Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for recognition of diverse antidepressants by the human serotonin transporter

Abstract

Selective serotonin reuptake inhibitors are clinically prescribed antidepressants that act by increasing the local concentrations of neurotransmitters at synapses and in extracellular spaces via blockade of the serotonin transporter. Here we report X-ray structures of engineered thermostable variants of the human serotonin transporter bound to the antidepressants sertraline, fluvoxamine, and paroxetine. The drugs prevent serotonin binding by occupying the central substrate-binding site and stabilizing the transporter in an outward-open conformation. These structures explain how residues within the central site orchestrate binding of chemically diverse inhibitors and mediate transporter drug selectivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Saturation and competition binding experiments.
Fig. 2: Antidepressant binding in the central binding site.
Fig. 3: Antidepressant recognition.
Fig. 4: Comparisons of SSRI binding poses and central-binding-site structures.

Similar content being viewed by others

References

  1. Kristensen, A. S. et al. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol. Rev. 63, 585–640 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Berger, M., Gray, J. A. & Roth, B. L. The expanded biology of serotonin. Annu. Rev. Med. 60, 355–366 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Hahn, M. K. & Blakely, R. D. The functional impact of SLC6 transporter genetic variation. Annu. Rev. Pharmacol. Toxicol. 47, 401–441 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Watts, S. W., Morrison, S. F., Davis, R. P. & Barman, S. M. Serotonin and blood pressure regulation. Pharmacol. Rev. 64, 359–388 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brenner, B. et al. Plasma serotonin levels and the platelet serotonin transporter. J. Neurochem. 102, 206–215 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bröer, S. & Gether, U. The solute carrier 6 family of transporters. Br. J. Pharmacol. 167, 256–278 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rudnick, G. Ion-coupled neurotransmitter transport: thermodynamic vs. kinetic determinations of stoichiometry. Methods Enzymol. 296, 233–247 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Penmatsa, A., Wang, K. H. & Gouaux, E. X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 503, 85–90 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Coleman, J. A., Green, E. M. & Gouaux, E. X-ray structures and mechanism of the human serotonin transporter. Nature 532, 334–339 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437, 215–223 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Singh, S. K., Piscitelli, C. L., Yamashita, A. & Gouaux, E. A competitive inhibitor traps LeuT in an open-to-out conformation. Science 322, 1655–1661 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wennogle, L. P. & Meyerson, L. R. Serotonin modulates the dissociation of [3H]imipramine from human platelet recognition sites. Eur. J. Pharmacol. 86, 303–307 (1982).

    Article  CAS  PubMed  Google Scholar 

  13. Chen, F. et al. Characterization of an allosteric citalopram-binding site at the serotonin transporter. J. Neurochem. 92, 21–28 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Plenge, P. et al. Steric hindrance mutagenesis in the conserved extracellular vestibule impedes allosteric binding of antidepressants to the serotonin transporter. J. Biol. Chem. 287, 39316–39326 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kahlig, K. M. et al. Amphetamine induces dopamine efflux through a dopamine transporter channel. Proc. Natl. Acad. Sci. USA 102, 3495–3500 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ramamoorthy, S. et al. Antidepressant- and cocaine-sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization. Proc. Natl. Acad. Sci. USA 90, 2542–2546 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Andersen, J., Kristensen, A. S., Bang-Andersen, B. & Strømgaard, K. Recent advances in the understanding of the interaction of antidepressant drugs with serotonin and norepinephrine transporters. Chem. Commun. (Camb.) 25, 3677–3692 (2009).

    Article  Google Scholar 

  18. Mojtabai, R. & Olfson, M. Proportion of antidepressants prescribed without a psychiatric diagnosis is growing. Health Aff. (Millwood) 30, 1434–1442 (2011).

    Article  Google Scholar 

  19. Vetulani, J. & Nalepa, I. Antidepressants: past, present and future. Eur. J. Pharmacol. 405, 351–363 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Green, E. M., Coleman, J. A. & Gouaux, E. Thermostabilization of the human serotonin transporter in an antidepressant-bound conformation. PLoS One 10, e0145688 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Coleman, J. A., Green, E. M. & Gouaux, E. Thermostabilization, expression, purification, and crystallization of the human serotonin transporter bound to S-citalopram. J. Vis. Exp. https://doi.org/10.3791/54792 (2016).

  22. Davis, B. A., Nagarajan, A., Forrest, L. R. & Singh, S. K. Mechanism of paroxetine (Paxil) inhibition of the serotonin transporter. Sci. Rep. 6, 23789 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Andersen, J. et al. Molecular determinants for selective recognition of antidepressants in the human serotonin and norepinephrine transporters. Proc. Natl. Acad. Sci. USA 108, 12137–12142 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, H. et al. Structural basis for action by diverse antidepressants on biogenic amine transporters. Nature 503, 141–145 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou, Z. et al. Antidepressant specificity of serotonin transporter suggested by three LeuT–SSRI structures. Nat. Struct. Mol. Biol. 16, 652–657 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Andersen, J. et al. Mutational mapping and modeling of the binding site for (S)-citalopram in the human serotonin transporter. J. Biol. Chem. 285, 2051–2063 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Gabrielsen, M. et al. Molecular mechanism of serotonin transporter inhibition elucidated by a new flexible docking protocol. Eur. J. Med. Chem. 47, 24–37 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Grouleff, J., Ladefoged, L. K., Koldsø, H. & Schiøtt, B. Monoamine transporters: insights from molecular dynamics simulations. Front. Pharmacol. 6, 235 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Koldsø, H., Grouleff, J. & Schiøtt, B. Insights to ligand binding to the monoamine transporters-from homology modeling to LeuBAT and dDAT. Front. Pharmacol. 6, 208 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Andersen, J. et al. Molecular basis for selective serotonin reuptake inhibition by the antidepressant agent fluoxetine (Prozac). Mol. Pharmacol. 85, 703–714 (2014).

