Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

RNA decay

Molecular autopsy provides evidence for widespread ribosome-phased mRNA fragmentation

Recent developments in transcriptome-wide sequencing technologies have enabled the identification of cellular mRNA decay intermediates. Although canonical mRNA decay has been shown to occur by deadenylation followed by decapping and subsequent exonucleolytic decay from both mRNA ends, a study by Mourelatos and colleagues now defines mRNA fragments that are generated on polysomes by endonucleolytic cleavages phased by the associated ribosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Model for HeLa cell ribothrypsis.

References

  1. Garneau, N. L., Wilusz, J. & Wilusz, C. J. Nat. Rev. Mol. Cell Biol. 8, 113–126 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Parker, R. Genetics 191, 671–702 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roy, B. & Jacobson, A. Trends Genet. 29, 691–699 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Steitz, J. A. Nature 224, 957–964 (1969).

    Article  CAS  PubMed  Google Scholar 

  5. Kozak, M. & Shatkin, A. J. J. Biol. Chem. 251, 4259–4266 (1976).

    CAS  PubMed  Google Scholar 

  6. Schoenberg, D. R. & Maquat, L. E. Nat. Rev. Genet. 13, 246–259 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shoemaker, C. J. & Green, R. Nat. Struct. Mol. Biol. 19, 594–601 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hanson, G. & Coller, J. Nat. Rev. Mol. Cell Biol. 19, 20–30 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Sheth, U. & Parker, R. Science 300, 805–808 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Coller, J. & Parker, R. Cell 122, 875–886 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hu, W., Sweet, T. J., Chamnongpol, S., Baker, K. E. & Coller, J. Nature 461, 225–229 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pelechano, V., Wei, W. & Steinmetz, L. M. Cell 161, 1400–1412 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hu, W., Petzold, C., Coller, J. & Baker, K. E. Nat. Struct. Mol. Biol. 17, 244–247 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Doma, M. K. & Parker, R. Nature 440, 561–564 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Simms, C. L., Yan, L. L. & Zaher, H. S. Mol. Cell 68, 361–373 (2017). e5.

    Article  CAS  PubMed  Google Scholar 

  16. Ibrahim, F. et al. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-018-0042-8 (2018).

  17. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. S. & Weissman, J. S. Science 324, 218–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guydosh, N. R. & Green, R. Cell 156, 950–962 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lubas, M. et al. Cell Reps. 10, 178–192 (2015).

    Article  CAS  Google Scholar 

  20. Park, J. E., Yi, H., Kim, Y., Chang, H. & Kim, V. N. Mol. Cell 62, 462–471 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Bugaut, A. & Balasubramanian, S. Nucleic Acids Res. 40, 4727–4741 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Song, J., Perreault, J.-P., Topisirovic, I. & Richard, S. Translation 4, e1244031 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Guydosh, N. R., Kimmig, P., Walter, P. & Green, R. eLife 6, e29216 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank M. Popp for comments on this manuscript. Work on mRNA decay in the Maquat laboratory is supported by R01 GM059614 and R37 GM074593, both to L.E.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne E. Maquat.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurosaki, T., Maquat, L.E. Molecular autopsy provides evidence for widespread ribosome-phased mRNA fragmentation. Nat Struct Mol Biol 25, 299–301 (2018). https://doi.org/10.1038/s41594-018-0048-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-018-0048-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing