Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Higher-order interactions between hippocampal CA1 neurons are disrupted in amnestic mice

Abstract

Across systems, higher-order interactions between components govern emergent dynamics. Here we tested whether contextual threat memory retrieval in mice relies on higher-order interactions between dorsal CA1 hippocampal neurons requiring learning-induced dendritic spine plasticity. We compared population-level Ca2+ transients as wild-type mice (with intact learning-induced spine plasticity and memory) and amnestic mice (TgCRND8 mice with high levels of amyloid-β and deficits in learning-induced spine plasticity and memory) were tested for memory. Using machine-learning classifiers with different capacities to use input data with complex interactions, our findings indicate complex neuronal interactions in the memory representation of wild-type, but not amnestic, mice. Moreover, a peptide that partially restored learning-induced spine plasticity also restored the statistical complexity of the memory representation and memory behavior in Tg mice. These findings provide a previously missing bridge between levels of analysis in memory research, linking receptors, spines, higher-order neuronal dynamics and behavior.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: High Aβ in dorsal hippocampus decreased surface GluA2-containing AMPAR levels, disrupted learning-induced spine growth and spatial memory, effects reversed by a peptide designed to disrupt GluA2 endocytosis.
Fig. 2: High Aβ in dorsal hippocampus impaired long-term contextual threat memory, an effect reversed by a peptide designed to disrupt GluR2 AMPAR endocytosis.
Fig. 3: TAT-GluA23Y restored deficit in contextual threat memory representation at level of individual neuron in Tg mice.
Fig. 4: Deficits in threat memory representation at neuronal population level in Tg mice restored by TAT-GluA23Y.
Fig. 5: TAT-GluA23Y partially restores impaired pattern completion-like process in Tg mice.

Similar content being viewed by others

Data availability

The datasets generated and analyzed in the current study are available at https://github.com/jf-lab/ad_network_dysfunction. Source data are provided with this paper.

Code availability

Custom code for behavioral and calcium imaging analysis available at https://github.com/jf-lab/ad_network_dysfunction.

References

  1. Tulving, E. in Organization of Memory (eds Tulving, E. & Donaldson, W.) 381–403 (Academic Press, 1972).

  2. O’Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971).

    Article  PubMed  Google Scholar 

  3. Buzsáki, G. Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68, 362–385 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Eichenbaum, H. Prefrontal–hippocampal interactions in episodic memory. Nat. Rev. Neurosci. 18, 547–558 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Yuste, R. From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 16, 487–497 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Ohiorhenuan, I. E. et al. Sparse coding and high-order correlations in fine-scale cortical networks. Nature 466, 617–621 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Panzeri, S., Moroni, M., Safaai, H. & Harvey, C. D. The structures and functions of correlations in neural population codes. Nat. Rev. Neurosci. 23, 551–567 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Shahidi, N., Andrei, A. R., Hu, M. & Dragoi, V. High-order coordination of cortical spiking activity modulates perceptual accuracy. Nat. Neurosci. 22, 1148–1158 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Balaguer-Ballester, E., Nogueira, R., Abolafia, J. M., Moreno-Bote, R. & Sanchez-Vives, M. V. Representation of foreseeable choice outcomes in orbitofrontal cortex triplet-wise interactions. PLoS Comput. Biol. 16, e1007862 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vogels, T. P., Rajan, K. & Abbott, L. F. Neural network dynamics. Annu Rev. Neurosci. 28, 357–376 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Peters, A. J., Chen, S. X. & Komiyama, T. Emergence of reproducible spatiotemporal activity during motor learning. Nature 510, 263–267 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. LaFerla, F. M., Green, K. N. & Oddo, S. Intracellular amyloid-β in Alzheimer’s disease. Nat. Rev. Neurosci. 8, 499–509 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Mucke, L. et al. High-level neuronal expression of aβ 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J. Neurosci. 20, 4050–4058 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Terry, R. D. et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572–580 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Morris, G. P., Clark, I. A. & Vissel, B. Inconsistencies and controversies surrounding the amyloid hypothesis of Alzheimer’s disease. Acta Neuropathol. Commun. 2, 135 (2014).