    Article  PubMed  Google Scholar 

  31. Tavoulari, S., Forrest, L. R. & Rudnick, G. Fluoxetine (Prozac) binding to serotonin transporter is modulated by chloride and conformational changes. J. Neurosci. 29, 9635–9643 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Koban, F. et al. A salt bridge linking the first intracellular loop with the C terminus facilitates the folding of the serotonin transporter. J. Biol. Chem. 290, 13263–13278 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sucic, S. et al. Switching the clientele: a lysine residing in the C terminus of the serotonin transporter specifies its preference for the coat protein complex II component SEC24C. J. Biol. Chem. 288, 5330–5341 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liebschner, D. et al. Polder maps: improving OMIT maps by excluding bulk solvent. Acta Crystallogr. D Struct. Biol. 73, 148–157 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rannversson, H., Andersen, J., Bang-Andersen, B. & Strømgaard, K. Mapping the binding site for escitalopram and paroxetine in the human serotonin transporter using genetically encoded photo-cross-linkers. ACS Chem. Biol. 12, 2558–2562 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Henry, L. K. et al. Tyr-95 and Ile-172 in transmembrane segments 1 and 3 of human serotonin transporters interact to establish high affinity recognition of antidepressants. J. Biol. Chem. 281, 2012–2023 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Barker, E. L. et al. High affinity recognition of serotonin transporter antagonists defined by species-scanning mutagenesis: an aromatic residue in transmembrane domain I dictates species-selective recognition of citalopram and mazindol. J. Biol. Chem. 273, 19459–19468 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Sørensen, L. et al. Interaction of antidepressants with the serotonin and norepinephrine transporters: mutational studies of the S1 substrate binding pocket. J. Biol. Chem. 287, 43694–43707 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Anjana, R. et al. Aromatic-aromatic interactions in structures of proteins and protein-DNA complexes: a study based on orientation and distance. Bioinformation 8, 1220–1224 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kumar, S. & Nussinov, R. Close-range electrostatic interactions in proteins. ChemBioChem 3, 604–617 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Dinesh Kumar, K. S. et al. Online_DPI: a web server to calculate the diffraction precision index for a protein structure. J. Appl. Crystallogr. 48, 939–942 (2015).

    Article  Google Scholar 

  42. Steiner, T. Hydrogen-bond distances to halide ions in organic and organometallic crystal structures: up-to-date database study. Acta Crystallogr. B 54, 456–463 (1998).

    Article  Google Scholar 

  43. Hamilton, P. J. et al. De novo mutation in the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder. Mol. Psychiatry 18, 1315–1323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Goehring, A. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat. Protoc. 9, 2574–2585 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bunkóczi, G. et al. Phaser.MRage: automated molecular replacement. Acta Crystallogr. D Biol. Crystallogr. 69, 2276–2286 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 68, 352–367 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Quick, M. & Javitch, J. A. Monitoring the function of membrane transport proteins in detergent-solubilized form. Proc. Natl. Acad. Sci. USA 104, 3603–3608 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cheng, Y. & Prusoff, W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099–3108 (1973).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Vaskalis for assistance with figures, H. Owen for help with manuscript preparation, and members of the laboratory of E.G. for discussion. We acknowledge the staff of the Berkeley Center for Structural Biology at the Advanced Light Source and the Northeastern Collaborative Access Team at the Advanced Photon Source for assistance with data collection. J.A.C. is supported by a Banting postdoctoral fellowship from the Canadian Institutes of Health Research. We are particularly grateful to B. LaCroute and J. LaCroute for their generous support, as well as for funding from the National Institutes of Health (NIH) (5R37MH070039) to E.G. E.G. is supported as an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

J.A.C. and E.G. designed the project. J.A.C. performed protein purification, crystallography, and biochemical assays. J.A.C. and E.G. wrote the manuscript.

Corresponding author

Correspondence to Eric Gouaux.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Integrated supplementary information

Supplementary Figure 1 Intracellular gate and C terminus

a, Positions of residues associated with the intracellular gate are shown and the Polder ‘omit’ electron density is shown in blue mesh (contoured at 6-8σ). b, Fit of C-terminal residues into 2Fo – Fc electron density map (blue mesh), contoured at 0.75σ. Density for most side chains of the SEC24C recognition sequence were observed except for Arg607.

Supplementary Figure 2 Fitting of paroxetine with fluorophenyl in subsite B and benzodioxol in subsite C

Shown is the 2Fo-Fc (blue mesh) and Fo-Fc (positive, green; negative red) electron density associated with paroxetine after refinement, contoured at 2σ and 2.5σ respectively. Shown in red to yellow to green disks are severe to significant to slight overlaps of van der Waals radii of residues within 5 Å of paroxetine. The size of the disk also indicates the degree of clashing.

Supplementary Figure 3 Electron density of drug-binding residues

a, Residues associated with paroxetine (magenta) binding are shown and the Polder ‘omit’ electron density is shown in blue mesh (contoured at 7σ). b, Residues associated with sertraline (yellow) binding are shown and the Polder ‘omit’ electron density is shown in blue mesh (contoured at 6-7σ). c, Residues associated with fluvoxamine (green) binding are shown and the Polder ‘omit’ electron density is shown in blue mesh (contoured at 5-6σ).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coleman, J.A., Gouaux, E. Structural basis for recognition of diverse antidepressants by the human serotonin transporter. Nat Struct Mol Biol 25, 170–175 (2018). https://doi.org/10.1038/s41594-018-0026-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-018-0026-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing