Review Article | Published:

The ring-shaped hexameric helicases that function at DNA replication forks

Nature Structural & Molecular Biologyvolume 25pages122130 (2018) | Download Citation

Abstract

DNA replication requires separation of genomic duplex DNA strands, an operation that is performed by a hexameric ring-shaped helicase in all domains of life. The structures and chemomechanical actions of these fascinating machines are coming into sharper focus. Although there is no evolutionary relationship between the hexameric helicases of bacteria and those of archaea and eukaryotes, they share many fundamental features. Here we review recent studies of these two groups of hexameric helicases and the unexpected distinctions they have also unveiled.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Watson, J. D. & Crick, F. H. Genetical implications of the structure of deoxyribonucleic acid. Nature 171, 964–967 (1953).

  2. 2.

    Bell, S. P. & Labib, K. Chromosome duplication in Saccharomyces cerevisiae. Genetics 203, 1027–1067 (2016).

  3. 3.

    O’Donnell, M., Langston, L. & Stillman, B. Principles and concepts of DNA replication in bacteria, archaea, and eukarya. Cold Spring Harb. Perspect. Biol. 5, a010108 (2013).

  4. 4.

    Kong, X. P., Onrust, R., O’Donnell, M. & Kuriyan, J. Three-dimensional structure of the beta subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell 69, 425–437 (1992).

  5. 5.

    Kornberg, A. & Baker, T. A. DNA Replication (W.H. Freeman, New York, 1992).

  6. 6.

    Eoff, R. L. & Raney, K. D. Helicase-catalysed translocation and strand separation. Biochem. Soc. Trans. 33, 1474–1478 (2005).

  7. 7.

    Singleton, M. R., Dillingham, M. S. & Wigley, D. B. Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76, 23–50 (2007).

  8. 8.

    Enemark, E. J. & Joshua-Tor, L. On helicases and other motor proteins. Curr. Opin. Struct. Biol. 18, 243–257 (2008).

  9. 9.

    Lyubimov, A. Y., Strycharska, M. & Berger, J. M. The nuts and bolts of ring-translocase structure and mechanism. Curr. Opin. Struct. Biol. 21, 240–248 (2011).

  10. 10.

    Patel, S. S. & Picha, K. M. Structure and function of hexameric helicases. Annu. Rev. Biochem. 69, 651–697 (2000).

  11. 11.

    Evrin, C. et al. A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc. Natl. Acad. Sci. USA 106, 20240–20245 (2009).

  12. 12.

    Heller, R. C. et al. Eukaryotic origin-dependent DNA replication in vitro reveals sequential action of DDK and S-CDK kinases. Cell 146, 80–91 (2011).

  13. 13.

    Samel, S. A. et al. A unique DNA entry gate serves for regulated loading of the eukaryotic replicative helicase MCM2-7 onto DNA. Genes. Dev. 28, 1653–1666 (2014).

  14. 14.

    Yeeles, J. T., Deegan, T. D., Janska, A., Early, A. & Diffley, J. F. Regulated eukaryotic DNA replication origin firing with purified proteins. Nature 519, 431–435 (2015).In this study, authors reconstitute replication from an origin using pure proteins.

  15. 15.

    Steel, M. & Penny, D. Origins of life: common ancestry put to the test. Nature 465, 168–169 (2010).

  16. 16.

    Theobald, D. L. A formal test of the theory of universal common ancestry. Nature 465, 219–222 (2010).

  17. 17.

    Leipe, D. D., Aravind, L. & Koonin, E. V. Did DNA replication evolve twice independently? Nucleic Acids Res. . 27, 3389–3401 (1999).

  18. 18.

    Leipe, D. D., Koonin, E. V. & Aravind, L. Evolution and classification of P-loop kinases and related proteins. J. Mol. Biol. 333, 781–815 (2003).

  19. 19.

    Fu, Y. V. et al. Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell 146, 931–941 (2011).

  20. 20.

    Hacker, K. J. & Johnson, K. A. A hexameric helicase encircles one DNA strand and excludes the other during DNA unwinding. Biochemistry 36, 14080–14087 (1997).

  21. 21.

    Kaplan, D. L., Davey, M. J. & O’Donnell, M. Mcm4,6,7 uses a “pump in ring” mechanism to unwind DNA by steric exclusion and actively translocate along a duplex. J. Biol. Chem. 278, 49171–49182 (2003).

  22. 22.

    Enemark, E. J. & Joshua-Tor, L. Mechanism of DNA translocation in a replicative hexameric helicase. Nature 442, 270–275 (2006).

  23. 23.

    Georgescu, R. et al. Structure of eukaryotic CMG helicase at a replication fork and implications to replisome architecture and origin initiation. Proc. Natl. Acad. Sci. USA 114, E697–E706 (2017). This study reports a high-resolution structure of S. cerevisiae CMG at a replication fork and shows that CMG is oriented on DNA in a direction opposite to that predicted by conventional models.

  24. 24.

    Itsathitphaisarn, O., Wing, R. A., Eliason, W. K., Wang, J. & Steitz, T. A. The hexameric helicase DnaB adopts a nonplanar conformation during translocation. Cell 151, 267–277 (2012).

  25. 25.

    Thomsen, N. D. & Berger, J. M. Running in reverse: the structural basis for translocation polarity in hexameric helicases. Cell 139, 523–534 (2009).

  26. 26.

    Donmez, I., Rajagopal, V., Jeong, Y. J. & Patel, S. S. Nucleic acid unwinding by hepatitis C virus and bacteriophage t7 helicases is sensitive to base pair stability. J. Biol. Chem. 282, 21116–21123 (2007).

  27. 27.

    Johnson, D. S., Bai, L., Smith, B. Y., Patel, S. S. & Wang, M. D. Single-molecule studies reveal dynamics of DNA unwinding by the ring-shaped T7 helicase. Cell 129, 1299–1309 (2007).

  28. 28.

    Kulczyk, A. W. & Richardson, C. C. The replication system of bacteriophage T7. Enzymes 39, 89–136 (2016).

  29. 29.

    Singleton, M. R., Sawaya, M. R., Ellenberger, T. & Wigley, D. B. Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell 101, 589–600 (2000).

  30. 30.

    Patel, S. S., Hingorani, M. M. & Ng, W. M. The K318A mutant of bacteriophage T7 DNA primase-helicase protein is deficient in helicase but not primase activity and inhibits primase-helicase protein wild-type activities by heterooligomer formation. Biochemistry 33, 7857–7868 (1994).

  31. 31.

    Sun, B. et al. ATP-induced helicase slippage reveals highly coordinated subunits. Nature 478, 132–135 (2011).

  32. 32.

    Stano, N. M. et al. DNA synthesis provides the driving force to accelerate DNA unwinding by a helicase. Nature 435, 370–373 (2005).

  33. 33.

    Kulczyk, A. W., Moeller, A., Meyer, P., Sliz, P. & Richardson, C. C. Cryo-EM structure of the replisome reveals multiple interactions coordinating DNA synthesis. Proc. Natl. Acad. Sci. USA 114, E1848–E1856 (2017). This study presents a cryo-EM organization of the T7 phage polymerases relative to the helicase–primase.

  34. 34.

    Kaplan, D. L. & O’Donnell, M. DnaB drives DNA branch migration and dislodges proteins while encircling two DNA strands. Mol. Cell. 10, 647–657 (2002).

  35. 35.

    Kim, S., Dallmann, H. G., McHenry, C. S. & Marians, K. J. Coupling of a replicative polymerase and helicase: a tau-DnaB interaction mediates rapid replication fork movement. Cell 84, 643–650 (1996).

  36. 36.

    Bailey, S., Eliason, W. K. & Steitz, T. A. Structure of hexameric DnaB helicase and its complex with a domain of DnaG primase. Science 318, 459–463 (2007).

  37. 37.

    LeBowitz, J. H. & McMacken, R. The Escherichia coli dnaB replication protein is a DNA helicase. J. Biol. Chem. 261, 4738–4748 (1986).

  38. 38.

    Story, R. M. & Steitz, T. A. Structure of the recA protein-ADP complex. Nature 355, 374–376 (1992).

  39. 39.

    Jezewska, M. J., Rajendran, S. & Bujalowski, W. Functional and structural heterogeneity of the DNA binding site of the Escherichia coli primary replicative helicase DnaB protein. J. Biol. Chem. 273, 9058–9069 (1998).

  40. 40.

    Kaplan, D. L. The 3′-tail of a forked-duplex sterically determines whether one or two DNA strands pass through the central channel of a replication-fork helicase. J. Mol. Biol. 301, 285–299 (2000).

  41. 41.

    Miller, J. M. & Enemark, E. J. Archaeal MCM proteins as an analog for the eukaryotic Mcm2-7 helicase to reveal essential features of structure and function. Archaea 2015, 305497 (2015).

  42. 42.

    Barry, E. R., McGeoch, A. T., Kelman, Z. & Bell, S. D. Archaeal MCM has separable processivity, substrate choice and helicase domains. Nucleic Acids Res. . 35, 988–998 (2007).

  43. 43.

    Fletcher, R. J. et al. The structure and function of MCM from archaeal M. Thermoautotrophicum. Nat. Struct. Biol. 10, 160–167 (2003).

  44. 44.

    Froelich, C. A., Kang, S., Epling, L. B., Bell, S. P. & Enemark, E. J. A conserved MCM single-stranded DNA binding element is essential for replication initiation. eLife 3, e01993 (2014).

  45. 45.

    Liu, W., Pucci, B., Rossi, M., Pisani, F. M. & Ladenstein, R. Structural analysis of the Sulfolobus solfataricus MCM protein N-terminal domain. Nucleic Acids Res. 36, 3235–3243 (2008).

  46. 46.

    Poplawski, A., Grabowski, B., Long, S. E. & Kelman, Z. The zinc finger domain of the archaeal minichromosome maintenance protein is required for helicase activity. J. Biol. Chem. 276, 49371–49377 (2001).

  47. 47.

    Brewster, A. S. et al. Crystal structure of a near-full-length archaeal MCM: functional insights for an AAA+ hexameric helicase. Proc. Natl. Acad. Sci. USA 105, 20191–20196 (2008).

  48. 48.

    Kasiviswanathan, R., Shin, J. H., Melamud, E. & Kelman, Z. Biochemical characterization of the Methanothermobacter thermautotrophicus minichromosome maintenance (MCM) helicase N-terminal domains. J. Biol. Chem. 279, 28358–28366 (2004).

  49. 49.

    Bae, B. et al. Insights into the architecture of the replicative helicase from the structure of an archaeal MCM homolog. Structure 17, 211–222 (2009).

  50. 50.

    Jenkinson, E. R. & Chong, J. P. Minichromosome maintenance helicase activity is controlled by N- and C-terminal motifs and requires the ATPase domain helix-2 insert. Proc. Natl. Acad. Sci. USA 103, 7613–7618 (2006).

  51. 51.

    Miller, J. M., Arachea, B. T., Epling, L. B. & Enemark, E. J. Analysis of the crystal structure of an active MCM hexamer. eLife 3, e03433 (2014).

  52. 52.

    Moreau, M. J., McGeoch, A. T., Lowe, A. R., Itzhaki, L. S. & Bell, S. D. ATPase site architecture and helicase mechanism of an archaeal MCM. Mol. Cell. 28, 304–314 (2007).

  53. 53.

    McGeoch, A. T., Trakselis, M. A., Laskey, R. A. & Bell, S. D. Organization of the archaeal MCM complex on DNA and implications for the helicase mechanism. Nat. Struct. Mol. Biol. 12, 756–762 (2005).

  54. 54.

    Rothenberg, E., Trakselis, M. A., Bell, S. D. & Ha, T. MCM forked substrate specificity involves dynamic interaction with the 5′-tail. J. Biol. Chem. 282, 34229–34234 (2007). This report makes the interesting observation that the excluded ssDNA strand bends around the nexus of tiers in replicative hexameric helicases.

  55. 55.

    Xu, Y. et al. Archaeal orthologs of Cdc45 and GINS form a stable complex that stimulates the helicase activity of MCM. Proc. Natl. Acad. Sci. USA 113, 13390–13395 (2016).

  56. 56.

    Yuan, Z. et al. Structural basis of Mcm2-7 replicative helicase loading by ORC-Cdc6 and Cdt1. Nat. Struct. Mol. Biol. 24, 316–324 (2017).

  57. 57.

    Lee, S. J. et al. Dynamic look at DNA unwinding by a replicative helicase. Proc. Natl. Acad. Sci. USA 111, E827–E835 (2014).

  58. 58.

    Gai, D., Wang, D., Li, S. X. & Chen, X. S. The structure of SV40 large T hexameric helicase in complex with AT-rich origin DNA. eLife 5, e18129 (2016). A crystal structure of SV40 T antigen with origin DNA is observed to squeeze dsDNA to promote initial melting.

  59. 59.

    Gai, D., Zhao, R., Li, D., Finkielstein, C. V. & Chen, X. S. Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigen. Cell 119, 47–60 (2004).

  60. 60.

    Li, D. et al. Structure of the replicative helicase of the oncoprotein SV40 large tumour antigen. Nature 423, 512–518 (2003).

  61. 61.

    Gai, D., Chang, Y. P. & Chen, X. S. Origin DNA melting and unwinding in DNA replication. Curr. Opin. Struct. Biol. 20, 756–762 (2010).

  62. 62.

    Gomez-Lorenzo, M. G. et al. Large T antigen on the simian virus 40 origin of replication: a 3D snapshot prior to DNA replication. EMBO J. 22, 6205–6213 (2003).

  63. 63.

    Schuck, S. & Stenlund, A. Assembly of a double hexameric helicase. Mol. Cell. 20, 377–389 (2005).

  64. 64.

    Yardimci, H. et al. Bypass of a protein barrier by a replicative DNA helicase. Nature 492, 205–209 (2012).

  65. 65.

    Bell, S. D. & Botchan, M. R. The minichromosome maintenance replicative helicase. Cold Spring Harb. Perspect. Biol. 5, a012807 (2013).

  66. 66.

    Bochman, M. L., Bell, S. P. & Schwacha, A. Subunit organization of Mcm2-7 and the unequal role of active sites in ATP hydrolysis and viability. Mol. Cell. Biol. 28, 5865–5873 (2008).

  67. 67.

    Ilves, I., Petojevic, T., Pesavento, J. J. & Botchan, M. R. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol. Cell. 37, 247–258 (2010).

  68. 68.

    Moyer, S. E., Lewis, P. W. & Botchan, M. R. Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc. Natl. Acad. Sci. USA 103, 10236–10241 (2006). This report demonstrated that an active eukaryotic CMG helicase is a stable 11-subunit complex, a 'holy grail', landmark finding for the field.

  69. 69.

    Davey, M. J., Indiani, C. & O’Donnell, M. Reconstitution of the Mcm2-7p heterohexamer, subunit arrangement, and ATP site architecture. J. Biol. Chem. 278, 4491–4499 (2003).

  70. 70.

    Ishimi, Y. A. DNA helicase activity is associated with an MCM4, -6, and -7 protein complex. J. Biol. Chem. 272, 24508–24513 (1997).

  71. 71.

    Bochman, M. L. & Schwacha, A. The Mcm2-7 complex has in vitro helicase activity. Mol. Cell. 31, 287–293 (2008).

  72. 72.

    Gambus, A. et al. GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat. Cell. Biol. 8, 358–366 (2006).

  73. 73.

    Abid Ali, F. et al. Cryo-EM structures of the eukaryotic replicative helicase bound to a translocation substrate. Nat. Commun. 7, 10708 (2016). The authors infer a cooperation, possibly due to twisting between the C tier and N tier, for translocation rather than a staircase process.

  74. 74.

    Costa, A. et al. The structural basis for MCM2-7 helicase activation by GINS and Cdc45. Nat. Struct. Mol. Biol. 18, 471–477 (2011). This negative-stain EM study revealed the position of GINS–Cdc45 within CMG for the first time.

  75. 75.

    Costa, A. et al. DNA binding polarity, dimerization, and ATPase ring remodeling in the CMG helicase of the eukaryotic replisome. eLife 3, e03273 (2014).

  76. 76.

    Sun, J. et al. The architecture of a eukaryotic replisome. Nat. Struct. Mol. Biol. 22, 976–982 (2015). The organization of a minimal replisome containing the Pol and Pol α–primase with Ctf4 on CMG is determined by negative-stain EM.

  77. 77.

    Yuan, Z. et al. Structure of the eukaryotic replicative CMG helicase suggests a pumpjack motion for translocation. Nat. Struct. Mol. Biol. 23, 217–224 (2016). This cryo-EM study of CMG suggests an inchworm model of translocation along DNA, via movements of either the N and C tiers or the C tier alone.

  78. 78.

    Petojevic, T. et al. Cdc45 (cell division cycle protein 45) guards the gate of the Eukaryote Replisome helicase stabilizing leading strand engagement. Proc. Natl. Acad. Sci. USA 112, E249–E258 (2015).

  79. 79.

    Zhai, Y. et al. Open-ringed structure of the Cdt1-Mcm2-7 complex as a precursor of the MCM double hexamer. Nat. Struct. Mol. Biol. 24, 300–308 (2017). This cryo-EM analysis of yeast Mcm2–7–Cdt1 suggests an inchworm process of translocation occurring within the C tier alone.

  80. 80.

    Langston, L. & O’Donnell, M. Action of CMG with strand-specific DNA blocks supports an internal unwinding mode for the eukaryotic replicative helicase. eLife 6, e23449 (2017).

  81. 81.

    Langston, L. D. et al. Mcm10 promotes rapid isomerization of CMG-DNA for replisome bypass of lagging strand DNA blocks. eLife 6, e29118 (2017). This report finds that Mcm10 activates CMG helicase and enables it to bypass lagging-strand blocks.

  82. 82.

    Lam, S. K. et al. The PS1 hairpin of Mcm3 is essential for viability and for DNA unwinding in vitro. PLoS. One 8, e82177 (2013).

  83. 83.

    Ramey, C. J. & Sclafani, R. A. Functional conservation of the pre-sensor one beta-finger hairpin (PS1-hp) structures in mini-chromosome maintenance proteins of Saccharomyces cerevisiae and Archaea. G3 (Bethesda) 4, 1319–1326 (2014).

  84. 84.

    Li, N. et al. Structure of the eukaryotic MCM complex at 3.8 Å. Nature 524, 186–191 (2015).

  85. 85.

    Remus, D. et al. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell 139, 719–730 (2009).

  86. 86.

    Coster, G. & Diffley, J. F. X. Bidirectional eukaryotic DNA replication is established by quasi-symmetrical helicase loading. Science 357, 314–318 (2017).

  87. 87.

    Lõoke, M., Maloney, M. F. & Bell, S. P. Mcm10 regulates DNA replication elongation by stimulating the CMG replicative helicase. Genes. Dev. 31, 291–305 (2017).

  88. 88.

    Devbhandari, S., Jiang, J., Kumar, C., Whitehouse, I. & Remus, D. Chromatin constrains the initiation and elongation of DNA replication. Mol. Cell. 65, 131–141 (2017).

  89. 89.

    Wallen, J. R. et al. Hybrid methods reveal multiple flexibly linked DNA polymerases within the bacteriophage T7 replisome. Structure 25, 157–166 (2017). A crystal structure is presented for three T7 polymerases bound to a gp4 hexamer, suggesting a structure that may precede loading onto DNA or be involved in replisome function.

  90. 90.

    Langston, L. D. et al. CMG helicase and DNA polymerase ε form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication. Proc. Natl. Acad. Sci. USA 111, 15390–15395 (2014).

  91. 91.

    Simon, A. C., Sannino, V., Costanzo, V. & Pellegrini, L. Structure of human Cdc45 and implications for CMG helicase function. Nat. Commun. 7, 11638 (2016).

  92. 92.

    Asturias, F. J. et al. Structure of Saccharomyces cerevisiae DNA polymerase epsilon by cryo-electron microscopy. Nat. Struct. Mol. Biol. 13, 35–43 (2006).

  93. 93.

    Zhou, J. C. et al. CMG-Pol epsilon dynamics suggests a mechanism for the establishment of leading-strand synthesis in the eukaryotic replisome. Proc. Natl. Acad. Sci. USA 114, 4141–4146 (2017). This cryo-EM study reveals flexible positions of the catalytic domain of Pol bound to CMG.

  94. 94.

    Kanke, M., Kodama, Y., Takahashi, T. S., Nakagawa, T. & Masukata, H. Mcm10 plays an essential role in origin DNA unwinding after loading of the CMG components. EMBO J. 31, 2182–2194 (2012).

  95. 95.

    van Deursen, F., Sengupta, S., De Piccoli, G., Sanchez-Diaz, A. & Labib, K. Mcm10 associates with the loaded DNA helicase at replication origins and defines a novel step in its activation. EMBO J. 31, 2195–2206 (2012).

Download references

Acknowledgements

We are grateful to N. Yao (Rockefeller University) and L. Bai (Van Andel Research Institute) for making some of the illustrations in this review. This work was supported by grants from the NIH (GM111472 and GM124170 (to H.L.) and GM115809 (to M.O’D.)), the Van Andel Research Institute (H.L.) and the Howard Hughes Medical Institute (M.O’D.). We thank members of the O’Donnell lab and the Li lab for their contribution to some of the studies described here.

Author information

Affiliations

  1. Department of DNA Replication, Rockefeller University and HHMI, New York, NY, USA

    • Michael E. O’Donnell
  2. Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, USA

    • Huilin Li

Authors

  1. Search for Michael E. O’Donnell in:

  2. Search for Huilin Li in:

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Michael E. O’Donnell or Huilin Li.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41594-018-0024-x