Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GlcNAc-1-P-transferase–tunicamycin complex structure reveals basis for inhibition of N-glycosylation

Abstract

N-linked glycosylation is a predominant post-translational modification of protein in eukaryotes, and its dysregulation is the etiology of several human disorders. The enzyme UDP-N-acetylglucosamine:dolichyl-phosphate N-acetylglucosaminephosphotransferase (GlcNAc-1-P-transferase or GPT) catalyzes the first and committed step of N-linked glycosylation in the endoplasmic reticulum membrane, and it is the target of the natural product tunicamycin. Tunicamycin has potent antibacterial activity, inhibiting the bacterial cell wall synthesis enzyme MraY, but its usefulness as an antibiotic is limited by off-target inhibition of human GPT. Our understanding of how tunicamycin inhibits N-linked glycosylation and efforts to selectively target MraY are hampered by a lack of structural information. Here we present crystal structures of human GPT in complex with tunicamycin. Structural and functional analyses reveal the difference between GPT and MraY in their mechanisms of inhibition by tunicamycin. We demonstrate that this difference could be exploited to design MraY-specific inhibitors as potential antibiotics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The crystal structure of hGPT in complex with tunicamycin reveals the structural basis for high-affinity binding.
Fig. 2: Tunicamycin binding to GPT is analogous but distinct from that to MraY.
Fig. 3: Divergence between GPT and MraY is underpinned by their different dimerization interfaces.
Fig. 4: MraY and GPT bind tunicamycin and magnesium differently, and they are selective for distinct lipid substrates.
Fig. 5: Chemically modifying tunicamycin can introduce ligand selectivity between hGPT and MraYAA.

Similar content being viewed by others

References

  1. Lehrman, M. A. Biosynthesis of N-acetylglucosamine-P-P-dolichol, the committed step of asparagine-linked oligosaccharide assembly. Glycobiology 1, 553–562 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Belaya, K. et al. Mutations in DPAGT1 cause a limb-girdle congenital myasthenic syndrome with tubular aggregates. Am. J. Hum. Genet 91, 193–201 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wu, X. et al. Deficiency of UDP-GlcNAc:dolichol phosphate N-acetylglucosamine-1 phosphate transferase (DPAGT1) causes a novel congenital disorder of glycosylation type Ij. Hum. Mutat. 22, 144–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Würde, A. E. et al. Congenital disorder of glycosylation type Ij (CDG-Ij, DPAGT1-CDG): extending the clinical and molecular spectrum of a rare disease. Mol. Genet. Metab. 105, 634–641 (2012).

    Article  PubMed  Google Scholar 

  5. Liwosz, A., Lei, T. & Kukuruzinska, M. A. N-glycosylation affects the molecular organization and stability of E-cadherin junctions. J. Biol. Chem. 281, 23138–23149 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Nita-Lazar, M. et al. Overexpression of DPAGT1 leads to aberrant N-glycosylation of E-cadherin and cellular discohesion in oral cancer. Cancer Res. 69, 5673–5680 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lehrman, M. A. A family of UDP-GlcNAc/MurNAc: polyisoprenol-P GlcNAc/MurNAc-1-P transferases. Glycobiology 4, 768–771 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Takatsuki, A., Arima, K. & Tamura, G. Tunicamycin, a new antibiotic. I. Isolation and characterization of tunicamycin. J. Antibiot. (Tokyo) 24, 215–223 (1971).

    Article  CAS  Google Scholar 

  9. Takatsuki, A. et al. The structure of tunicamycin. Agric. Biol. Chem. 41, 2307–2309 (1977).

    CAS  Google Scholar 

  10. Wang, R. et al. A search for pyrophosphate mimics for the development of substrates and inhibitors of glycosyltransferases. Bioorg. Med. Chem. 5, 661–672 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Izumi, M., Yuasa, H. & Hashimoto, H. Bisubstrate analogues as glycosyltransferase inhibitors. Curr. Top. Med. Chem. 9, 87–105 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Price, N. P. & Momany, F. A. Modeling bacterial UDP-HexNAc: polyprenol-P HexNAc-1-P transferases. Glycobiology 15, 29R–42R (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Xu, L., Appell, M., Kennedy, S., Momany, F. A. & Price, N. P. Conformational analysis of chirally deuterated tunicamycin as an active site probe of UDP-N-acetylhexosamine:polyprenol-P N-acetylhexosamine-1-P translocases. Biochemistry 43, 13248–13255 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Elbein, A. D. Inhibitors of the biosynthesis and processing of N-linked oligosaccharide chains. Annu. Rev. Biochem. 56, 497–534 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Keller, R. K., Boon, D. Y. & Crum, F. C. N-Acetylglucosamine-1-phosphate transferase from hen oviduct: solubilization, characterization, and inhibition by tunicamycin. Biochemistry 18, 3946–3952 (1979).

    Article  CAS  PubMed  Google Scholar 

  16. Lehle, L. & Tanner, W. The specific site of tunicamycin inhibition in the formation of dolichol-bound N-acetylglucosamine derivatives. FEBS Lett. 71, 167–170 (1976).

    Article  CAS  Google Scholar 

  17. Takatsuki, A., Kohno, K. & Tamura, G. Inhibition of biosynthesis of polyisoprenol sugars in chick embryo microsomes by tunicamycin. Agric. Biol. Chem. 39, 2089–2091 (1975).

    CAS  Google Scholar 

  18. Tkacz, J. S. & Lampen, O. Tunicamycin inhibition of polyisoprenyl N-acetylglucosaminyl pyrophosphate formation in calf-liver microsomes. Biochem. Biophys. Res. Commun. 65, 248–257 (1975).

    Article  CAS  PubMed  Google Scholar 

  19. Duksin, D. & Mahoney, W. C. Relationship of the structure and biological activity of the natural homologues of tunicamycin. J. Biol. Chem. 257, 3105–3109 (1982).

    CAS  PubMed  Google Scholar 

  20. Faye, L. & Chrispeels, M. J. Apparent inhibition of beta-fructosidase secretion by tunicamycin may be explained by breakdown of the unglycosylated protein during secretion. Plant Physiol. 89, 845–851 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Koizumi, N., Ujino, T., Sano, H. & Chrispeels, M. J. Overexpression of a gene that encodes the first enzyme in the biosynthesis of asparagine-linked glycans makes plants resistant to tunicamycin and obviates the tunicamycin-induced unfolded protein response. Plant Physiol. 121, 353–361 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Oslowski, C. M. & Urano, F. Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods Enzymol. 490, 71–92 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brandish, P. E. et al. Modes of action of tunicamycin, liposidomycin B, and mureidomycin A: inhibition of phospho-N-acetylmuramyl-pentapeptide translocase from Escherichia coli. Antimicrob. Agents Chemother. 40, 1640–1644 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tamura, G., Sasaki, T., Matsuhashi, M., Takatsuki, A. & Yamasaki, M. Tunicamycin inhibits the formation of lipid intermediate in cell-free peptidoglycan synthesis of bacteria. Agric. Biol. Chem. 40, 447–449 (1976).

    CAS  Google Scholar 

  25. Lukose, V., Walvoort, M. T. C. & Imperiali, B. Bacterial phosphoglycosyl transferases: initiators of glycan biosynthesis at the membrane interface. Glycobiology 27, 820–833 (2017).

    Article  PubMed  Google Scholar 

  26. Chung, B. C. et al. Crystal structure of MraY, an essential membrane enzyme for bacterial cell wall synthesis. Science 341, 1012–1016 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chung, B. C. et al. Structural insights into inhibition of lipid I production in bacterial cell wall synthesis. Nature 533, 557–560 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hakulinen, J. K. et al. MraY-antibiotic complex reveals details of tunicamycin mode of action. Nat. Chem. Biol. 13, 265–267 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Al-Dabbagh, B. et al. Active site mapping of MraY, a member of the polyprenyl-phosphate N-acetylhexosamine 1-phosphate transferase superfamily, catalyzing the first membrane step of peptidoglycan biosynthesis. Biochemistry 47, 8919–8928 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Bouhss, A., Trunkfield, A. E., Bugg, T. D. & Mengin-Lecreulx, D. The biosynthesis of peptidoglycan lipid-linked intermediates. FEMS Microbiol. Rev. 32, 208–233 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Dan, N. & Lehrman, M. A. Oligomerization of hamster UDP-GlcNAc:dolichol-P GlcNAc-1-P transferase, an enzyme with multiple transmembrane spans. J. Biol. Chem. 272, 14214–14219 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Gupta, K. et al. The role of interfacial lipids in stabilizing membrane protein oligomers. Nature 541, 421–424 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Plouhar, P. L. & Bretthauer, R. K. A phospholipid requirement for dolichol pyrophosphate N-acetylglucosamine synthesis in phospholipase A2-treated rat lung microsomes. J. Biol. Chem. 257, 8907–8911 (1982).

    CAS  PubMed  Google Scholar 

  34. Plouhar, P. L. & Bretthauer, R. K. Restoration by phospholipids of dolichol pyrophosphate N-acetylglucosamine synthesis in delipidated rat lung microsomes. J. Biol. Chem. 258, 12988–12993 (1983).

    CAS  PubMed  Google Scholar 

  35. Kaushal, G. P. & Elbein, A. D. Purification and properties of UDP-GlcNAc:dolichyl-phosphate GlcNAc-1-phosphate transferase. Activation and inhibition of the enzyme. J. Biol. Chem. 260, 16303–16309 (1985).

    CAS  PubMed  Google Scholar 

  36. Walvoort, M. T., Lukose, V. & Imperiali, B. A modular approach to phosphoglycosyltransferase inhibitors inspired by nucleoside antibiotics. Chemistry 22, 3856–3864 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Yamamoto, K., Yakushiji, F., Matsumaru, T. & Ichikawa, S. Total synthesis of tunicamycin V. Org. Lett. 20, 256–259 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Kabsch, W. XDS. Acta Crystallogr. D. Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Foadi, J. et al. Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 69, 1617–1632 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Evans, P. R. An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr. D Biol. Crystallogr. 67, 282–292 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 69, 1204–1214 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tickle, I. J. et al. STARANISO. (Global Phasing Ltd, 2017).

  43. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kovalevskiy, O., Nicholls, R. A. & Murshudov, G. N. Automated refinement of macromolecular structures at low resolution using prior information. Acta Crystallogr. D Struct. Biol. 72, 1149–1161 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 68, 352–367 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Delano, W. L. The PyMol Molecular Graphics System. (DeLano Scientific, 2002).

  49. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Celniker, G. et al. ConSurf: using evolutionary data to raise testable hypotheses about protein function. Isr. J. Chem. 53, 199–206 (2013).

    Article  CAS  Google Scholar 

  51. Bouhss, A., Crouvoisier, M., Blanot, D. & Mengin-Lecreulx, D. Purification and characterization of the bacterial MraY translocase catalyzing the first membrane step of peptidoglycan biosynthesis. J. Biol. Chem. 279, 29974–29980 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Data for this study were collected at beamlines NECAT 24-ID-C and 24-ID-E and at SERCAT 22-ID, both at the Advanced Photon Source. We thank B. Chung for initial GPT biochemistry. We thank I. Tickle and the STARANISO team for help with our anisotropic data analysis. This work was supported by the National Institutes of Health (R01GM120594 and R35NS097241 to S.-Y. L.), JSPS Grant-in-Aid for Scientific Research (B) (16H05097 to S.I.), Astellas Foundation for Research on Metabolic Disorders (to S.I.), Hokkaido University GFC, PSOU, funded by MEXT (to S.I.), and BINDS from the Japan Agency for Medical Research and Development (to S.I.). Beamlines 24-ID-C and 24-ID-E are funded by P41 GM103403 and S10 RR029205.

Author information

Authors and Affiliations

Authors

Contributions

J.Y. performed GPT crystallization, data collection, and protein preparation for functional studies; E.H.M. performed all functional studies of GPT and MraY; B.K. assisted in sample purification for functional studies; A.C.Y.K. and J.Y. performed X-ray data processing, model building and refinement. J.Y., A.C.Y.K., B.K., and E.H.M. are under the guidance of S.-Y.L. S.I. designed tunicamycin-MurNAc. K.Y. synthesized the tunicamycin-MurNAc under the guidance of S.I. S.-Y.L., A.C.Y.K., E.H.M., and J.Y. wrote the paper.

Corresponding author

Correspondence to Seok-Yong Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Integrated supplementary information

Supplementary Figure 1 Chemical structures of tunicamycin and the natural substrates of GPT and MraY.

Chemical structure of the competitive inhibitor tunicamycin A1 is shown at the top, while the structures of the natural substrates (UDP-GlcNAc for GPT and UDP-MurNAc-pentapeptide for MraY) are shown at the bottom. All compounds contain uridine moieties and either a GlcNAc or MurNAc moiety.

Supplementary Figure 2 The His129 and Pro129 variants of hGPT are active and have comparable specific activity.

a, TLC plate image of hGPT His129- and Pro129-catalyzed reactions (in triplicate) containing 200 nM of each enzyme, 500 μM C55-dol-P, 0.1 mM UDP-GlcNAc and 0.01 mM [14C]UDP-GlcNAc, 70 mM Tris-HCl pH 8.0, 500 mM NaCl, 80 mM MgCl2, 5 mM DM, 1 mg/mL POPG, and 10% glycerol. A time course assay was conducted at 30°C and 2 μL of each reaction was spotted on the TLC plate every 5 min; the 15 min time point shown is within the linear range. b, Specific activity measurements based on spot intensity quantification of the substrate and product bands shown in panel a. Three technical replicates are shown, with the mean value represented by a line.

Source data

Supplementary Figure 3 Composite omit electron density of hGPT.

2F o −F c composite omit maps were calculated from the canonical hGPT Pro129 data (3.1 Å resolution) omitting 5% of the model at a time, and contoured to 0.8 σ. a, hGPT dimer, showing ribbons for protomer A only. Omit density for protomer B is colored pink for clarity. b, View of the cytosolic cavity, showing tunicamycin and several nearby residues. c, View of the dimer interface from within the membrane, looking at protomer A from protomer B. d, View of the dimer interface from the cytosol. e, 2F o −F c composite omit map, shown for individual transmembrane helices 1 to 10 and carved 1.8 Å from the model.

Supplementary Figure 4 Stereo views of tunicamycin bound to hGPT.

The canonical hGPT (Pro129) is shown at the top (3.1 Å resolution), while the His129 variant is shown below (2.95 Å resolution). Tunicamycin is denoted as magenta sticks. 2F o –F c omit density of tunicamycin is shown in blue mesh (contoured to 0.8 σ), while the F o –F c omit density of tunicamycin is shown in green mesh (contoured to 3 σ). Maps were carved 1.8 Å from the tunicamycin model.

Supplementary Figure 5 Alignment of GPT sequences.

The sequences of human GPT, MraYAA (5CKR), and MraYCB (5JNQ) were first aligned by structural superposition, expanded to 45 GPT ortholog sequences by MAFFT, and corrected manually. Invariant positions (100% identity) are shaded red, while conserved positions (>90% identity) are shaded gray. The secondary structure of human GPT is shown, highlighting the insertion in loop E that is absent in MraY sequences (TM, transmembrane α-helix; α, α-helix; β, β-strand).

Supplementary Figure 6 Omit density of POPG lipid molecules.

Omit maps were calculated with data of the canonical hGPT (Pro129) to 3.1 Å resolution. One lipid tail of 1-palmitoyl-2-oleoylglycero-3-phosphoglycerol (POPG, magenta sticks) is found in each side fenestration. 2F o –F c omit density of POPG molecules is shown in blue mesh (contoured to 0.8 σ), while the F o –F c omit density is shown in green mesh (contoured to 3 σ). Maps were carved 1.8 Å from the POPG molecules.

Supplementary Figure 7 Mapping of human disease mutants to the structure of hGPT.

Positions of CDG1J-associated mutants are colored yellow, while positions of CMS13-associated mutants are colored blue.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Note

Life Sciences Reporting Summary

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, J., Mashalidis, E.H., Kuk, A.C.Y. et al. GlcNAc-1-P-transferase–tunicamycin complex structure reveals basis for inhibition of N-glycosylation. Nat Struct Mol Biol 25, 217–224 (2018). https://doi.org/10.1038/s41594-018-0031-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-018-0031-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research