    PubMed  PubMed Central  Google Scholar 

  16. Hsieh, H. et al. AMPAR removal underlies Aβ-induced synaptic depression and dendritic spine loss. Neuron 52, 831–843 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Du, Y. et al. TRPV1 activation alleviates cognitive and synaptic plasticity impairments through inhibiting AMPAR endocytosis in APP23/PS45 mouse model of Alzheimer’s disease. Aging Cell 19, e13113 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chishti, M. A. et al. Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J. Biol. Chem. 276, 21562–21570 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Yiu, A. P., Rashid, A. J. & Josselyn, S. A. Increasing CREB Function in the CA1 region of dorsal hippocampus rescues the spatial memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology https://doi.org/10.1038/npp.2011.107 (2011).

  20. Xia, F. et al. Entorhinal cortical deep-brain stimulation rescues memory deficits in both young and old mice genetically engineered to model Alzheimer’s disease. Neuropsychopharmacology https://doi.org/10.1038/npp.2017.100 (2017).

  21. Morris, R. G., Garrud, P., Rawlins, J. N. & O’Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 297, 681–683 (1982).

    Article  CAS  PubMed  Google Scholar 

  22. Cole, C. J. et al. MEF2 negatively regulates learning-induced structural plasticity and memory formation. Nat. Neurosci. 15, 1255–1264 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Moser, M. B., Trommald, M. & Andersen, P. An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses. Proc. Natl Acad. Sci. USA 91, 12673–12675 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Epp, J. R. et al. Optimization of CLARITY for clearing whole-brain and other intact organs(1,2,3). eNeuro 2, ENEURO.0022-15.2015 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chung, K. & Deisseroth, K. CLARITY for mapping the nervous system. Nat. Methods 10, 508–513 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Citron, M. et al. Excessive production of amyloid β-protein by peripheral cells of symptomatic and presymptomatic patients carrying the Swedish familial Alzheimer disease mutation. PNAS 91, 11993–11997 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brebner, K. et al. Nucleus accumbens long-term depression and the expression of behavioral sensitization. Science 310, 1340–1343 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Oakley, H. et al. Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J. Neurosci. 26, 10129–10140 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maren, S., Aharonov, G. & Fanselow, M. S. Neurotoxic lesions of the dorsal hippocampus and Pavlovian fear conditioning in rats. Behav. Brain Res 88, 261–274 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. He, K., Lee, A., Song, L., Kanold, P. O. & Lee, H. K. AMPA receptor subunit GluR1 (GluA1) serine-845 site is involved in synaptic depression but not in spine shrinkage associated with chemical long-term depression. J. Neurophysiol. 105, 1897–1907 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jacob, A. D. et al. A compact head-mounted endoscope for in vivo calcium imaging in freely behaving mice. Curr. Protoc. Neurosci. 84, e51 (2018).

    Article  PubMed  Google Scholar 

  32. Mocle, A. J. et al. Excitability mediates allocation of pre-configured ensembles to a hippocampal engram supporting contextual conditioned threat in mice. Neuron 112, 1487–1497.e1486 (2024).

    Article  CAS  PubMed  Google Scholar 

  33. de Snoo, M. L., Miller, A. M. P., Ramsaran, A. I., Josselyn, S. A. & Frankland, P. W. Exercise accelerates place cell representational drift. Curr. Biol. 33, R96–R97 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Miller, A. M. P. et al. Emergence of a predictive model in the hippocampus. Neuron https://doi.org/10.1016/j.neuron.2023.03.011 (2023).

  35. Rane, M. & Manchanda, R. Effects of location and extent of spine clustering on synaptic integration in striatal medium spiny neurons-a computational study. Med. Biol. Eng. Comput. 56, 1173–1187 (2018).

    Article  PubMed  Google Scholar 

  36. Mukamel, E. A., Nimmerjahn, A. & Schnitzer, M. J. Automated analysis of cellular signals from large-scale calcium imaging data. Neuron 63, 747–760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Palop, J. J. et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron 55, 697–711 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yassa, M. A. et al. High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic mild cognitive impairment. Neuroimage 51, 1242–1252 (2010).

    Article  PubMed  Google Scholar 

  39. Ross, B. C. Mutual information between discrete and continuous data sets. PLoS ONE 9, e87357 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Skaggs, W. E., McNaughton, B. L., Gothard, K. M. & Markus, E. J. in Advances in neural information processing systems (eds Hanson, S. J., Cowan, J. D. & Giles, C. J.) 1030–1037 (Morgan Kaufmann, 1993).

  41. Mably, A. J., Gereke, B. J., Jones, D. T. & Colgin, L. L. Impairments in spatial representations and rhythmic coordination of place cells in the 3xTg mouse model of Alzheimer’s disease. Hippocampus 27, 378–392 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Cacucci, F., Yi, M., Wills, T. J., Chapman, P. & O’Keefe, J. Place cell firing correlates with memory deficits and amyloid plaque burden in Tg2576 Alzheimer mouse model. Proc. Natl Acad. Sci. USA 105, 7863–7868 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Glaser, J. I., Benjamin, A. S., Farhoodi, R. & Kording, K. P. The roles of supervised machine learning in systems neuroscience. Prog. Neurobiol. 175, 126–137 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bonaccorso, G. Machine Learning Algorithms: A Reference Guide to Popular Algorithms for Data Science and Machine Learning (Packt Publishing, 2017).

  45. Park, J. & Sandberg, I. W. Universal approximation using radial-basis-function networks. Neural Comput. 3, 246–257 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Pearson, K. The Chances of Death, and Other Studies in Evolution (E. Arnold, 1897).

  47. Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yu, S. et al. Higher-order interactions characterized in cortical activity. J. Neurosci. 31, 17514–17526 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Faisal, A. A., Selen, L. P. & Wolpert, D. M. Noise in the nervous system. Nat. Rev. Neurosci. 9, 292–303 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rabinowitz, N. C., Willmore, B. D., King, A. J. & Schnupp, J. W. Constructing noise-invariant representations of sound in the auditory pathway. PLoS Biol. 11, e1001710 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Averbeck, B. B., Latham, P. E. & Pouget, A. Neural correlations, population coding and computation. Nat. Rev. Neurosci. 7, 358–366 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Battiston, F. et al. The physics of higher-order interactions in complex systems. Nat. Phys. 17, 1093–1098 (2021).

    Article  CAS  Google Scholar 

  53. Skardal, P. S. & Arenas, A. Higher order interactions in complex networks of phase oscillators promote abrupt synchronization switching. Commun. Phys. 3, 218 (2020).

    Article  Google Scholar 

  54. Marr, A. Simple memory: a theory for archicortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 262, 23–81 (1971).

    Article  CAS  PubMed  Google Scholar 

  55. McNaughton, B. L. & Morris, R. G. M. Hippocampal synpatic enhancement and information storage within a distributed memory systems. Trends Neurosci. 10, 408–415 (1987).

    Article  Google Scholar 

  56. Horn, D., Ruppin, E., Usher, M. & Herrmann, M. Neural network modeling of memory deterioration in Alzheimer’s disease. Neural Comput. 5, 736–749 (1993).

    Article  Google Scholar 

  57. Pariente, J. et al. Alzheimer’s patients engage an alternative network during a memory task. Ann. Neurol. 58, 870–879 (2005).

    Article  PubMed  Google Scholar 

  58. Quiroz, Y. T. et al. Hippocampal hyperactivation in presymptomatic familial Alzheimer’s disease. Ann. Neurol. 68, 865–875 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Erk, S. et al. Evidence of neuronal compensation during episodic memory in subjective memory impairment. Arch. Gen. Psychiatry 68, 845–852 (2011).

    Article  PubMed  Google Scholar 

  60. Hongpaisan, J., Sun, M. K. & Alkon, D. L. PKC epsilon activation prevents synaptic loss, Aβ elevation, and cognitive deficits in Alzheimer’s disease transgenic mice. J. Neurosci. 31, 630–643 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rashid, A. J. et al. Competition between engrams influences fear memory formation and recall. Science 353, 383–387 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chaudhury, D. et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493, 532–536 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Krishnan, V. et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131, 391–404 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Park, S. et al. Neuronal allocation to a hippocampal engram. Neuropsychopharmacology 41, 2987–2993 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jung, J. H. et al. Examining the engram encoding specificity hypothesis in mice. Neuron https://doi.org/10.1016/j.neuron.2023.03.007 (2023).

  66. Carlezon, W. A. Jr., Nestler, E. J. & Neve, R. L. Herpes simplex virus-mediated gene transfer as a tool for neuropsychiatric research. Crit. Rev. Neurobiol. 14, 47–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Russo, S. J. et al. Nuclear factor κB signaling regulates neuronal morphology and cocaine reward. J. Neurosci. 29, 3529–3537 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang, Y. T. Probing the role of AMPAR endocytosis and long-term depression in behavioural sensitization: relevance to treatment of brain disorders, including drug addiction. Br. J. Pharmacol. 153, S389–S395 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Ahmadian, G. et al. Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD. EMBO J. 23, 1040–1050 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fox, C. J., Russell, K., Titterness, A. K., Wang, Y. T. & Christie, B. R. Tyrosine phosphorylation of the GluR2 subunit is required for long-term depression of synaptic efficacy in young animals in vivo. Hippocampus 17, 600–605 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Wagstaff, K. M. & Jans, D. A. Protein transduction: cell penetrating peptides and their therapeutic applications. Curr. Med. Chem. 13, 1371–1387 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Brooks, H., Lebleu, B. & Vives, E. TAT peptide-mediated cellular delivery: back to basics. Adv. Drug Deliv. Rev. 57, 559–577 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Paxinos, G. & Franklin, K. B. J. The Mouse Brain in Stereotaxic Coordinates, 2nd edn (Academic Press, 2001).

  74. Barrot, M. et al. CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli. Proc. Natl Acad. Sci. USA 99, 11435–11440 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Caplan, L. J. & Lipman, P. D. Age and gender differences in the effectiveness of map-like learning aids in memory for routes. J. Gerontol. B Psychol. Sci. Soc. Sci. 50, P126–P133 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Moffat, S. D., Zonderman, A. B. & Resnick, S. M. Age differences in spatial memory in a virtual environment navigation task. Neurobiol. Aging 22, 787–796 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Ohta, R. J., Walsh, D. A. & Krauss, I. K. Spatial perspective-taking ability in young and elderly adults. Exp. Aging Res 7, 45–63 (1981).

    Article  CAS  PubMed  Google Scholar 

  78. O’Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Clarendon Press, 1978).

  79. Nadel, L. & McDonald, L. Hippocampus: cognitive map or working memory? Behav. Neurol. Biol. 29, 405–409 (1980).

    Article  CAS  Google Scholar 

  80. Jarrard, L. E. Selective hippocampal lesions: differential effects on performance by rats of a spatial task with preoperative versus postoperative training. J. Comp. Physiol. Psychol. 92, 1119–1127 (1978).

    Article  CAS  PubMed  Google Scholar 

  81. Fanselow, M. S. & Lester, L. S. in Evolution and Learning. 185–212 (Lawrence Erlbaum Associates, 1988).

  82. Roelofs, K. & Dayan, P. Freezing revisited: coordinated autonomic and central optimization of threat coping. Nat. Rev. Neurosci. 23, 568–580 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Blanchard, R. J. & Blanchard, D. C. Crouching as an index of fear. J. Comp. Physiol. Psychol. 67, 370–375 (1969).

    Article  CAS  PubMed  Google Scholar 

  84. Bailey, C. H. & Kandel, E. R. Structural changes accompanying memory storage. Annu Rev. Physiol. 55, 397–426 (1993).

    Article  CAS  PubMed  Google Scholar 

  85. Lamprecht, R. & LeDoux, J. Structural plasticity and memory. Nat. Rev. Neurosci. 5, 45–54 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Feldman, M. L. & Dowd, C. Loss of dendritic spines in aging cerebral cortex. Anat. Embryol. 148, 279–301 (1975).

    Article  CAS  Google Scholar 

  87. Horner, C. H. & Arbuthnott, E. Methods of estimation of spine density–are spines evenly distributed throughout the dendritic field? J. Anat. 177, 179–184 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Harrison, H. H., Miller, K. L., Dickinson, C. & Daufeldt, J. A. Quality assurance and reproducibility of high-resolution two-dimensional electrophoresis and silver staining in polyacrylamide gels. Am. J. Clin. Pathol. 97, 97–105 (1992).

    Article  CAS  PubMed  Google Scholar 

  89. Tyler, W. J. & Pozzo-Miller, L. Miniature synaptic transmission and BDNF modulate dendritic spine growth and form in rat CA1 neurones. J. Physiol. 553, 497–509 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Read, T. R. et al. Provision of rapid HIV tests within a health service and frequency of HIV testing among men who have sex with men: randomised controlled trial. Brit. Med. J. 347, f5086 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Mahmmoud, R. R. et al. Spatial and working memory is linked to spine density and mushroom spines. PLoS ONE 10, e0139739 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Leuner, B., Falduto, J. & Shors, T. J. Associative memory formation increases the observation of dendritic spines in the hippocampus. J. Neurosci. 23, 659–665 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Holman, D. & Henley, J. M. A novel method for monitoring the cell surface expression of heteromeric protein complexes in dispersed neurons and acute hippocampal slices. J. Neurosci. Methods 160, 302–308 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Dana, H. et al. Thy1-GCaMP6 transgenic mice for neuronal population imaging in vivo. PLoS ONE 9, e108697 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ghosh, K. K. et al. Miniaturized integration of a fluorescence microscope. Nat. Methods 8, 871–878 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ziv, Y. et al. Long-term dynamics of CA1 hippocampal place codes. Nat. Neurosci. 16, 264–266 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kozachenko, L. & Leonenko, N. Sample estimate of the entropy of a random vector. Probl. Pereda. Inf. 23, 9–16 (1987).

    Google Scholar 

  98. Victor, J. D. Binless strategies for estimation of information from neural data. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 66, 051903 (2002).

    Article  Google Scholar 

  99. Boser, B. E., Guyon, I. M. & Vapnik, V. N. in Proc. 5th Annual Workshop on Computational Learning Theory (ed. Haussler, D.) 144–152 (ACM Press, 1992).

Download references

Acknowledgements

We thank A. DeCristofaro, D. Lin and M. Yamamoto for technical support, C. Yuan and D. Abdo for behavior scoring, and the entire Josselyn and Frankland laboratories for advice and discussion. This work was supported by grants from NIMH (R01 MH119421-01) and Brain Canada Foundation to S.A.J. and P.W.F., CIHR (FDN-159919) to S.A.J., CIHR (FDN-143227) to P.W.F., NSERC CGS-D and a National Institutes of Health grant (F31 MH120920-01) to A.R.M. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and methodology was carried out by C.Y., V.M., A.D.J., P.W.F. and S.A.J. Investigation and formal analysis was conducted by C.Y., V.M., A.D.J., E.K., A.M., A.I.R., L.T., A.J.R., S.P., N.I. and A.D.R. Writing of the original draft was carried out by C.Y., V.M., A.D.J. and S.A.J. Writing (reviewing and editing) was conducted by all authors. Funding was acquired by P.W.F. and S.A.J. Supervision was carried out by P.W.F. and S.A.J.

Corresponding author

Correspondence to Sheena A. Josselyn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Takashi Kitamura and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Increasing Aβ in CA1 region of dorsal hippocampus disrupts spatial memory.

(A) (Left) Higher Aβ1-42 levels in hippocampal extract from TgCRND8 (Tg) than WT littermate control mice (one-way ANOVA, F(1,11) = 5990.70, p < .0001). n = number of mice, (Right) Representative image showing no evidence of plaques in Tg mice at this age. (B) Top-down depiction of watermaze pool (60 cm radius). During training, the platform (5 cm radius) was located in a fixed location. In probe test, spatial memory was quantified by removing platform from pool and measuring amount of time mice spent searching in target zone (20 cm radius, centered on location of platform during training; 11% of pool surface) versus average time spent in three other equivalent (in terms of size and distance from edge) zones in other quadrants of pool. (C) (Left) Tg mice showed deficits in training phase of watermaze task. Decreased latency (time to reach the platform) over the 3d of training (D1-D3) in WT mice, but not in Tg littermates (2-way ANOVA, Genotype Day interaction, F(2,34) = 4.86, p = .014). (Right) Swim speeds not different between Tg and WT littermates (unpaired t-test, t(17) = .794, p = .438). n = number of mice. (D) Microinjection of vAPP (vAPP+GFP) in CA1 of dorsal hippocampus of WT mice induced robust transgene expression [GFP expression, DAPI (blue)]. (E) Higher Aβ1-42 in hippocampal extract from WT mice microinjected with virus expressing vAPP than WT mice microinjected with control virus (vGFP expressing GFP only, or vAPPMV expressing a form of APP that cannot produce Aβ (1-way ANOVA, between- group factor Vector, F(2,10) = 7.54, p = .010). n = number of mice. (F) Intact watermaze training performance in WT mice microinjected with vAPP (even though these mice showed profound spatial memory deficits during probe test). WT mice microinjected with vAPP or control vectors (vGFP, vAPPMV) showed similar escape latencies over 3d of training (2-way ANOVA with between-group factor Vector and within-group factor Day, no significant Vector Day interaction, F(4,56) = 1.604, p = .186, but significant effect of Day, F(2,56) = 49.07, p < .0001 and Vector, F(2,28) = 3.99, p = .0298, mice from all groups showed similar escape latencies on the first and second training days). (Right) Swim speeds not different between groups (one-way ANOVA, between-group factor Vector, F(2,28) = 1.90, p = .168). n = number of mice. (G) TAT-GluA23Y, but not control peptides, restored spatial memory deficit produced by vAPP in WT mice. Mice microinjected with vAPP that received control peptides before training (TAT inactive, TAT-Cntrl, GluA23Y no TAT) spent less time in T zone compared to mice microinjected with GFP (TAT-Cntrl) or mice microinjected with vAPP and treated with TAT-GluA23Y peptide (2-way repeated-measures ANOVA, between- group factors Treatment and Zone, Treatment × Zone interaction, F(4,34) = 8.39, p < .0001, * indicates different from percent time in T zone in WT mice microinjected with GFP vector+TAT-Cntrl). n = number of mice. (H) TAT-GluA23Y rescued spatial memory impairments in 5×FAD mice (2-way repeated- measures ANOVA, between-group factors Treatment and Zone, Treatment × Zone interaction, F(3,49) = 7.28, p = 3.93 × 10-4). n = number of mice. (I) TAT-GluA23Y peptide did not influence levels of Aβ1-40 (2-way ANOVA, between- group factors Genotype and Treatment, main effect of Genotype only, F(1, 12) = 2814, p <.0001) or Aβ1-42 (same factors, main effect of Genotype only, F(1,13) = 319, p < .0001) in WT or Tg primary hippocampal neurons. As expected, neurons from WT mice showed low Aβ1 − 40 or Aβ1 − 42 and neurons from Tg mice showed high Aβ1 − 40 and Aβ1 − 42 levels, regardless of TAT-GluA23Y treatment. n = primary hippocampal cultures.All data presented as mean ± SEM. Details of statistical analysis are listed in the Methods. *p < .05, n.s. = not statistically different.

Extended Data Fig. 2 Low-order statistics do not explain differences in Tg + TAT-Cntrl mice from other groups.

(A) The number of neurons detected per animal does not differ significantly between groups. 2-way ANOVA, no significant main effects of Genotype or Treatment, no significant Genotype Treatment interaction. (B) Peri-event plot of GCaMP activity of all neurons in seconds before and during freezing in the Test session (all freezing bouts aligned to Time 0, yellow dotted line) appears similar across groups. n = number of neurons. (C) Differences in number of recorded cells does not account for classifier performance across groups. All classifiers were trained on data from a randomly selected, fixed number of cells (10, 25, 100, or all cells; see Methods; Subsampling cells and frames). One-way analyses of variance on each experimental condition revealed a significant main effect of Classifier in all conditions except Tg TAT-Cntrl for all cell subsample conditions. (D) Differences in amount of freezing does not account for classifier performance across groups. All classifiers were trained on data from a randomly selected 300 or 1000 freezing frames and an equivalent number of non-freezing frames (see Methods; Subsampling cells and frames). One-way analyses of variance on each experimental condition revealed a significant main effect of Classifier in all conditions except Tg+-TAT-Cntrl for all frame subsample conditions. WT+TAT-Cntrl n = 10, WT+TAT-GluA23Y n = 6, Tg+TAT-Cntrl n = 4, Tg+TAT-GluA23Y = 7. (E) Differences in amount of freezing and number of cells together do not account for classifier performance across groups. Combining approaches from C and D, all classifiers were trained on data from a randomly selected 25 cells, comprising 1000 freezing frames and an equivalent number of non-freezing frames (see Methods; Subsampling cells and frames). One- way analyses of variance on each experimental condition revealed a significant main effect of Classifier in all conditions except Tg+TAT-Cntrl for all frame subsample conditions. WT+TAT-Cntrl n = 10, WT+ TAT-GluA23Y n = 6, Tg+TAT-Cntrl n = 4, Tg+TAT-GluA23Y = 7. (F) Test subsampling approach does not account for classifier performance across groups. To account for imbalances between classes in the test dataset, we compared a balanced accuracy approach to a balanced subsampling approach (see Methods; Balanced subsampling procedure). There were no significant differences between sampling types in any pairing. (G) Different linear classifiers have equivalent performance decoding freezing behavior. Linear discriminant analysis (LDA), logistic regression (LR) and linear support vector machine (SVM) classifiers showed no difference in balanced accuracy across groups. A 3- way ANOVA revealed no significant main effect of Classifier, and no significant interactions between Classifier and Genotype and/or Treatment. (H) Normalizing the high overall cell activity in Tg+TAT-Cntrl mice to WT+TAT-Cntrl levels does not increase accuracy of high-capacity NN classifier in decoding freezing behavior in Tg mice. (Left) Average cell activity in WT+TAT-Cntrl mice (dark gray bars), Tg+TAT-Cntrl mice (orange bars) and in Tg+TAT-Cntrl mice in which highly active cells were removed (light gray bar) such that average cell activity does not differ from that observed in WT +TAT-Cntrl mice. Boxplot presented as 1.5 × the interquartile range (whiskers), 25th and 75th percentile (box) and median (center line). (Right) NN classifier accuracy in decoding freezing behavior is higher in WT mice (dark gray bar) than Tg mice with all cells considered (orange bar). Removing cells with high activity from Tg mice such that overall cell activity does not differ between Tg and WT mice does not increase NN classifier accuracy (light gray bar). Therefore, normalizing cell activity in Tg+TAT-Cntrl does not improve the ability of the NN classifier to decode freezing behavior, suggesting that high neuronal activity alone cannot account for the relatively poor accuracy of the NN classifier in Tg mice relative to WT mice. n = number of neurons. (I) No difference in levels of pairwise cell correlation during test session across mouse groups (average pairwise correlation, no significant main effects of Genotype or Treatment, no significant Genotype Treatment interaction.). (J) Eliminating coordinated population information impairs high-capacity classifier performance. Training classifiers on single-cell data (see Methods; Single-cell classifier analysis) reduces classification accuracy compared to classifiers trained on population data. (K) Differences in numbers of cells or amount of freezing between groups does not explain performance of single-cell classifiers. Training data was limited to a randomly selected 25 cells and 1000 frames of freezing and non-freezing data in all animals (as in E, see Methods; Subsampling cells and frames). Single-cell classifiers (see Methods; Single-cell classifier analysis) showed significantly worse performance than full classifiers when trained on this restricted dataset. † = p = 0.054. All data presented as mean ± SEM. Details of statistical analysis are listed in the Methods. *p < .05, **p < 0.01, *** p < 0.001, n.s. = not statistically different. In panels A, C-G & I-K, n = number of mice. In panels A,C,F,I-K, group sizes: WT+TAT-Cntrl n = 10, W +TAT-GluA23Y n = 7, Tg+TAT-Cntrl n = 6, Tg+TAT-GluA23Y = 7.

Extended Data Table 1 Summary data from calcium imaging mice

Supplementary information

Supplementary Information

Detailed statistical analyses for Extended Data Fig. 2.

Reporting Summary

Source data

Source Data Fig. 1

Unprocessed gels supporting Fig. 1e.

Source Data Fig. 1

Statistical Source Data supporting Fig. 1.

Source Data Fig. 2

Statistical Source Data supporting Fig. 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, C., Mercaldo, V., Jacob, A.D. et al. Higher-order interactions between hippocampal CA1 neurons are disrupted in amnestic mice. Nat Neurosci 27, 1794–1804 (2024). https://doi.org/10.1038/s41593-024-01713-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-024-01713-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing