Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

RBR ligase–mediated ubiquitin transfer: a tale with many twists and turns

Abstract

RBR ligases are an enigmatic class of E3 ubiquitin ligases that combine properties of RING and HECT-type E3s and undergo multilevel regulation through autoinhibition, post-translational modifications, multimerization and interaction with binding partners. Here, we summarize recent progress in RBR structures and function, which has uncovered commonalities in the mechanisms by which different family members transfer ubiquitin through a multistep process. However, these studies have also highlighted clear differences in the activity of different family members, suggesting that each RBR ligase has evolved specific properties to fit the biological process it regulates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The catalytic cycle of RBR ligases.
Fig. 2: Domain arrangement during autoinhibition and in the active state of RBRs.
Fig. 3: Multiple Ub and Ubl-binding sites determine the activity of RBRs.

Similar content being viewed by others

References

  1. Berndsen, C. E. & Wolberger, C. New insights into ubiquitin E3 ligase mechanism. Nat. Struct. Mol. Biol. 21, 301–307 (2014).

    Article  PubMed  CAS  Google Scholar 

  2. Spratt, D. E., Walden, H. & Shaw, G. S. RBR E3 ubiquitin ligases: new structures, new insights, new questions. Biochem. J. 458, 421–437 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Marín, I., Lucas, J. I., Gradilla, A. C. & Ferrús, A. Parkin and relatives: the RBR family of ubiquitin ligases. Physiol. Genomics 17, 253–263 (2004).

    Article  PubMed  CAS  Google Scholar 

  4. Wenzel, D. M., Lissounov, A., Brzovic, P. S. & Klevit, R. E. UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature 474, 105–108 (2011). This study was the first to find that the RBR ligase family operates through a catalytic cysteine. This pioneering study distinguished the RBRs as a class of their own and provided the basis for understanding RBR regulation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Chaugule, V. K. et al. Autoregulation of Parkin activity through its ubiquitin-like domain. EMBO J. 30, 2853–2867 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Smit, J. J. et al. The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension. EMBO J. 31, 3833–3844 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Stieglitz, B., Morris-Davies, A. C., Koliopoulos, M. G., Christodoulou, E. & Rittinger, K. LUBAC synthesizes linear ubiquitin chains via a thioester intermediate. EMBO Rep. 13, 840–846 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Duda, D. M. et al. Structure of HHARI, a RING-IBR-RING ubiquitin ligase: autoinhibition of an Ariadne-family E3 and insights into ligation mechanism. Structure 21, 1030–1041 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ho, S. R., Mahanic, C. S., Lee, Y. J. & Lin, W. C. RNF144A, an E3 ubiquitin ligase for DNA-PKcs, promotes apoptosis during DNA damage. Proc. Natl Acad. Sci. USA 111, E2646–E2655 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Trempe, J. F. et al. Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 340, 1451–1455 (2013).

    Article  PubMed  CAS  Google Scholar 

  11. Dove, K. K. et al. Structural studies of HHARI/UbcH7 approximately Ub reveal unique E2 approximately Ub conformational restriction by RBR RING1. Structure 25, 890–900.e5 (2017). This study, together with ref. 13, describing structures of HHARI in complex with E2~Ub, provides a molecular rationale for the E2 preference observed in HHARI.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Dove, K. K., Stieglitz, B., Duncan, E. D., Rittinger, K. & Klevit, R. E. Molecular insights into RBR E3 ligase ubiquitin transfer mechanisms. EMBO Rep. 17, 1221–1235 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Yuan, L., Lv, Z., Atkison, J. H. & Olsen, S. K. Structural insights into the mechanism and E2 specificity of the RBR E3 ubiquitin ligase HHARI. Nat. Commun. 8, 211 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Lechtenberg, B. C. et al. Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation. Nature 529, 546–550 (2016). This paper describes the first structure of an RBR module in the active form in complex with an E2~Ub conjugate.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Riley, B. E. et al. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat. Commun. 4, 1982 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Wauer, T. & Komander, D. Structure of the human Parkin ligase domain in an autoinhibited state. EMBO J. 32, 2099–2112 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Tang, M. Y. et al. Structure-guided mutagenesis reveals a hierarchical mechanism of Parkin activation. Nat. Commun. 8, 14697 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kumar, A. et al. Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis. EMBO J. 34, 2506–2521 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Sauvé, V. et al. A Ubl/ubiquitin switch in the activation of Parkin. EMBO J. 34, 2492–2505 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ikeda, F. et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature 471, 637–641 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Gerlach, B. et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591–596 (2011).

    Article  PubMed  CAS  Google Scholar 

  22. Tokunaga, F. et al. SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature 471, 633–636 (2011).

    Article  PubMed  CAS  Google Scholar 

  23. Kane, L. A. et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205, 143–153 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kazlauskaite, A. et al. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem. J. 460, 127–139 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Koyano, F. et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510, 162–166 (2014).

    Article  PubMed  CAS  Google Scholar 

  26. Kondapalli, C. et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol. 2, 120080 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Wauer, T., Simicek, M., Schubert, A. & Komander, D. Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature 524, 370–374 (2015). This study and ref. 28 both describe structures of Parkin in complex with pUb and provide structural insight into the conformational changes that occur upon activation. Kumar et al. identifies a hidden ubiquitin-binding site upon activation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kumar, A. et al. Parkin-phosphoubiquitin complex reveals cryptic ubiquitin-binding site required for RBR ligase activity. Nat. Struct. Mol. Biol. 24, 475–483 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Aguirre, J. D., Dunkerley, K. M., Mercier, P. & Shaw, G. S. Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation. Proc. Natl Acad. Sci. USA 114, 298–303 (2017).

    Article  PubMed  CAS  Google Scholar 

  30. Stieglitz, B. et al. Structural basis for ligase-specific conjugation of linear ubiquitin chains by HOIP. Nature 503, 422–426 (2013). This is the only study to date to have captured the donor and acceptor ubiquitin, thus enabling visualization of linear ubiquitin chain formation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Im, E., Yoo, L., Hyun, M., Shin, W. H. & Chung, K. C. Covalent ISG15 conjugation positively regulates the ubiquitin E3 ligase activity of parkin. Open Biol. 6, 160193 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Keusekotten, K. et al. OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin. Cell 153, 1312–1326 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Rivkin, E. et al. The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature 498, 318–324 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kupka, S. et al. SPATA2-mediated binding of CYLD to HOIP enables CYLD recruitment to signaling complexes. Cell Reps. 16, 2271–2280 (2016).

    Article  CAS  Google Scholar 

  35. Elliott, P. R. et al. SPATA2 Links CYLD to LUBAC, Activates CYLD, and Controls LUBAC Signaling. Mol. Cell 63, 990–1005 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Fallon, L. et al. A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K-Akt signalling. Nat. Cell Biol. 8, 834–842 (2006).

    Article  PubMed  CAS  Google Scholar 

  37. Trempe, J. F. et al. SH3 domains from a subset of BAR proteins define a Ubl-binding domain and implicate parkin in synaptic ubiquitination. Mol. Cell 36, 1034–1047 (2009).

    Article  PubMed  CAS  Google Scholar 

  38. Kelsall, I. R. et al. TRIAD1 and HHARI bind to and are activated by distinct neddylated Cullin-RING ligase complexes. EMBO J. 32, 2848–2860 (2013).This study, together with ref. 39 , links RBR ligases to the human CRL system and suggests that HHARI may monoubiquitinate Cullin substrates..

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Scott, D. C. et al. Two distinct types of E3 ligases work in unison to regulate substrate ubiquitylation. Cell 166, 1198–1214.e24 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Burchell, L., Chaugule, V. K. & Walden, H. Small, N-terminal tags activate Parkin E3 ubiquitin ligase activity by disrupting its autoinhibited conformation. PLoS One 7, e34748 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Klosowiak, J. L. et al. Structural insights into Parkin substrate lysine targeting from minimal Miro substrates. Sci. Rep. 6, 33019 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Stewart, M. D., Ritterhoff, T., Klevit, R. E. & Brzovic, P. S. E2 enzymes: more than just middle men. Cell Res. 26, 423–440 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Lewis, M. J. et al. UBE2L3 polymorphism amplifies NF-κB activation and promotes plasma cell development, linking linear ubiquitination to multiple autoimmune diseases. Am. J. Hum. Genet. 96, 221–234 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Dove, K. K. et al. Two functionally distinct E2/E3 pairs coordinate sequential ubiquitination of a common substrate in Caenorhabditis elegans development.Proc. Natl Acad. Sci. USA 114, E6576–E6584 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Pruneda, J. N., Stoll, K. E., Bolton, L. J., Brzovic, P. S. & Klevit, R. E. Ubiquitin in motion: structural studies of the ubiquitin-conjugating enzyme~ubiquitin conjugate. Biochemistry 50, 1624–1633 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Plechanovová, A., Jaffray, E. G., Tatham, M. H., Naismith, J. H. & Hay, R. T. Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Nature 489, 115–120 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Pruneda, J. N. et al. Structure of an E3:E2~Ub complex reveals an allosteric mechanism shared among RING/U-box ligases. Mol. Cell 47, 933–942 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Dou, H., Buetow, L., Sibbet, G. J., Cameron, K. & Huang, D. T. BIRC7-E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer. Nat. Struct. Mol. Biol. 19, 876–883 (2012).

    Article  PubMed  CAS  Google Scholar 

  49. Martino, L., Brown, N. R., Masino, L., Esposito, D. & Rittinger, K. Determinants of E2-ubiquitin conjugate recognition by RBR E3 ligases. Sci. Rep. 8, 68 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Müller-Rischart, A. K. et al. The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO. Mol. Cell 49, 908–921 (2013).

    Article  PubMed  CAS  Google Scholar 

  51. Ho, S. R., Lee, Y. J. & Lin, W. C. Regulation of RNF144A E3 ubiquitin ligase activity by self-association through its transmembrane domain. J. Biol. Chem. 290, 23026–23038 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Sarraf, S. A. et al. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496, 372–376 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Pickrell, A. M. & Youle, R. J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85, 257–273 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    Article  PubMed  CAS  Google Scholar 

  55. Tan, N. G. et al. Human homologue of ariadne promotes the ubiquitylation of translation initiation factor 4E homologous protein, 4EHP. FEBS Lett. 554, 501–504 (2003).

    Article  PubMed  CAS  Google Scholar 

  56. Elmehdawi, F. et al. Human homolog of Drosophila Ariadne (HHARI) is a marker of cellular proliferation associated with nuclear bodies. Exp. Cell Res. 319, 161–172 (2013).

    Article  PubMed  CAS  Google Scholar 

  57. Rittinger, K. & Ikeda, F. Linear ubiquitin chains: enzymes, mechanisms and biology. Open Biol. 7, 170026 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Medical Research Council (MRC grant number MC_UU_12016/12) and the European Research Council (ERC-2015-CoG-681582 ICLUb consolidator grant) to H.W. and by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001142), the UK Medical Research Council (FC001142), and the Wellcome Trust (FC001142) to K.R. We acknowledge V. Chaugule, C. Arkinson and L. Martino for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Helen Walden or Katrin Rittinger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walden, H., Rittinger, K. RBR ligase–mediated ubiquitin transfer: a tale with many twists and turns. Nat Struct Mol Biol 25, 440–445 (2018). https://doi.org/10.1038/s41594-018-0063-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-018-0063-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing