355–5372 (2016).

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Yoon, J. H., Abdelmohsen, K. & Gorospe, M. Functional interactions among microRNAs and long noncoding RNAs. Semin. Cell Dev. Biol. 34, 9–14 (2014).

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Ji, P. et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22, 8031–8041 (2003).

    Article  CAS  Google Scholar 

  22. 22.

    Gutschner, T. et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 73, 1180–1189 (2013).

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Hutchinson, J. N. et al. A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics 8, 39 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Chen, L. L. & Carmichael, G. G. Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol. Cell 35, 467–478 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Clemson, C. M. et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol. Cell 33, 717–726 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Wilusz, J. E. et al. A triple helix stabilizes the 3′ ends of long noncoding RNAs that lack poly(A) tails. Genes Dev. 26, 2392–2407 (2012). This study shows that despite the lack of poly(A) tails, the 3′ ends of lncRNAs such as MALAT1 and MENβ are protected from cleavage by 3′–5′ exonucleases through a conserved triple-helical structure.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Brown, J. A. et al. Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Nat. Struct. Mol. Biol. 21, 633–640 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Yin, Q. F. et al. Long noncoding RNAs with snoRNA ends. Mol. Cell 48, 219–230 (2012).

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Arora, R. et al. RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nat. Commun. 5, 5220 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Graf, M. et al. Telomere length determines TERRA and R-loop regulation through the cell cycle. Cell 170, 72–85.e14 (2017).

    CAS  Article  Google Scholar 

  33. 33.

    Postepska-Igielska, A. et al. LncRNA Khps1 regulates expression of the proto-oncogene SPHK1 via triplex-mediated changes in chromatin structure. Mol. Cell 60, 626–636 (2015). This study reports the activation of SPHK1 by the antisense regulatory lncRNA KHPS1, which directly associates with the promoter via a DNA–RNA triplex structure to which chromatin-modifying enzymes are recruited and promote SPHK1 transcription.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Clemson, C. M., McNeil, J. A., Willard, H. F. & Lawrence, J. B. XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J. Cell Biol. 132, 259–275 (1996).

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Poliseno, L. et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465, 1033–1038 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Bitetti, A. et al. MicroRNA degradation by a conserved target RNA regulates animal behavior. Nat. Struct. Mol. Biol. 25, 244–251 (2018).

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Kleaveland, B., Shi, C. Y., Stefano, J. & Bartel, D. P. A network of noncoding regulatory RNAs acts in the mammalian brain. Cell 174, 350–362.e17 (2018).

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Schoeftner, S. et al. Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing. EMBO J. 25, 3110–3122 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Tripathi, V. et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell 39, 925–938 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Klingenberg, M. et al. The lncRNA CASC9 and RNA binding protein HNRNPL form a complex and co-regulate genes linked to AKT signaling. Hepatology 68, 1817–1832 (2018).

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Hämmerle, M. et al. Posttranscriptional destabilization of the liver-specific long noncoding RNA HULC by the IGF2 mRNA-binding protein 1 (IGF2BP1). Hepatology 58, 1703–1712 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Roth, A. & Diederichs, S. Molecular biology: Rap and chirp about X inactivation. Nature 521, 170–171 (2015).

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Davidovich, C., Zheng, L., Goodrich, K. J. & Cech, T. R. Promiscuous RNA binding by Polycomb repressive complex 2. Nat. Struct. Mol. Biol. 20, 1250–1257 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Lerner, M. R. & Steitz, J. A. Antibodies to small nuclear RNAs complexed with proteins are produced by patients with systemic lupus erythematosus. Proc. Natl. Acad. Sci. USA 76, 5495–5499 (1979).

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Ule, J. et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 302, 1212–1215 (2003).

    CAS  Article  Google Scholar 

  46. 46.

    Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010). This study presents a cell-based cross-linking method called PAR–CLIP to map sites for RNA-binding proteins transcriptome wide. Binding sites for PUM2, QKI, IGF2BP1–3, AGO/EIF2C1–4 and TNRC6A–C were determined.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Li, X. et al. GRID-seq reveals the global RNA-chromatin interactome. Nat. Biotechnol. 35, 940–950 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Lu, Z. et al. RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165, 1267–1279 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Aw, J. G. et al. In vivo mapping of eukaryotic RNA interactomes reveals principles of higher-order organization and regulation. Mol. Cell 62, 603–617 (2016).

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Nguyen, T. C. et al. Mapping RNA–RNA interactome and RNA structure in vivo by MARIO. Nat. Commun. 7, 12023 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Sharma, E., Sterne-Weiler, T., O’Hanlon, D. & Blencowe, B. J. Global mapping of human RNA-RNA interactions. Mol. Cell 62, 618–626 (2016).

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Chen, L. L. Linking long noncoding RNA localization and function. Trends Biochem. Sci. 41, 761–772 (2016).

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Braidotti, G. et al. The Air noncoding RNA: an imprinted cis-silencing transcript. Cold Spring Harb. Symp. Quant. Biol. 69, 55–66 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Holdt, L. M. et al. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet. 9, e1003588 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Pintacuda, G. et al. hnRNPK recruits PCGF3/5–PRC1 to the Xist RNA B-repeat to establish polycomb-mediated chromosomal silencing. Mol Cell 68, 955–969.e10 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Yang, L. et al. ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell 147, 773–788 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Zhao, J., Sun, B. K., Erwin, J. A., Song, J. J. & Lee, J. T. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750–756 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Tsai, M. C. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Marín-Béjar, O. et al. Pint lincRNA connects the p53 pathway with epigenetic silencing by the Polycomb repressive complex 2. Genome Biol. 14, R104 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Gonzalez, I. et al. A lncRNA regulates alternative splicing via establishment of a splicing-specific chromatin signature. Nat. Struct. Mol. Biol. 22, 370–376 (2015).

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Sasaki, Y. T., Ideue, T., Sano, M., Mituyama, T. & Hirose, T. MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc. Natl Acad. Sci. USA 106, 2525–2530 (2009).

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Mao, Y. S., Sunwoo, H., Zhang, B. & Spector, D. L. Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nat. Cell Biol. 13, 95–101 (2011). By developing a live-cell imaging system for detecting transcription and visualizing an RNA transcript, this study shows that the transcription of the lncRNA MENε/β drives the de novo assembly of paraspeckles by recruiting paraspeckle proteins.

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Mas-Ponte, D. et al. LncATLAS database for subcellular localization of long noncoding RNAs. RNA 23, 1080–1087 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Soares, R. J. et al. Evaluation of fluorescence in situ hybridization techniques to study long non-coding RNA expression in cultured cells. Nucleic Acids Res. 46, e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. 65.

    Martin, K. C. & Ephrussi, A. mRNA localization: gene expression in the spatial dimension. Cell 136, 719–730 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Giulietti, M., Milantoni, S. A., Armeni, T., Principato, G. & Piva, F. ExportAid: database of RNA elements regulating nuclear RNA export in mammals. Bioinformatics 31, 246–251 (2015).

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Borensztein, M. et al. Xist-dependent imprinted X inactivation and the early developmental consequences of its failure. Nat. Struct. Mol. Biol. 24, 226–233 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Lee, J. T. & Jaenisch, R. Long-range cis effects of ectopic X-inactivation centres on a mouse autosome. Nature 386, 275–279 (1997).

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Cohen, H. R. & Panning, B. XIST RNA exhibits nuclear retention and exhibits reduced association with the export factor TAP/NXF1. Chromosoma 116, 373–383 (2007).

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Prasanth, K. V. et al. Regulating gene expression through RNA nuclear retention. Cell 123, 249–263 (2005).

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Chen, L. L., DeCerbo, J. N. & Carmichael, G. G. Alu element-mediated gene silencing. EMBO J. 27, 1694–1705 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Hacisuleyman, E., Shukla, C. J., Weiner, C. L. & Rinn, J. L. Function and evolution of local repeats in the Firre locus. Nat. Commun. 7, 11021 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Miyagawa, R. et al. Identification of cis- and trans-acting factors involved in the localization of MALAT-1 noncoding RNA to nuclear speckles. RNA 18, 738–751 (2012). This study identified that large fragments of regions E and M of MALAT1 are required for the localization of MALAT1 to nuclear speckles.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Zhang, B. et al. A novel RNA motif mediates the strict nuclear localization of a long noncoding RNA. Mol. Cell. Biol. 34, 2318–2329 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Hwang, H. W., Wentzel, E. A. & Mendell, J. T. A hexanucleotide element directs microRNA nuclear import. Science 315, 97–100 (2007).

    CAS  Article  PubMed  Google Scholar 

  76. 76.

    Lange, T. S., Borovjagin, A., Maxwell, E. S. & Gerbi, S. A. Conserved boxes C and D are essential nucleolar localization elements of U14 and U8 snoRNAs. EMBO J. 17, 3176–3187 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Lubelsky, Y. & Ulitsky, I. Sequences enriched in Alu repeats drive nuclear localization of long RNAs in human cells. Nature 555, 107–111 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Shukla, C. J. et al. High-throughput identification of RNA nuclear enrichment sequences. EMBO J. 37, e98452 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Yin, Y. et al. U1 snRNP reglates chromatin retention of noncoding RNAs. Preprint at https://www.biorxiv.org/content/early/2018/04/29/310433 (2018).

  80. 80.

    Carlevaro-Fita, J., Polidori, T., Das, M., Navarro, C. & Johnson, R. Ancient exapted transposable elements drive nuclear localisation of lncRNAs. Preprint at https://www.biorxiv.org/content/early/2017/10/23/189753 (2017).

  81. 81.

    Brown, C. J. et al. The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71, 527–542 (1992).

    CAS  Article  PubMed  Google Scholar 

  82. 82.

    Sunwoo, H., Colognori, D., Froberg, J. E., Jeon, Y. & Lee, J. T. Repeat E anchors Xist RNA to the inactive X chromosomal compartment through CDKN1A-interacting protein (CIZ1). Proc. Natl Acad. Sci. USA 114, 10654–10659 (2017).

    CAS  Article  PubMed  Google Scholar 

  83. 83.

    Ridings-Figueroa, R. et al. The nuclear matrix protein CIZ1 facilitates localization of Xist RNA to the inactive X-chromosome territory. Genes Dev. 31, 876–888 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Johnson, R. & Guigó, R. The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. RNA 20, 959–976 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Guttman, M. & Rinn, J. L. Modular regulatory principles of large non-coding RNAs. Nature 482, 339–346 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Feschotte, C. Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet. 9, 397–405 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Carrieri, C. et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491, 454–457 (2012).

    CAS  Article  PubMed  Google Scholar 

  88. 88.

    Chillón, I. & Pyle, A. M. Inverted repeat Alu elements in the human lincRNA-p21 adopt a conserved secondary structure that regulates RNA function. Nucleic Acids Res. 44, 9462–9471 (2016). This study identified an inverted Alu repeat in the exonic sequence of the p53-regulated lncRNA hLincRNA-p21 relevant for its nuclear localization.

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Elisaphenko, E. A. et al. A dual origin of the Xist gene from a protein-coding gene and a set of transposable elements. PLoS One 3, e2521 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Paz, I., Kosti, I., Ares, M. Jr., Cline, M. & Mandel-Gutfreund, Y. RBPmap: a web server for mapping binding sites of RNA-binding proteins. Nucleic Acids Res. 42, W361–W367 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Allis, C. D. & Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17, 487–500 (2016).

    CAS  Article  PubMed  Google Scholar 

  92. 92.

    Rando, O. J. Combinatorial complexity in chromatin structure and function: revisiting the histone code. Curr. Opin. Genet. Dev. 22, 148–155 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Slattery, M. et al. Absence of a simple code: how transcription factors read the genome. Trends Biochem. Sci. 39, 381–399 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Chang, T. H. et al. An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs. BMC Bioinformatics 14(Suppl. 2), S4 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Alam, T. et al. FARNA: knowledgebase of inferred functions of non-coding RNA transcripts. Nucleic Acids Res. 45, 2838–2848 (2017).

    CAS  PubMed  Google Scholar 

  96. 96.

    Li, J. H., Liu, S., Zhou, H., Qu, L. H. & Yang, J. H. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42, D92–D97 (2014).

    CAS  Article  PubMed  Google Scholar 

  97. 97.

    Cao, H., Wahlestedt, C. & Kapranov, P. Strategies to annotate and characterize long noncoding RNAs: advantages and pitfalls. Trends Genet. 34, 704–721 (2018).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

S.D. is supported by the Deutsche Forschungsgemeinschaft (German Research Foundation), Di1421/7-1.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sven Diederichs.

Ethics declarations

Competing interests

Unrelated to this work, S.D. is a co-owner of siTOOLs Biotech GmbH, Martinsried, Germany.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gandhi, M., Caudron-Herger, M. & Diederichs, S. RNA motifs and combinatorial prediction of interactions, stability and localization of noncoding RNAs. Nat Struct Mol Biol 25, 1070–1076 (2018). https://doi.org/10.1038/s41594-018-0155-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing