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Abstract deliberation by visuomotor 
neurons in prefrontal cortex

Julie A. Charlton1,2 & Robbe L. T. Goris    1 

During visually guided behavior, the prefrontal cortex plays a pivotal role in 
mapping sensory inputs onto appropriate motor plans. When the sensory 
input is ambiguous, this involves deliberation. It is not known whether the 
deliberation is implemented as a competition between possible stimulus 
interpretations or between possible motor plans. Here we study neural 
population activity in the prefrontal cortex of macaque monkeys trained 
to flexibly report perceptual judgments of ambiguous visual stimuli. We 
find that the population activity initially represents the formation of a 
perceptual choice before transitioning into the representation of the motor 
plan. Stimulus strength and prior expectations both bear on the formation 
of the perceptual choice, but not on the formation of the action plan. These 
results suggest that prefrontal circuits involved in action selection are also 
used for the deliberation of abstract propositions divorced from a specific 
motor plan, thus providing a crucial mechanism for abstract reasoning.

Actions are guided by perceptual interpretations of the environment. 
Within a given context, perceptual interpretations may be stereotypi-
cally linked to specific actions. For example, when a driver in congested 
traffic sees the car ahead slow down, she will lift her foot from the gas 
pedal. When she sees the car speed up, she will instead press the gas 
pedal more firmly. Perceptual estimates of changes in car speed are 
imperfect. Deciding how to act in traffic therefore requires deliberation, 
especially when the changes are subtle. Deliberation here refers to the 
computational process of weighing evidence in favor of different choice 
options. Under static contextual circumstances, brain regions involved 
in action selection appear to represent such deliberation processes as 
a competition among possible action plans1–3. In the example above, 
this would mean that the deliberation process is implemented as a 
competition between a set of motor neurons responsible for lifting the 
foot and a second set responsible for pressing it down. In principle, this 
‘intentional’ strategy can be used for many types of decisions that cul-
minate in action4–6. Alternatively, perceptually guided decision-making 
could involve competition between a set of neurons responsible for 
perceiving the car ahead as slowing down, and a second set responsi-
ble for perceiving it as speeding up. The outcome of this deliberation 
process would then inform the ensuing action. The key distinction is 
that this type of deliberation involves more abstract propositions that 
are not linked to movements per se7,8.

Natural behavior occurs under many different contexts and there-
fore generally requires a flexible association between perceptual inter-
pretation and motor response. It has been hypothesized that, when 
such flexibility is required, deliberation may consist of a competition 
among possible interpretations of the sensory environment rather 
than among possible action plans9–12. Here, we test this hypothesis 
using a task that requires flexible reporting of perceptual decisions. 
We trained two macaque monkeys (F and J) to judge whether a visual 
stimulus presented near the central visual field was oriented clockwise 
or counterclockwise from vertical (Fig. 1a–d). The monkeys communi-
cated their judgment with a saccade to one of two peripheral visual tar-
gets. The meaning of each response option was signaled by the target’s 
orientation (clockwise versus counterclockwise), and was unrelated 
to its spatial position (one target was placed in the neurons’ estimated 
motor response field, the other on the opposite side of the fixation 
mark; Methods). Because the spatial configuration of the choice targets 
varied randomly from trial to trial, the task requires subjects to flexibly 
switch between two stimulus-response mapping rules (Fig. 1a). While 
the animals performed this task, we recorded extracellular responses 
from neural ensembles in the prearcuate gyrus (Supplementary Fig. 1), 
an area of prefrontal cortex (PFC) involved in the selection of saccadic 
eye movements13,14 that represents visuomotor deliberation2,15. Impor-
tantly, the choice targets in our task are presented before the onset of 
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(median difference in orientation sensitivity: monkey J = 4.4%, P = 0.45, 
N = 32; monkey F = 4.7%, P = 0.38, N = 26; Wilcoxon signed-rank test; 
Fig. 1d). This pattern was also evident in the animals’ saccade latency 
(Extended Data Fig. 1b). Together, these results suggest that, within 
each session, the quality and duration of the decision process did not 
vary meaningfully across the two mapping rules.

What is the nature of the decision process that underlies this 
flexible behavior? One viable strategy would be to evaluate which 
saccadic eye movement is more likely to be correct (the ‘intentional’ 
hypothesis; Supplementary Fig. 2). In principle, this strategy can 
be instantiated by oculomotor neural circuits. Alternatively, the 
deliberation may concern which categorical choice option is most 
likely to be correct (the ‘abstract’ hypothesis; Supplementary Fig. 2). 
However, it is not clear which neural circuits would instantiate this 
computation. Finally, the deliberation process might involve joint 
consideration of the stimulus category and the corresponding motor 
plan (the ‘mixture’ hypothesis; Supplementary Fig. 2). We designed 
the task such that each of these strategies produces a qualitatively 
distinct ‘motif’ of population activity that represents the unfolding 
visuomotor deliberation process. The motifs are defined by the joint 
evolution of activity related to the upcoming categorical choice and 
the upcoming saccade direction (Fig. 1e–g). We thus set out to char-
acterize the dynamic structure of population activity in PFC while the 
animals generated this behavior.

Consider the activity of four simultaneously recorded units. We 
targeted neurons whose motor response field was likely to overlap 
with one of the choice target locations (Methods). Grouping trials 
by saccade direction confirmed that the activity of many units was 
predictive of the upcoming motor response (Fig. 2a, top (dark versus 
light orange)). Grouping the same trials instead by saccade meaning 

the stimulus, allowing the subjects to either adopt an intentional or an 
abstract deliberation strategy.

We found that the activity of many units was not only predictive 
of the upcoming motor response, but also of the categorical meaning 
of the perceptual choice. To gain further insight into the evolving 
decision state of the monkeys, we computed a time-varying decision 
variable (DV) composed of two dimensions that reflect the ‘categori-
cal’ and ‘motor’ components of the neural population response. We 
demonstrate that, following stimulus onset, population activity initially 
represents the formation of a perceptual choice before transitioning 
into the stereotypical representation of the upcoming motor response. 
As predicted by theoretical models of decision-making, the formation 
of the perceptual choice reflected a graded representation of evidence, 
informed by both the current sensory input and stimulus expectations. 
This was not true of the evolving representation of the motor plan, 
which unfolded later, in an orthogonal dimension. Together, these 
results suggest that prefrontal circuits involved in action selection also 
support deliberation among abstract propositions.

Results
Behavior and single unit responses
Both monkeys learned to categorize stimulus orientation successfully 
under the two mapping rules. Their perceptual choices were distrib-
uted evenly among both response alternatives (Fig. 1b), and depended 
lawfully on stimulus orientation (Fig. 1c). They made few errors in the 
easiest stimulus conditions (monkey F = ±3.75 degrees, median perfor-
mance, 96.25% correct; monkey J = ±3.3 degrees, median performance, 
94.38% correct; Extended Data Fig. 1a). The spatial location of the choice 
targets varied across recording sessions, impacting the animals’ orien-
tation sensitivity. It did so in similar fashion under both mapping rules 
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Fig. 1 | Flexible visual categorization: behavior and computational 
hypotheses. a, Orientation discrimination task, task sequence. After the 
observer fixates for 500 ms, two choice targets appear, followed by the 
stimulus. The observer judges whether the stimulus is rotated clockwise or 
counterclockwise relative to vertical and communicates this decision with a 
saccade towards the matching choice target. Correct decisions are followed 
by a juice reward. One of the choice targets is placed in the neurons’ presumed 
motor response field (RF) (Methods). The spatial organization of the choice 
targets varies randomly from trial to trial, giving rise to two stimulus-response 
mapping rules. b, Proportion of clockwise (CW) choices under both mapping 
rules for both animals. Each symbol summarizes the behavior from a single 
recording session. c, Psychophysical performance for monkey J in an example 
recording session. Proportion of CW choices for high-contrast stimuli is shown as 

a function of stimulus orientation under both mapping rules. Symbol size reflects 
the number of trials (total 3,582 trials). The curves are fits of a behavioral model 
(Methods). d, Comparison of orientation sensitivity (that is, the slope of the 
psychometric function, defined as the inverse of the s.d. of a cumulative Gaussian 
function) under both mapping rules for both monkeys (Methods). Each symbol 
summarizes data from a single recording session. Closed symbols, high-contrast 
stimuli; open symbols, low-contrast stimuli. Error bars reflect the interquartile 
range (IQR) of the estimate. e–g, Computational hypotheses (left; intentional 
hypothesis (e); mixture hypothesis (f); abstract hypothesis (g)) and associated 
neural representation motifs (right). There are four possible behavioral 
outcomes (that is, either a clockwise or counterclockwise choice, communicated 
with either a left or rightward saccade), resulting in four motifs per hypothesis.
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revealed that the activity of many units was also predictive of the  
categorical choice (Fig. 2a, top (dark versus light purple)). The temporal 
evolution of choice-related activity differed across units, complicating 
a functional interpretation (Fig. 2a, bottom). But note that, in most 
cases, categorical selectivity peaked before the go cue (monkey F, 
83 of 126 units; monkey J, 243 of 363 units), while motor selectivity 
peaked after the go cue (monkey F, 79 of 126 units; monkey J, 239 of 
363 units; Fig. 2b). This pattern suggests that these predictive signals 
may be separated in time. The same units tended to exhibit both types 
of choice selectivity. Specifically, the larger the peak motor selectivity 
was, the larger the peak categorical selectivity tended to be (Fig. 2c; 
Spearman rank correlation: monkey J = 0.55, P < 0.001; monkey F = 0.36, 
P < 0.001). However, there was no obvious relationship between the 
units’ preferred saccade direction and their preferred stimulus cat-
egory (Extended Data Fig. 2). Such mixed selectivity is thought to offer 
substantial computational advantage over specialized responses for 
implementing flexible input–output mappings as required for our 
task16–18. Note that variability in preferred saccade direction implies 
variability in the alignment of the units’ response fields with the choice 
targets. This alignment is a factor that may impact response properties 
of visuomotor neurons19.

Dynamic population representation motifs
To obtain a perspective on neural population activity during flexible 
visual categorization, we decoded a time-varying DV from jointly 
recorded responses (Methods). We used a method that specifically 
extracts the choice-related component from high-dimensional neural 
activity. The decoded DV indicates how well the subject’s upcoming 
choice can be predicted from a 50 ms bin of neural ensemble activity20 
(Extended Data Fig. 3). Each behavioral choice is summarized by two 
independent binary variables: the chosen saccade direction and the 
corresponding perceptual meaning. Likewise, the DV is composed 
of two independent dimensions. Its temporal structure defines the 
population representation motif and may thus disambiguate the nature 
of the decision process (Fig. 1e–g).

Trajectories were noisy at the single trial level (Extended Data 
Fig. 4), but exhibited clear structure when averaged across all trials that 
resulted in the same behavioral outcome. Consider the trial-averaged 
DV trajectories of three example ensembles. To a first approximation, 
an initial excursion along the categorical dimension is followed by an 
excursion in the motor dimension (Fig. 2d, top, symbols). Quantitatively,  
these trajectories are well captured by a model that describes an 
abstract decision strategy (Fig. 2d, top, curves). In contrast, a model 
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Fig. 2 | Dynamics of neural activity in PFC during flexible visual 
categorization. a, Temporal evolution of firing rate (top) and response 
selectivity (bottom) of four jointly recorded units (ensemble size, 29 units). 
Spikes were counted using 50-ms-wide counting windows and averaged 
across trials that either shared the same saccade direction (dark versus light 
orange) or the same perceptual category (dark versus light purple). Vertical 
lines indicate the average time of critical task events. ips, impulses per second; 
CCW, counterclockwise. b, Temporal evolution of response selectivity for the 
chosen perceptual category (top) and the saccade direction (bottom) of all units 
recorded from monkey J (left) and monkey F (right). In all displays, units are 
ranked according to the timing of their maximal categorical selectivity. Vertical 
lines indicate the average time of critical task events. c, Maximal response 
selectivity for saccade direction plotted against maximal selectivity for the 
categorical choice on logarithmic axes. r, Spearman correlation; N = 363 units 

for monkey J and 126 units for monkey F. d, Top: example DV trajectories during a 
750-ms epoch preceding saccade initiation for three recording sessions. Symbols 
represent cross-validated data-based estimates and lines represent the fit of a 
model instantiating the abstract hypothesis (Methods). The gray and red lines 
correspond to left and right saccades and filled versus open dots correspond to 
clockwise versus counterclockwise decisions. Bottom: comparison of goodness-
of-fit of two descriptive models instantiating the abstract and intentional 
hypothesis. Error bars were computed across each recording session’s four 
trajectories; N = 16 recording sessions for monkey J and 13 sessions for monkey 
F. e, Average observed unsigned DV trajectories. Each recording session 
contributes two unsigned trajectories to this plot. Vertical lines indicate the 
average time of critical task events. f, Onset of the motor DV plotted against onset 
of the categorical DV for all trajectories (Methods).
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consistent with an intentional decision strategy provides a poorer fit 
to the same data as it cannot capture temporal structure in the categori-
cal dimension (Extended Data Fig. 5). This pattern held true for each 
recorded ensemble (Fig. 2d, bottom; Methods). A model consistent 
with the mixture hypothesis rivaled the abstract model for one monkey, 
but performed systematically worse for the other animal (monkey F, 
mixture model preferred over abstract model for 8 of 13 datasets; mon-
key J, 1 of 16; Methods). To further disambiguate between the abstract 
and mixture hypotheses, we studied the temporal relationship between 
the two DV dimensions. Key to the mixture hypothesis is the simultane-
ous evolution of decision-related activity in both dimensions (Fig. 1f). 
However, the categorical DV tended to precede the motor DV. This can 
be seen in the average unsigned observed DV trajectories, obtained by 
inverting the trajectories associated with ‘counterclockwise’ and ‘left’ 
choices and grouping these with the ‘clockwise’ and ‘right’ trajectories, 
respectively. In both monkeys, the average unsigned categorical DV 
begins rising within 150 ms following stimulus onset, well before the 
average unsigned motor DV begins to rise (Fig. 2e). To investigate 
whether this pattern was also evident at the level of individual DV  
trajectories, we fit a version of the abstract model that did not constrain 
the motor DV to follow the categorical DV (Methods). The resulting fits 

closely resembled the observed data (Extended Data Fig. 6a), allowing 
us to estimate the onset time of the rise of each DV rise in a systematic 
manner (Methods). In most individual model-predicted trajectories, 
the categorical DV appears to begin rising before the motor DV (mon-
key F, 33 of 52 trajectories; monkey J, 55 of 64 trajectories; Fig. 2f).  
Quantifying onset time in a different manner produced a similar out-
come (Extended Data Fig. 7). Restricting these analyses of the DV trajec-
tories to the fully ambiguous stimulus condition (stimulus orientation, 
0 degrees) yielded comparable results, suggesting that these patterns 
of neural activity are intimately related to the unfolding decision pro-
cess, rather than to underlying physical stimulus differences as such 
(Fig. 3). We conclude that the dynamics of the DV are incompatible 
with the intentional hypothesis and slightly favor the abstract model 
over the mixture model.

Neural signatures of deliberation
We have shown that the temporal structure of population activity in 
PFC is incompatible with the hypothesis that intentional deliberation 
underlies the monkeys’ flexible behavior. It is also incompatible with 
a task-specific variant of this hypothesis (a spatial match-to-sample 
strategy; Supplementary Fig. 3), and offers only moderate support 
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Fig. 3 | Dynamics of neural activity in PFC during deliberation of zero-signal 
stimuli. a, Top: example DV trajectories during a 750-ms epoch preceding 
saccade initiation for three recording sessions. Only trials that involved the 
zero-signal stimulus (stimulus orientation = 0 degree) were included in this 
analysis. Bottom: comparison of goodness-of-fit of two models instantiating 

the abstract and intentional hypothesis. Same plotting conventions as Fig. 2d. 
b, Average observed unsigned DV trajectories (zero-signal trials only). Same 
plotting conventions as Fig. 2e. c, Onset of the motor DV plotted against onset of 
the categorical DV for all trajectories (zero-signal trials only).
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for the mixture hypothesis. Instead, our analysis favors the hypothesis 
that abstract deliberation underlies the monkeys’ flexible behavior. If 
this interpretation is correct, then the categorical DV ought to exhibit 
key signatures of deliberation. Moreover, these signatures should not 
be present in the motor DV. This prediction is unique to the abstract 
hypothesis (Fig. 1e–g), and thus offers a strong test of our proposed 
interpretation.

The simplest theoretical models of decision-making hold that 
subjects solve binary decision-making tasks by comparing the evi-
dence that favors one response alternative over the other with a fixed 
criterion21. Due to noise, repeated presentations of the same stimulus 
elicit different evidence estimates and may therefore result in differ-
ent decision outcomes (Fig. 4a, left). When averaged across many 
trials, this deliberation process gives rise to a graded representation 

of relative evidence that varies with stimulus strength and differs for 
correct and incorrect decisions (Fig. 4a, right). For this reason, evidence 
estimates are thought to not only inform decision outcome, but also 
determine a subject’s commitment to an evolving decision2,3 and fac-
tor into their confidence in a decision22,23. If the neural populations we 
recorded from are involved in the deliberation process, their activity 
should thus reflect a graded representation of evidence. The issue at 
stake is whether this representation manifests in the motor DV, the 
categorical DV, or both.

Consider the temporal evolution of the average unsigned DVs, 
split by stimulus strength and choice accuracy (Fig. 4b). Dividing trials 
across this many conditions dilutes the statistical power of the analysis. 
To compensate for this, we pooled data of both monkeys (Methods). 
As can be seen, approximately 150 ms after stimulus onset, the sign 
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bottom, incorrect trials) and stimulus strength (that is, orientation; Methods). 
Data of all recording sessions were pooled. Vertical lines indicate the average 
time of critical task events as in Fig. 2a. c, If the accumulated evidence is obtained 
through temporal integration, cross-trial variance of the DV trajectory grows 
with integration time—a phenomenon known as ‘diffusion’. d, Variance of the 
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(Methods). e, If the decision process is terminated by hitting a bound, average 
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trials. Error bars, IQR of the estimate based on a 1,000-fold bootstrap (Methods).
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and amplitude of the categorical DV begin to match the theoretical 
prediction of evidence representation. Specifically, the categori-
cal DV achieves more extreme values for correct decisions based on 
stronger stimuli but exhibits the opposite order for incorrect decisions 
(Fig. 4b, left). This pattern becomes increasingly prominent over the 
next 200 ms. In contrast, the amplitude of the motor DV does not 
appear to reflect the strength of the evidence supporting the choice 
that informed the upcoming saccade (Fig. 4b, right). Its stereotypical 
nature suggests that it represents a ‘pure’ motor plan. A statistical 
analysis of the temporal evolution of DV variance confirmed that, for 
both monkeys, stimulus strength had a larger impact on the categorical 
DV than on the motor DV (Extended Data Fig. 8).

Deliberation often takes time. Dynamical models of decision- 
making attribute this to a decision-making strategy in which momen-
tary evidence is accumulated over time24,25. Due to noise, accumulated 
evidence exhibits ‘diffusion’, meaning that its cross-trial variance grows 
with integration time (Fig. 4c). A neural signature of this effect can 
sometimes be seen in the timecourse of residual response variance 
(that is, response variance that is not due to choice outcome or stimu-
lus strength)26. Consider the residual variance of the categorical and 
motor DVs (Methods). In both cases, it is maximal early on in the trial 
and begins decreasing following stimulus onset (Fig. 4d). For the cat-
egorical DV, this initial decrease is followed by a rise that appears to 
last approximately 350 ms. This may be a signature of diffusion and, 
as such, suggests that animals integrated noisy stimulus orientation 
estimates over time27. The motor DV does not exhibit this effect. The 
more time progresses, the more stereotyped the representation of the 
upcoming motor action becomes (Fig. 4d).

If evidence is integrated over time, what terminates the delibera-
tion process? One popular idea is that evidence is integrated until it 
reaches a bound. Under such a process, correct decisions are associated 
with shorter deliberation time than incorrect decisions (Fig. 4e)24,25. 
Consistent with this, the categorical DV trajectories appear to reach 
their most extreme value more quickly for correct than for incorrect 
decisions (Fig. 4b, left). The motor DV does not display this pattern 
(Fig. 4b, right). This visual impression was validated by a quantitative 
analysis (Fig. 4f, Extended Data Fig. 6b and Methods). This pattern 
suggests that the deliberation process typically continued until the 
categorical DV reached a bound. This event resulted in commitment 
to a perceptual choice, after which the categorical DV started to decay 
while the saccadic response used to communicate the decision was 
being prepared.

Relationship between categorical and motor DV
How are the categorical and motor DV related? We hypothesized the 
following. Deliberation unfolds in an abstract categorical dimension 
and resembles a bounded evidence accumulation process. When a 
bound is reached, or when time is up, the accumulated evidence is 
mapped onto a stereotypical saccade preparation state. This requires 
mapping the representation along the categorical dimension onto an 
orthogonal motor dimension (Fig. 5a, left). One neurally plausible way 
of doing this is through rotation28,29. The mapping process might give 
rise to a systematic relationship between the categorical and motor DV. 
For example, if it is instantiated as rotation at constant angular speed, 
then the motor DV will echo the strength of the categorical DV at the 
time of choice commitment (Fig. 5a, right).

To test the orthogonality of the categorical and motor dimensions, 
we first computed the vector angle between the associated projection 
planes (Methods). Throughout the epoch of interest, the vector angle 
closely approximated 90 degrees for both monkeys (Fig. 5b). This 
pattern was intended by the task’s design, but was not guaranteed to 
emerge as it requires sufficiently unbiased choice behavior. We also 
studied the temporal evolution of the projection planes’ orientation 
and found them to be fairly stable through time (Extended Data Fig. 9). 
These analyses confirm that, during the decision-making process, PFC 

population activity contained orthogonal and stable representations 
of the upcoming perceptual choice and motor response.

To quantify the relationship between the categorical and motor 
DV, we next computed their cross-correlation function on a trial-by-trial 
basis and averaged the resulting functions across all trials that shared 
the same mapping rule (Methods). For both monkeys, this revealed 
an association between the categorical and motor DV beyond chance 
expectation (Fig. 5c). The cross-correlation function has several note-
worthy features. First, its sign depends on the mapping rule. This makes 
sense given that the same perceptual choice needs to be reported with 
opposite saccade directions under the two mapping rules. Second, the 
cross-correlation function was asymmetric with respect to the time 
reversal operation (that is, the change of the sign of the time lag). It 
peaked at a time lag of roughly −100 ms and did not differ from chance 
before −400 ms or after 200 ms (Fig. 5c, left). This asymmetry hints 
at the presence of a causal relationship as it means that past values of 
the categorical DV predict present or future values of the motor DV. 
Restricting this analysis to the fully ambiguous stimulus condition 
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yielded nearly identical results, suggesting that this pattern is an inher-
ent property of the unfolding decision-making process (Fig. 5c, right). 
In sum, the relation between the categorical and motor DV is strong 
enough to manifest as a nonzero time-shifted correlation (Fig. 5c), but 
not so strong as to give rise to a graded representation of evidence in 
the motor DV (Fig. 4b).

Impact of statistical regularities in the environment
Perceptual decisions are determined not only by the present sensory 
input. They are also shaped by expectations that reflect previously 
experienced statistical regularities in the environment30,31. Knowl-
edge of such regularities (‘prior knowledge’) provides evidence that 
bears on challenging visual categorization problems. In theory, it can 
therefore be leveraged to improve the quality of uncertain decisions. 
Ample empirical evidence demonstrates that humans and other ani-
mals heavily exploit prior knowledge for perception31,32, action33,34 
and cognition35,36.

We wondered how prior knowledge impacts PFC population 
representations during flexible visual categorization. To investigate 
this, we designed the task such that blocks of trials in which clock-
wise stimuli were over-represented alternated with blocks in which 
counterclockwise stimuli were over-represented (Methods). We addi-
tionally varied stimulus contrast. The current latent state of each 
trial was cued to the monkey through the shape of the fixation mark 
(Methods). When the stimulus contrast was high, perceptual orienta-
tion estimates were more certain, and the impact of the prior on the 
choice behavior was often small (Fig. 6a, top). When the stimulus 
contrast was low, perceptual orientation estimates were less certain, 
as evidenced by the shallowing of the psychometric function (Fig. 6a, 
bottom; median reduction in orientation sensitivity: monkey J = 46.4%, 
P < 0.001; monkey F = 40.7%, P < 0.001; Wilcoxon signed-rank test). As 
a consequence, the impact of the prior on the decision grew, giving 
rise to increased separation between the prior-specific psychometric 
functions, hereafter termed ‘decision bias’ (Fig. 6a, top versus bot-
tom; median increase in decision bias: monkey J = 63.3%, P = 0.0013; 
monkey F = 68.6%, P = 0.04). In general, both monkeys tended to make 

more biased decisions under task conditions associated with lower 
orientation sensitivity (Fig. 6b; Spearman rank correlation: monkey 
J = −0.42, P = 0.017, N = 32; monkey F = −0.60, P = 0.0015, N = 26). This 
trend naturally arises when subjects use the available evidence in a 
statistically optimal fashion37,38.

To isolate the effects of the monkeys’ prior knowledge on the neu-
ral representation, we compared DV trajectories of trials that resulted 
in the same categorical choice but that were either congruent or incon-
gruent with the prior expectation (Methods). As can be seen from an 
example recording session, congruent and incongruent categorical DV 
trajectories could differ substantially (Fig. 6c, top left). This difference, 
which we term DV bias, was often present before stimulus onset and was 
more prominent during blocks of low-contrast trials (Fig. 6c, bottom 
left). This suggests that it may provide a neural measure of the impact 
of prior expectations on ensuing perceptual decisions. To test this 
idea, we calculated the DV bias around the time when the categorical 
DV first begins to reflect stimulus information (that is, 500 ms before 
saccade initiation; Fig. 6c, bottom left, red arrows). For every recording 
session, we thus obtained two neural measures of ‘expectation’, one for 
high-contrast trials, and one for low-contrast trials. For both monkeys, 
expectation calculated from the categorical DV predicted the behavio-
rally measured decision bias (Fig. 6d; left, Spearman rank correlation: 
monkey J = 0.59, P < 0.001; monkey F = 0.61, P = 0.0011). For the motor 
DV, this was not the case (Fig. 6d; right, monkey J = 0.025, P = 0.89; mon-
key F = −0.067, P = 0.74). Calculating neural expectation from slightly 
earlier or later moments in time yielded similar results (Extended Data 
Fig. 10). These results further corroborate the hypothesis that delibera-
tion occurred in an abstract stimulus representation space. They also 
imply that, during perceptual deliberation, PFC activity is shaped not 
only by input from visual cortex, but also by signals representing prior 
knowledge retrieved from memory.

Finally, we asked whether stimulus contrast impacted the DV tra-
jectories. Lowering contrast delayed the onset of the categorical DV by 
15 ms (P = 0.12, two-sided Wilcoxon signed-rank test; Supplementary 
Fig. 4). Although not statistically significant, such delay may be inher-
ited from sensory cortex, as V1 neurons have longer response latencies 
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at low stimulus contrast39. We did not find any other significant effects 
of contrast (Supplementary Fig. 4).

Discussion
In this study, we investigated neural population activity in PFC during 
flexible orientation discrimination. We sought to probe the nature of 
the decision process that underlies the flexible relationship between 
perception and action demanded by many of the real-world problems 
we face. We suggest that behavioral reports arise from a decision pro-
cess in which evaluating the sensory environment and planning to 
act on that interpretation are supported by the same populations of 
neurons, but unfold in separate representational spaces and different 
moments in time (Fig. 5a). This interpretation is supported by three 
distinct sets of observations. First, during sensory stimulation, an 
initial population representation of the upcoming categorical choice 
precedes an orthogonal representation of the motor action used to 
communicate that choice (Figs. 2 and 3). Second, neural activity pat-
terns predictive of the upcoming categorical choice reflect a graded 
representation of evidence, temporal diffusion and the presence of 
a bound, while activity patterns predictive of the upcoming motor 
response do not (Fig. 4). Third, prior stimulus expectations shape the 
formation of the categorical choice but not the formation of the action 
plan (Fig. 6).

Our investigation directly compares population representations 
of perceptual deliberation and motor planning as they unfold together 
in orthogonal spaces12. Previous attempts to determine whether 
action-planning circuits in the macaque brain also support abstract 
perceptual deliberation were inconclusive for a variety of reasons. 
Some studies used a temporal match-to-sample task7,40–43. In these 
tasks, the DV consists of a comparison of two stimulus representations. 
As a consequence, such tasks allow for the identification of abstract 
perceptual representations7,40–43, but not for the identification of neural 
deliberation signals. Some other studies used a task design similar to 
ours, but found that animals appeared to adopt an intentional strategy 
and that neural activity did not reflect categorical choice formation44,45. 
Compared with the present work, these studies involved judgment 
of different stimulus features (checkerboard color44 and random dot 
motion45), recordings from different brain areas (premotor cortex44 
and area LIP45), a different order of task events (choice targets appeared 
at an unpredictable location after the offset of the stimulus45), and 
probably a different training history (our monkeys first learned to 
flexibly report perceptual judgments and only then became experts in 
orientation discrimination). These multidimensional differences pro-
hibit an unambiguous interpretation of the cross-study differences in 
choice-related neural activity. Finally, in most previous studies, neural 
signals were recorded from one unit at a time and could thus not reveal 
the structure of population activity11,19,42. We believe that our findings 
may offer useful insight into human perceptual decision-making. 
A recent study of magnetoencephalography signals in the human 
brain during flexible motion discrimination found strong evidence 
for abstract perceptual choice signals46.

We targeted the prearcuate gyrus because it receives inputs from 
visual cortex and projects to premotor and motor cortex. Neurons in 
this area are implicated in both sensory and motor function14, mak-
ing it a likely candidate for sensorimotor transformations like those 
required for our task2,9,15. To interpret neural activity, we compared the 
structure of choice-related signals with a theoretical decision process 
in which bounded accumulation in an abstract perceptual dimension is 
followed by rotation onto an orthogonal motor preparation dimension. 
In our view, this specific theoretical decision process offers a useful 
point of reference because it describes a principled solution for the 
general problem of choosing how to act in a world that is inherently 
uncertain12,28,38,47. That said, our analysis raises many new questions. Can 
this theoretical ideal quantitatively describe spiking activity in PFC? 
How exactly is the mapping rule steering the hypothesized rotation? 

And under which training conditions does a neural network implement 
this decision process? Answering these questions will require careful 
comparison of our data with predictions of artificial neural networks 
capable to perform complex decision-making tasks—an approach that 
has been particularly fruitful in the study of PFC in recent years15,18,48,49.

A strong version of the abstract hypothesis holds that delibera-
tion exclusively unfolds in the categorical dimension and that motor 
planning does not begin until deliberation is complete. At face value, 
the temporal overlap in the rise of the average categorical and motor 
DV trajectories is inconsistent with a pure sequential process (Fig. 2e). 
However, this inconsistency is difficult to judge. The hypothesis per-
tains to the single trial level. Due to cross-trial differences in the onset 
and duration of the deliberation process, the average trajectories can 
have properties not present at the single trial level50,51, including an 
illusory temporal overlap between both dimensions. Fully evaluating 
whether the timecourse of the DV trajectories is well described by 
a sequential process will thus require a detailed investigation at the 
single trial level.

Decision-related activity has been found in many different brain 
areas47. It has been challenging to ascribe a unique role to each of these 
areas. This requires experimental paradigms that are simple enough to 
invite well-controlled reliable behavior, but complex enough to engage 
higher cognitive mechanisms. Our paradigm revealed dissociable sig-
natures of stimulus strength, perceptual uncertainty, prior knowledge 
and action plans within a single area. Rich perceptual decision-making 
tasks in which perceptual and motor components of the decision pro-
cess are orthogonalized therefore hold promise to disambiguate the 
functional roles of brain areas within the decision-making network, 
and, more generally, to characterize the cascade of neural operations 
that collectively transform sensory inputs into perceptual interpreta-
tions and context-appropriate action plans.
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Methods
Subjects
Our experiments were performed on two adult male macaque monkeys 
(Macaca mulatta, aged 8–9 years old over the course of the experi-
ments). The animals were trained to perform a memory-guided saccade 
task and an orientation discrimination task with saccadic eye move-
ments as operant responses. They had not previously participated in 
research studies. All training, surgery and recording procedures con-
formed to the National Institute of Health Guide for the Care and Use 
of Laboratory Animals and were approved by The University of Texas 
at Austin Institutional Animal Care and Use Committee. Under general 
anesthesia, both animals were implanted with three custom-designed 
titanium head posts and a titanium recording chamber52.

Apparatus
The subjects were seated in a custom-designed primate chair in front 
of a CRT monitor (Sony Trinitron, model GDM-FW900), with their 
heads restrained using three surgical implants. Stimuli were shown 
on the CRT monitor, which was positioned approximately 64 cm away 
from the monkeys’ heads. Eye position was tracked continuously with 
an infrared eye tracking system at 1 kHz (Eyelink 1000, SR Research). 
Stimuli were generated using the Psychophysics Toolbox53 in MATLAB 
(MathWorks). Neural activity was recorded using the Plexon OmniPlex 
System (Plexon). Precise temporal registration of task events and neural 
activity was obtained through a Datapixx system (Vpixx). All of these 
systems were integrated using the PLDAPS software package54.

Memory-guided saccade task
We used a variation of the classical memory-guided saccade task55 to 
identify recording sites where neurons exhibited neural activity indica-
tive of an upcoming eye movement. Each trial began when the subject 
fixated a small white square at the center of the screen. After 100 ms, 
a small response target briefly appeared in 1 of 24 possible locations 
(3 radii × 8 directions). The subject needed to keep this location in 
memory while maintaining fixation for 500 ms. After this delay period, 
the fixation mark disappeared and the subject needed to make a sac-
cade to the remembered location. Correct choices were followed by a 
juice reward. Each location was presented several times per recording 
session.

Estimating response field locations
During the memory-guided saccade task, extracellular recordings were 
made with dura-penetrating glass-coated tungsten microelectrodes 
(Alpha Omega), advanced mechanically into the brain. We made record-
ings from several sites in the prearcuate gyrus. After data collection 
was completed, we studied spiking activity in a 100-ms window pre-
ceding saccade initiation. We compared the strength of the response 
preceding an eye movement to the neuron’s apparent preferred spatial 
location with the responses preceding eye movements to all other 
locations. We deemed a neuron to have a well-defined motor response 
field if this difference fell outside the expected difference distribution 
predicted by a null-model that assumes Poisson spiking statistics. Fol-
lowing identification of a suitable recording site (Extended Data Fig. 1), 
we conducted several additional orientation discrimination training 
sessions with one choice target placed within the estimated response 
field location and one on the opposite site of the fixation mark. Once 
psychophysical performance reached a high level, physiological data 
collection began.

Orientation discrimination task
The orientation discrimination task is a variant of classical visual cat-
egorization tasks in which the subject uses a saccadic eye movement as 
operant response56–58. We used a flexible version of this task in which the 
stimulus-response mapping rule varied from trial to trial10,11,19,44,45,59,60. 
Each trial began when the subject fixated a small white square at the 

center of the screen (0.6 degrees in diameter). Upon fixation, the square 
was replaced by either a triangular or a circular fixation mark, indicat-
ing the latent prior context of the trial. The experiment involved two 
distinct prior contexts, associated with differently skewed distributions 
of stimulus orientation (inset, Fig. 6a). Blocks of both priors alternated 
randomly (80 trials per block). At 500 ms + 0–65 ms after the onset of 
the fixation mark, two choice targets appeared, one on each side of the 
fixation mark. One choice target was placed within the presumed motor 
response field, the other on the opposite side of the fixation mark. The 
choice targets were white lines (2.5 degrees × 0.5 degrees), rotated 
−22.5 degrees and 22.5 degrees from vertical. At 250 ms + 0–65 ms 
later, a circularly vignetted drifting grating appeared in the near periph-
ery (eccentricity: 1.12 degrees). The grating measured 2.7 degrees 
in diameter, had a spatial frequency of one cycle per degree and a 
temporal frequency of one cycle s−1. The stimulus remained on for 
500 ms + 0–65 ms. Subjects judged the orientation of the stimulus 
relative to vertical. The stimulus then disappeared along with the 
fixation mark and subjects reported their decision with a saccadic eye 
movement to the appropriately oriented choice target. Trials in which 
the monkey did not saccade to either of the choice targets within 2 s 
were aborted. Auditory feedback about the accuracy of the monkey’s 
response was given at the end of each trial. Correct choices were fol-
lowed by a liquid reward delivered via a solenoid-operated reward 
system (New Era). Stimuli were seven drifting gratings evenly spaced 
over a small range of orientation, tailored to each monkey’s orienta-
tion sensitivity (monkey F, −3.75 degrees to 3.75 degrees, monkey J: 
−3.3 degrees to 3.3 degrees). Vertically oriented stimuli received ran-
dom feedback. Stimuli were presented at either high or low contrast 
(Michelson contrast, 100% or 4%). Blocks of high- and low-contrast 
stimuli alternated randomly (trials per block, monkey F = 100; monkey 
J = 80). We conducted 13 successful recordings from monkey F and 16 
from monkey J (average number of trials per session, monkey J = 3,171; 
monkey F = 1,593).

Behavioral analysis
We measured observers’ behavioral capability to discriminate stimulus 
orientation by fitting the relationship between stimulus orientation 
and probability of a ‘clockwise’ choice with a psychometric function 
consisting of a lapse rate and a cumulative Gaussian function. Model 
parameters were optimized by maximizing the likelihood over the 
observed data, assuming responses arise from a Bernoulli process. 
Each recording session was analyzed independently. For the analysis 
documented in Fig. 1d, we fit one psychometric function per mapping 
rule and contrast level. We defined orientation sensitivity as the inverse 
of the standard deviation (s.d.) of the cumulative Gaussian. We used 
a variant of this model to measure observers’ prior-induced behavio-
ral decision bias. For this analysis, we fit one psychometric function 
per stimulus prior and contrast level (Fig. 6a). Both prior conditions 
shared the same sensitivity parameter, resulting in two psychometric 
functions with identical slope. We defined decision bias as the dif-
ference between the means of both cumulative Gaussians (that is, 
the magnitude of the horizontal displacement of both psychometric 
functions). Error bars of model-based statistics are based on a 100-fold 
nonparametric bootstrap of the behavioral data.

Electrophysiological recordings
During the orientation discrimination task, we recorded extracellular 
spiking activity from populations of PFC neurons through a chroni-
cally implanted recording chamber. Every recording session, we used 
a microdrive (Thomas recording) to mechanically advance a linear 
electrode array (Plexon S-probe; 32 contacts) into the brain at an angle 
approximately perpendicular to the cortical surface (Extended Data 
Fig. 1). We targeted recording sites that had exhibited well-defined 
motor response fields in a previously conducted memory-guided sac-
cade task. We positioned the linear arrays so that they roughly spanned 
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the cortical sheet and removed them after each recording session. 
Continuous neural data were acquired and saved to disk from each 
channel (sampling rate 30 kHz, Plexon OmniPlex System). To extract 
responses of individual units, we performed offline spike sorting. We 
first automatically spike-sorted the data with Kilosort61, followed by 
manual merging and splitting as needed. Given that the electrode’s 
position could not be optimized for all contact sites, most of our units 
probably consist of multineuron clusters. All units whose mean firing 
rate during the task exceeded 3 ips were included in the analysis.

Analysis of single-unit responses
We measured the temporal evolution of each unit’s response by 
expressing spike times relative to the trial-specific moment of saccade 
initiation and counting spikes within nonoverlapping 50-ms windows. 
Figure 2a shows example response traces for four units, averaged across 
different subsets of trials. We computed neuronal selectivity for the 
upcoming choice behavior by calculating the difference between the 
choice-conditioned response averages, normalized by the response 
standard deviation62. The sign of this signal-to-noise (SNR) metric 
depends on the unit’s preferred choice option. To facilitate comparison 
across the categorical and motor dimension, we signed each unit’s 
SNR-trace such that the maximal value was positive (see examples in 
Fig. 2a; all traces are shown in Fig. 2b).

Estimating the time-varying DV
For each trial, we obtained moment-to-moment measurements of 
the DV by projecting 50-ms bins of population activity onto a linear 
decoder optimized to distinguish the activity patterns associated 
with both choice options (‘left’ versus ‘right’ choices for the motor 
DV, and ‘clockwise’ versus ‘counterclockwise’ choices for the categori-
cal DV, respectively). Specifically, we first individually z-scored each 
unit’s spike counts within every time bin. We then used these z-scored 
responses to estimate the set of linear weights, w = (w1,…, wn), that best 
separate the choice-conditioned z-scored response patterns, assuming 
a multivariate Gaussian response distribution:

w = s
Σ (1)

where s is the mean difference of the choice-conditioned z-scored 
responses and Σ is the covariance matrix of the z-scored responses. To 
quantify overall decoder performance, we used the same procedure 
to estimate pooling weights but used a single 750-ms counting window 
(Extended Data Fig. 3). The decoder weights are calculated from 
observed trials. To avoid double-dipping, we excluded the trial under 
consideration from the calculation and solely used all other trials to 
estimate the weights. This way, we obtained ‘cross-validated’ DV esti-
mates for each time bin:

DVj = ∑wijZij (2)

where wij and Zij are the weight and z-scored response of unit i on trial 
j for a given time bin. The curves in Extended Data Fig. 4 show example 
single trial DV trajectories. The symbols in Fig. 2d show DV trajectories 
from three example recording sessions, averaged across all 
choice-conditioned trials. The symbols in Fig. 3a show DV trajectories 
from the same example recording sessions for the zero-signal stimulus. 
The lines in Fig. 2e and Fig. 3b show unsigned DV trajectories, obtained 
by inverting the trajectories associated with ‘counterclockwise’ and 
‘left’ choices and grouping these with the ‘clockwise’ and ‘right’ trajec-
tories, respectively. The lines in Fig. 4b show unsigned DV trajectories, 
split by stimulus strength and choice accuracy, and averaged across 
all recording sessions of both animals. The lines in the top panel of 
Fig. 6c show unsigned DV trajectories of an example recording session 
averaged across choice ‘congruent’ and ‘incongruent’ trials, 
respectively.

Comparison of DVs
We compared the orientation of the categorical and motor dimensions 
by computing the average vector angle between the associated projection 
planes. For each recording session, we calculated the vector angle θ:

θ = cos−1
⎛
⎜⎜
⎝

∑iwicwim

√∑iw
2
ic√∑iw

2
im

⎞
⎟⎟
⎠

(3)

where wic and wim are the weights of unit i used to compute the categori-
cal and motor DV for a given time bin. Figure 5b shows the average vec-
tor angle (circular mean) across recording sessions. We used the same 
approach to measure the temporal stability of each projection plane 
(Extended Data Fig. 9).

To quantify the similarity of the categorical and motor DV, we com-
puted the normalized cross-correlation function for every trial within 
a given recording session. We then averaged these functions across  
trials, split by mapping rule. For some recording sessions, this procedure 
resulted in two average cross-correlation functions that exhibited similar 
idiosyncratic features (for example, ripples, or an oddly placed peak). 
These features are probably meaningless and arise simply because the 
DVs are themselves autocorrelated63. To focus our analysis on systematic 
differences across mapping rules, we therefore subtracted each record-
ing sessions’ global average cross-correlation function from each map-
ping rule’s specific average (Fig. 5c, lines). This correction procedure was 
effective, but may itself give rise to spurious mapping rule differences. 
We therefore performed the same analysis on a shuffled version of the 
data to quantify chance expectation (Fig. 5c, bands).

Analysis of DV variance
We measured the effect of stimulus strength on the categorical and 
motor DV by computing the fraction of variance explained by this 
independent variable. As is standard in analysis of variance, one can 
partition the total sum of squares (Stotal) into components arising from 
variations in choice outcome (Schoice), stimulus strength (Sstim) and 
residual variance (Sres):

Stotal = Schoice + Sstim + Sres (4)

∑k(DVk − DV)2 = ∑k(DVk − DV)2

+∑k(DVs,k −DVk)2

+∑k(DVk − DVs,k)2

(5)

where DVk is the DV value on the kth trial, DVs,k  the DV averaged over 
those trials in which the presented stimulus and choice outcome were 
the same as those of the kth trial, DVk the DV averaged over those trials 
in which the choice outcome was the same as that of the kth trial, and 
DV  the DV averaged over all trials. The temporal evolution of the 
cross-session averaged ratio between the component due to stimulus 
strength and the total is plotted in Extended Data Fig. 8, and that of the 
ratio between the residual and the total is plotted in Fig. 4d.

Descriptive models of computational hypotheses
We compared the observed DV trajectories with the theoretical 
expectations of three computational models of decision-making. 
We expressed the models’ predictions using a set of equations that 
describe the average evolution of the choice-conditioned DV. Under 
the intentional model, the categorical DV has no systematic structure, 
whereas the motor DV evolves according to a cumulative Gaussian 
function. This model has four free parameters per choice-conditioned 
trajectory: one captures an initial offset in the motor DV, one specifies 
the dynamic range of the DV trajectory, one controls the speed of the 
rise and one the timepoint at which half of the rise is completed. Under 
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the abstract model, an initial rise in the categorical DV is followed by a 
subsequent rise of the motor DV. Following completion of the delibera-
tion process, the categorical DV may decay in strength (exponential 
decay). We used nine free parameters to describe this pattern. Five of 
these specify the evolution of the categorical DV, and four that of the 
motor DV. For both DVs, we used cumulative Gaussians in the same way 
as we did for the intentional model. For the categorical DV, we addition-
ally used a parameter that controls the amount of decay that follows the 
peak of the categorical DV (defined as the time at which the cumulative 
Gaussian reached the 99.38th percentile). We imposed boundaries on 
the model’s parameters that ensured that the motor DV could not begin 
to rise before the categorical DV. Specifically, the bounds ensured that 
the motor DV could not reach its half-maximum value before at least 
250 ms had passed since the categorical DV reached its half-maximum 
value. Under the mixture model, the speed of the rise and the time-
point at which half the rise is completed is identical across both the 
categorical dimension. We used seven free parameters to describe this 
pattern. We fit all three descriptive models by minimizing the sum of 
the squared error of the choice-conditioned trajectory under consid-
eration. Example fits of the abstract model are shown in Fig. 2d and 
Fig. 3a, and example fits of the intentional model are shown in Extended 
Data Fig. 7. To compare the models’ goodness of fit, we computed an 
estimator of prediction error based on information theory (Akaike 
information criterion (AIC)). Specifically, assuming that the residuals 
under each model are distributed according to independent identical 
normal distributions:

AIC = 2k + nln(σ̂2) − 2C (6)

where k is the number of free parameters, n the number of data points, 
C a constant that only depends on the data, and σ̂2 the maximum likeli-
hood estimate for the variance of a model’s residuals distribution given 
by the residual sum of squares divided by the degree of freedom. 
Because only differences in AIC are meaningful, the constant C can be 
ignored when comparing models, yielding a statistic known as ΔAIC. 
A comparison of this statistic for the abstract and intentional model is 
plotted in Fig. 2d and Fig. 3a.

Estimating onset and peak time of DV trajectories
We conducted an analysis in which we compared the estimated onset 
time of both DVs (Figs. 2f and 3c). We obtained estimates of onset time 
by fitting an unconstrained version of the abstract model to the data. 
This model used the same set of equations as the abstract model, but 
we imposed no boundaries on the model’s parameters that would 
enforce a temporal order on the DV trajectories. The average fit of 
this model to the data is shown in Extended Data Fig. 6a. For each DV 
trajectory, we defined onset time as the time at which the cumulative 
Gaussian reached the fifth percentile. Because the dynamic range of 
the categorical and motor DV can differ, this quantification defines 
onset time in relative terms. We complemented this analysis with a 
quantification that defines onset time in absolute terms, independ-
ent of the specific trajectory’s dynamic range. These estimates are 
shown in Extended Data Fig. 7. We also conducted an analysis in which 
we compared the estimated peak time of the categorical and motor 
DV for different groups of trials (Fig. 4f). We obtained estimates of 
peak time by fitting the same unconstrained version of the model to 
each trajectory shown in Fig. 4b. The fits are shown in Extended Data 
Fig. 8b. Under this model, peak time is defined as the time at which the 
cumulative Gaussian reaches the 99.38th percentile (at this time, the 
decay begins). We obtained estimates of the standard error by repeat-
ing this analysis on 1,000 matching synthetic datasets, each created by 
sampling the observed trials with replacement. We then performed the 
entire analysis sequence on these bootstrapped trials. The error bars in 
Fig. 4f show the estimate for the observed data ±1 s.d. of the peak time 
estimates of the synthetic datasets.

Estimating DV bias
We obtained estimates of DV bias by first calculating the average 
observed unsigned DV trajectory for congruent and incongruent trials 
per level of stimulus strength (that is, rotation magnitude), then taking 
the difference of these averages per level, and finally averaging across 
these differences. This estimation procedure ensures that stimulus 
strength as such does not impact the bias estimate (the fraction of 
congruent and incongruent choices differs across stimulus strengths).

Statistics and reproducibility
No statistical methods were used to predetermine sample sizes but 
our sample sizes are similar to those reported in previous publica-
tions44,45,51. Data collection and analysis were not performed blind to 
the conditions of the experiments.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from 
the corresponding author upon request. The authors are conducting 
further analyses of the data. The data will be made publicly available 
once this has been completed.

Code availability
The code used to generate the results presented in this paper is avail-
able from the corresponding author upon request.
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Extended Data Fig. 1 | Further comparison of psychophysical performance 
under both mapping rules. (a) Proportion correct judgements for the easiest 
stimulus conditions (that is, the two most extreme stimulus orientations, a.k.a. 
‘catch’ trials). Only high contrast trials were included in the analysis. Each symbol 
summarizes the behavior from a single recording session. Task performance 
consistently approached the level expected from a flawless observer without 
attentional lapses (that is, 100% correct) and did not differ across both mapping 

rules (median difference in task performance: 1.6%, P = 1, 2-sided Wilcoxon 
signed-rank test). The positive association across both mapping rules indicates 
that the fraction of guesses may vary across sessions, but is stable across 
mapping rules. (b) The average response time across all trials completed within 
a single recording session. Response time is measured relative to the go cue. r is 
Spearman correlation. P is the probability that the correlation differs from zero 
using a two-sided test.
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Extended Data Fig. 2 | PFC neurons exhibit mixed selectivity for stimulus 
category and saccade direction. (a) Maximal unsigned response selectivity for 
saccade direction plotted against maximal selectivity for the categorical choice 
on logarithmic axes (same as Fig. 2c of the main paper). (b) Most extreme signed 

response selectivity for saccade direction plotted against maximal selectivity for 
the categorical choice on linear axes. For both monkeys, every quadrant in the 
plot is occupied.
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Extended Data Fig. 3 | Performance of the categorical and motor DV against 
population size for both monkeys. (Left: monkey J, Right: monkey F). We used a 
750 ms counting window (–800 to −50 ms relative to saccade onset), computed 
the optimal projection planes for each dataset, and calculated the fraction of 
trials for which the resulting DV accurately predicted choice outcome. Higher 

values indicate a stronger population representation of future choice outcome. 
For both monkeys, DV performance strongly varied across experiments. In 
general, population size was positively associated with DV performance (the 
more units we recorded simultaneously, the better the choice outcome could be 
predicted).
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Extended Data Fig. 4 | Example single trial DV trajectories during a 750 ms 
epoch preceding saccade initiation. These three trials all come from the same 
recording session. The top row shows the temporal evolution of the categorical 
and motor DV (purple vs orange). The bottom row shows the same data, 

plotted against each other. The leftmost trial resulted in a counterclockwise 
choice (shown in gray), communicated with a rightward saccade. The middle 
and rightmost example both resulted in a clockwise choice (shown in red), 
communicated with a leftward saccade. Same plotting conventions as Fig. 2d.
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structure in the categorical dimension and hence provides a poor fit to the data 
(compare with the fit of the abstract model to the same data, shown in Fig. 2d of 
the paper).
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Extended Data Fig. 6 | Comparison of model-predicted and observed DV 
trajectories. (a) Lines show the average unsigned DV trajectories predicted 
by an unconstrained model. Each recording session contributes two unsigned 
trajectories to this plot. Symbols show the average observed values (same data 
as plotted in Fig. 2e in the main paper). Vertical lines indicate the average time 
of critical task events. These model fits were used to estimate the onset time for 

each trajectory (shown in Figs. 2f and 3c). (b) Lines show the fit of a descriptive 
model to the average unsigned DV trajectories split by choice accuracy 
(top: correct trials; bottom: incorrect trials) and stimulus strength (that is, 
orientation). Symbols show the average observed values (same data as plotted in 
Fig. 4b in the main paper). These model fits were used to estimate the peak time 
of each trajectory (shown in Fig. 4f).
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Extended Data Fig. 7 | Alternative quantification of DV onset time. In the main 
paper, we define DV onset time in relative terms (that is, the time point by which 
the cumulative Gaussian trajectory exceeds its fifth percentile). This implies that 
the corresponding DV ‘threshold’ will depend on the DV’s dynamic range and will 
thus often differ for the categorical and motor dimension. Here, we considered 
an absolute alternative. For each trajectory, we imposed the same DV threshold 

on both dimensions (that is, 10% of the dynamic range of the dimension with the 
smallest range). As expected, the relative and absolute onset estimates differ 
somewhat. Both statistics support the conclusion that the categorical DV tends 
to have an earlier onset time than the motor DV. (a) Onset time for DV trajectories 
computed using all trials (as in Fig. 2f). (b) Onset time for DV trajectories 
computed using only zero-signal trials (as in Fig. 3c).
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Extended Data Fig. 8 | Fraction of DV variance explained by stimulus 
strength, after controlling for choice outcome (correct vs incorrect). (a) The 
average fraction of variance due to stimulus strength plotted against time for the 
categorical and motor DV (purple vs orange) for Monkey J. Vertical lines indicate 
the average time of critical task events. Following stimulus onset, variance in the 

categorical DV is increasingly explained by stimulus strength. This trend peaks 
around –400 ms, after which the curve returns to baseline. Variance in the motor 
DV does not reflect a prominent effect of stimulus strength. (b) Same analysis for 
monkey F. MSS mean sum of squares.
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Extended Data Fig. 9 | Temporal evolution of the categorical and motor 
projection planes. (a) Average vector angle between the projection planes 
computed at different time points for the categorical and motor DV (left vs 
right) for monkey J. The dark band around the line of unity indicates that the 
orientation of the categorical projection plane is fairly stable during the time 

of stimulus deliberation. This same pattern is evident in the motor DV, though 
shifted to a later point in time. It indicates a stable orientation of the motor 
projection plane during the time of saccade planning and preparation. (b) Same 
analysis for monkey F.
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Extended Data Fig. 10 | Temporal evolution of the association between 
a neural measure of expectation and behavioral decision bias. (a) We 
performed the analysis shown in Fig. 6d of the main paper using a sliding 
50 ms wide counting window. The full line shows the cross-session correlation 
between the neural measure of expectation and behavioral decision bias. For 
both monkeys, the association between neural expectation calculated from the 

categorical DV and the behaviorally measured bias was substantial around the 
time of stimulus onset (indicated by the leftmost dotted line), but decreased as 
the trial progressed. The association between neural expectation calculated from 
the motor DV and behavioral bias was minimal around the time of stimulus onset, 
but gradually increased in strength as the trial progressed. Confidence intervals 
are based on a 10,000 fold bootstrap test. (b) Same as (a) for monkey J.
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Replication Across the paper, only results that replicated across both animals are discussed.

Randomization Each monkey was presented with behavioral conditions that were pseudo-randomized, such that it was impossible to predict the next 

answer based on previous answers.

Blinding Blinding was not relevant.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 

Research

Laboratory animals Two adult male rhesus macaque monkeys aged 8 and 9 years old. 



3

n
atu

re p
o

rtfo
lio

  |  rep
o

rtin
g

 su
m

m
ary

M
a

rc
h

 2
0

2
1

Wild animals This study did not involve wild animals. 

Reporting on sex No sex-based analyses were performed.

Field-collected samples This study did not involve field-collected samples. 

Ethics oversight All procedures complied with the National Institute of Health Guide for the Care and Use of Laboratory Animals and were approved 

by the University of Texas at Austin Institutional Animal Care and Use Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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