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Cortical gene expression architecture links 
healthy neurodevelopment to the imaging, 
transcriptomics and genetics of autism and 
schizophrenia

Richard Dear    1 , Konrad Wagstyl2, Jakob Seidlitz    3,4,5, Ross D. Markello    6, 
Aurina Arnatkevičiūtė    7, Kevin M. Anderson8, Richard A. I. Bethlehem    1, 
Lifespan Brain Chart Consortium*, Armin Raznahan    9, Edward T. Bullmore1 & 
Petra E. Vértes    1

Human brain organization involves the coordinated expression of thousands 
of genes. For example, the first principal component (C1) of cortical 
transcription identifies a hierarchy from sensorimotor to association 
regions. In this study, optimized processing of the Allen Human Brain Atlas 
revealed two new components of cortical gene expression architecture, C2 
and C3, which are distinctively enriched for neuronal, metabolic and immune 
processes, specific cell types a nd c yt oa rc hi te ct onics, and genetic variants 
associated with intelligence. Using additional datasets (PsychENCODE, Allen 
Cell Atlas and BrainSpan), we found that C1–C3 represent generalizable 
transcriptional programs that are coordinated within cells and differentially 
phased during fetal and postnatal development. Autism spectrum 
disorder and schizophrenia were specifically associated with C1/C2 and C3, 
respectively, across neuroimaging, differential expression and genome-wide 
association studies. Evidence converged especially in support of C3 as a 
normative transcriptional program for adolescent brain development, which 
can lead to atypical supragranular cortical connectivity in people at high 
genetic risk for schizophrenia.

How does the complex anatomical and functional organization of the 
human brain develop from the expression of over 20,000 genes1, and 
how does this process go awry in neurodevelopmental disorders? In the 
past 10 years, whole-brain, whole-genome transcriptional atlases, such 

as the Allen Human Brain Atlas (AHBA)2, have suggested that healthy 
brain organization may depend on ‘transcriptional programs’ repre-
senting the coordinated expression of large numbers of genes over 
development3–7.
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Fig. 1 | Three generalizable components of human cortical gene expression 
were enriched for biological processes, cytoarchitecture and cognitive 
capacity. a, To identify robust components of cortical gene expression, we split 
the six-brain AHBA dataset into two disjoint triplets of three brains, applied PCA 
to each triplet and correlated the resulting matched components (C1, C2, C3…) 
(Methods). For each component, the median absolute correlation over all 10 
permutations of triplet pairs was a proxy for its generalizability, g. Using PCA 
and previously published best practices for processing the AHBA dataset33,34, 
generalizability decreased markedly beyond the first component: gC1 = 0.78, 
gC2 = 0.09, gC3 = 0.14. Using DME with the top 50% most stable genes, and the 137 
regions with data available from at least three brains, the generalizability of the 
first three components substantially increased: gC1 = 0.97, gC2 = 0.72, gC3 = 0.65.  
b, Cortical maps of brain regional scores of components C1–C3 estimated by DME 
on the filtered AHBA dataset displayed smooth spatial gradients (right; Moran’s I 
0.48, 0.58 and 0.21 for C1–C3, respectively), unlike those of PCA on the unfiltered 

data (left; Moran’s I 0.50, 0.09 and 0.07). c, GO biological process enrichments 
for C1–C3 showed that the number of significant enrichments was greater for 
higher-order components, illustrating that they were more biologically specific. 
C2-positive genes were enriched for metabolism, whereas C2-negative genes 
were enriched for regulatory processes. C3-positive genes were enriched for 
synaptic plasticity and learning, whereas C3-negative genes were enriched for 
immune processes. d, C1–C3 were distinctively enriched for marker genes of six 
cortical layers and white matter (WM)37. e, C1–C3 were also distinctively enriched 
for marker genes of cell types and synapses44. f, All three components were 
significantly enriched for genes mapped to common variants associated with 
educational attainment in previous GWAS data39. g, C2 and C3 (but not C1) were 
significantly enriched for genes mapped to common variation in intelligence and 
cognition across four independent GWAS studies40–43. For d–g, significance was 
computed by two-sided permutation tests (Methods) and FDR-corrected across 
all tests in each panel; *P < 0.05, **P < 0.01, ***P < 0.001 .
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In 2012, Hawrylycz et al.2 showed that principal components of the 
AHBA dataset capture distinct features of cortical anatomy. In 2018, 
Burt et al. argued that the first principal component of cortical gene 
expression (C1) reflects an anterior-to-posterior ‘neuronal hierarchy’, 
defined in macaque tract-tracing data by feedforward and feedback 
axonal connections between cortical areas8–10 and indexed in humans 
by the ratio of T1-weighted and T2-weighted (T1w/T2w) magnetic reso-
nance imaging (MRI) signals, a putative marker of cortical myelination8. 
These discoveries echoed previous findings from studies of embryonic 
development of chick, mouse and human brains where spatially pat-
terned transcriptional gradients were shown to organize neurodevel-
opmental processes, such as areal differentiation, axonal projection 
and cortical lamination6,11–13. Single-cell RNA sequencing (RNA-seq) 
data have also revealed an anterior-to-posterior gradient in the gene 
expression of inhibitory interneurons, which is conserved across multi-
ple species, including humans14. It is, therefore, likely that the principal 
component of gene expression in the adult human cortex represents a 
transcriptional program key to its normative development.

However, it is not clear that C1 is the only component of spatially 
patterned and neurodevelopmentally coordinated gene expression in 
the human brain. Hawrylycz et al.2 suggested that principal component 
analysis (PCA) of a restricted set of 1,000 genes in one of the six brains of 
the AHBA dataset revealed multiple biologically relevant components 
(Supplementary Fig. 1). Later, Goyal et al.15 used nonlinear dimension 
reduction across whole-genome spatial expression, again from only 
one of the six AHBA brains, to show that aerobic glycolysis was associ-
ated with a second transcriptional component. To our knowledge, 
more recent studies using all available AHBA data have reliably found 
only C1 (refs. 8,16). This first component has been linked to a gen-
eral ‘sensorimotor-association axis’ (S-A axis) of brain organization10 
derived from several macroscale brain phenotypes, including, among 
others, the principal gradient of functional connectivity17, maps of brain 
metabolism and blood flow15 and the map of human cortical expansion 
compared to other primates18. Although it is parsimonious to assume 
that such diverse brain phenotypes could all be determined by a single 
transcriptional program, it seems more realistic to expect that multiple 
transcriptional programs are important for human brain development, 
as is generally the case for brain development in other species19.

Here we present two higher-order components of human corti-
cal gene expression, C2 and C3, that likely represent additional tran-
scriptional programs distinct from the C1 component already reliably 
described8. These higher-order components emerged only when opti-
mized data-filtering and dimension-reduction methods were applied 
to the AHBA dataset. We found that C2 and C3 are each specifically 
enriched for biologically relevant gene sets and spatially co-located 
with distinct clusters of neuroimaging phenotypes or macroscale 
brain maps. Leveraging independent RNA-seq datasets on single-cell 
and developmental gene expression, we further demonstrate that all 
three components are generalizable to other datasets, representa-
tive of coordinated transcription within cells of the same class, and 
dynamically differentiated over the course of fetal, childhood and 
adolescent brain development. Finally, by triangulating evidence 
across case–control neuroimaging, differential gene expression and 
genome-wide association studies (GWASs), we demonstrate that com-
ponents C1 and C2 are specifically associated with autism spectrum 
disorder (ASD) and C3 with schizophrenia. Although previous studies 
used the AHBA to derive gene sets correlated with disorder-related 
MRI phenotypes20–25, this disorder-first, ‘imaging transcriptomics’26–28 
approach is susceptible to identifying genes whose co-location with 
MRI phenotypes reflects secondary associations or consequences of a 
disorder, such as behavioral changes (for example, smoking and alco-
hol use), physical health disorders (for example, obesity and diabetes) 
or pharmacological treatment29–31. What is of most interest for neurode-
velopmental disorders is to understand the pathogenic provenance of 
a clinically diagnosable disorder—to ask ‘what developed differently?’ 

rather than merely ‘what is different?’. Our approach sought to distinc-
tively address the question of what ‘develops differently’ based on an 
understanding of ‘normal development’, by linking genetic risks and 
atypical phenotypes to a generalizable transcriptional architecture of 
healthy brain development.

Results
Three components pattern cortical gene expression
We first applied PCA to the entire AHBA dataset of six adult brains2. 
Microarray measurements of relative mRNA levels were processed to 
represent mean expression of approximately 16,000 genes at each of 
the 180 regions of the left hemispheric cortex defined by the HCP-MMP 
parcellation32–34 (Methods). We initially found that higher-order com-
ponents (C2 and C3) estimated by PCA of the resulting {180 × 16,000} 
data matrix were not robust to sampling variation of the six donor 
brains, with low generalizability, g, compared to C1: gC1 = 0.78, gC2 = 0.09, 
gC3 = 0.14 (Methods). However, two data processing improvements were 
found to enhance the generalizability of higher-order components. 
First, we optimized the tradeoff involved in excluding noisy data—by fil-
tering spatially inconsistent genes (with low differential stability35) and 
under-sampled brain regions—while seeking to maximize the anatomic 
and genomic scope of the data matrix (Extended Data Fig. 1). Second, 
we used the nonlinear dimension reduction technique of diffusion map 
embedding (DME), instead of linear PCA, to identify coordinated gene 
expression patterns from the matrix. DME is robust to noise and more 
biologically plausible than PCA in this context because of its less strict 
orthogonality constraints (Methods). We found that, although PCA 
and DME both identified the same components from the filtered gene 
expression matrix (Extended Data Fig. 1d), using DME was necessary 
to achieve high generalizability, g, while also retaining sufficient genes 
for downstream enrichment analyses.

We applied DME to the {137 × 7,937} filtered AHBA data matrix 
comprising the expression of the 50% most stable genes measured 
in the 137 cortical areas with data available from at least three brains. 
The generalizability of the first three components was substantially 
increased—gC1 = 0.97, gC2 = 0.72, gC3 = 0.65—whereas the generaliz-
ability of even higher-order components remained low—for example, 
gC4 = 0.28 (Fig. 1a). We found that the cortical maps of C2 and C3 derived 
from DME on filtered data were more spatially smooth than the cor-
responding PCA-derived maps on unfiltered data (Fig. 1b), consist-
ent with the interpretation that higher generalizability indicates less 
contamination by spatially random noise. C1–C3 were also robust to 
variations in parameters for processing the AHBA, including choice of 
parcellation template (Extended Data Fig. 2). Finally, the transcriptional 
patterns represented by C1–C3 in the AHBA dataset were reproducible 
in an independent PsychENCODE dataset comprising bulk RNA-seq 
measurements of gene expression at 11 cortical regions from n = 54 
healthy controls36 (regional correlation: rC1 = 0.85, rC2 = 0.75, rC3 = 0.73; 
Extended Data Fig. 3 and Supplementary Table 5).

The first three DME components, C1–C3, explained 38%, 10% and 
6.5%, respectively, of the total variance of the filtered AHBA dataset 
(Methods). The proportion of variance explained was related to the 
number of genes that were strongly weighted (absolute correlation |r | ≥ 
0.5) on each component: 4,867 genes (61%) were strongly weighted on 
C1, 967 genes (12%) on C2 and 437 genes (5.5%) on C3 (Supplementary 
Fig. 2). The three components also had distinct axial alignments in 
anatomical space, and the co-expression network of cortical regions 
displayed clear anatomical structure even when the highest-variance 
C1 component was regressed out (Extended Data Fig. 4). These find-
ings demonstrate that these three expression patterns shared across 
hundreds to thousands of genes are likely to be biologically relevant.

To interpret the DME-derived components in more detail, we first 
used enrichment analyses of the weights of the 7,973 genes on each 
component (Methods). Many more Gene Ontology (GO) biological 
process terms were significantly enriched (with false discovery rate 
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Fig. 2 | Neuroimaging and macroscale maps of brain structure, function 
and development were distinctively co-located with three components of 
cortical gene expression. a, Correlation matrix of intrinsic transcriptional 
components C1–C3 together with the nine neuroimaging-derived and 
physiologically derived maps that Sydnor et al.10 combined with C1 to define 
S-A axis of brain organization. Many of the maps were not highly correlated to 
each other (median |r| = 0.31), and data-driven clustering of the matrix revealed 
three distinct clusters around each of the mutually orthogonal transcriptional 
components C1–C3, demonstrating that all three components are relevant 
for understanding macroscale brain organization. b, Distributions of regional 
scores of C1–C3 in histologically defined regions of laminar cytoarchitecture51. 
C1 distinguished idiotypic (P = 0.005) and paralimbic (P = 0.002) regions, 

whereas C3 distinguished idiotypic (P = 0.002) and heteromodal (P = 0.01) 
regions. *P < 0.05, FDR-adjusted two-sided permutation test as the percentile 
of the mean z-score relative to null spin permutations, with adjustment for 
multiple comparisons across all 12 tests. c, Degree of fMRI connectivity52,53 was 
significantly aligned to C1 (r = 0.78, Pspin < 0.001). Blue/yellow highlighted points 
correspond to idiotypic/paralimbic cytoarchitectural regions as in b. d, MEG-
derived theta power54 was significantly aligned to C2 (r = 0.78, Pspin = 0.002).  
e, Regional change in myelination over adolescence55,56 was significantly aligned 
to C3 (r = 0.43, Pspin = 0.009). Blue/red highlighted points correspond to idiotypic/
heteromodal cytoarchitectural regions as in b. In c and d, *P < 0.05, **P < 0.01,  
***P < 0.001, FDR-corrected two-sided spin-permutation test, with corrections 
for multiple comparisons of all maps in c and d being compared with all of C1–C3.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01624-4

(FDR) = 5%) for C2 (59 GO terms) and C3 (111 GO terms) than for C1 (15 
GO terms) (Fig. 1c).

Although C1 was enriched for relatively few, functionally general 
biological processes, it precisely matched the first principal compo-
nent previously reported (r = 0.96)8. The same interneuron marker 
genes (SST, PVALB, VIP and CCK) and glutamatergic neuronal genes 
(GRIN and GABRA) were strongly weighted with opposite signs (positive 
or negative) on C1 (Supplementary Fig. 3).

For genes positively weighted on C2, 23 of 36 enrichments were 
for metabolic processes, and, for negatively weighted genes, 19 of 23 
enrichments were for epigenetic processes (Fig. 1c and Supplementary 
Table 2). Whereas, for genes positively weighted on C3, 19 of 27 enrich-
ments were related to synaptic plasticity or learning, and, for negatively 
weighted genes, 33 of 84 enrichments involved the immune system. 
We further analyzed enrichment for genes identified as markers of 
specific cortical layers37 (Fig. 1e) and cell types38 (Fig. 1f) and, in each 
case, observed distinct enrichment profiles for C1–C3. For example, 
genes positively weighted on C3 were enriched for marker genes of 
neurons, synapses and cortical layers 2 and 3 (L2 and L3), whereas 
genes negatively weighted on C3 were enriched for glial (especially 
oligodendroglial) marker genes.

We also explored the biological relevance of the three compo-
nents by enrichment tests for genes associated with variation in adult 
cognitive capacity. We found that all three components, C1–C3, were 
enriched for genes significantly associated with educational attain-
ment39 (Fig. 1f). Across four independent GWASs of intelligence and 
cognition40–43, genes strongly weighted on C1 were not significantly 
enriched, but genes negatively weighted on C2 were enriched for 
genetic variants associated with intelligence in three of the four studies, 
and genes positively weighted on C3 were enriched for genes identified 
by all four previous GWASs of intelligence (Fig. 1g).

Neuroimaging maps align to three transcriptional 
components
Previous work linked gene transcription to a multimodal S-A axis10 of 
brain organization, defined as the composite of 10 brain maps, com-
prising C1 and nine other MRI or positron emission tomography (PET) 
neuroimaging maps that were selected to differentiate sensorimotor 
and association cortices. We first aimed to build on this work by analyz-
ing the correlation matrix of the same set of nine brain maps together 
with the three transcriptional components derived from DME of the 
filtered AHBA dataset. Data-driven cluster analysis of this {12 × 12} cor-
relation matrix identified three clusters, each including one of the 
orthogonal transcriptional components (Fig. 2a and Methods). C1 
was clustered together with two MRI maps: the T1w/T2w myelination 
marker44 and cortical thickness45; C2 was clustered with five maps: 
aerobic glycolysis46, cerebral blood flow47, cortical expansion in humans 
relative to non-human primates18, inter-areal allometric scaling48 
and external pyramidal cell density49; and C3 was clustered with two 
maps: the principal gradient of functional MRI (fMRI) connectivity17 
and first principal component of cognitive terms meta-analyzed by 
Neurosynth50. Although some maps were specifically aligned to one 
component—for example, aerobic glycolysis rC2 = 0.66 (Pspin = 0.004, 
FDR < 5%)—others were moderately correlated with multiple transcrip-
tional components—for example, for cerebral blood flow: rC1 = 0.25, 
rC2 = 0.28, rC3 = 0.33. This clustering analysis suggests that it is overly 
parsimonious to align all nine neuroimaging phenotypes with just one 
transcriptional component (C1) as part of a singular S-A cortical axis.

We also found that the three transcriptional components were 
associated with a wider range of cellular, functional and develop-
mental phenotypes than the nine neuroimaging maps above and 
that these associations were again distinct for the three compo-
nents. For example, at cellular scale, histologically defined regions 
of laminar cytoarchitectural differentiation51 were co-located with 
C1 and C3 but not with C2 (ANOVA, P < 0.001; Fig. 2b). In fMRI and 

magnetoencephalography (MEG) data, we found that weighted 
nodal degree of cortical regions in an fMRI network52,53 was strongly 
correlated with C1 (rC1 = 0.78, Pspin < 0.001, FDR = 5%; Fig. 2c) but 
not with C2 or C3 (rC2 = −0.01, rC3 = 0.00); across all canonical fre-
quency intervals of MEG data54, an FDR-significant association was 
observed between theta band (4–7 Hz) oscillations and C2 (rC2 = 0.78, 
Pspin = 0.002, FDR = 5%; Fig. 2d) but not C1 or C3 (rC2 = −0.18, rC3 = −0.02) 
(see Extended Data Fig. 5 for other MEG results). In addition, in sup-
port of the hypothetical prediction that adult brain transcriptional 
programs are neurodevelopmentally relevant, we found that a previ-
ous map of adolescent cortical myelination, as measured by change 
in magnetization transfer between 14 years and 24 years (ΔMT)55,56, 
was significantly co-located with C3 (rC3 = 0.43, Pspin = 0.009; Fig. 2e) 
but not with C1 or C2 (rC2 = 0.17, rC3 = 0.15).

C1–C3 are distinctly developing intracellular programs
We next used two additional RNA-seq datasets to investigate the consist-
ency of AHBA-derived components with gene co-expression in single 
cells—for example, neurons or glia—and to explore the developmental 
phasing of gene transcription programs represented by C1–C3.

First, for single-cell RNA-seq data comprising 50,000 nuclei 
sampled from five cortical regions of three donor brains57, the total 
weighted expression of the C1–C3 gene weights in each sample was 
computed separately for genes positively and negatively weighted 
in each component (Methods). We reasoned that if the components 
derived from bulk tissue microarray measurements in the AHBA dataset 
were merely reflective of regional differences in cellular composi-
tion—for example, neuron–glia ratio—then genes weighted positively 
and negatively on each component should not have anti-correlated 
expression across cells of the same class. However, we observed that 
genes weighted positively and negatively on the same component had 
strongly anti-correlated expression at the single-cell level (Fig. 3a), 
whereas genes that were positively and negatively weighted on dif-
ferent components were not anti-correlated (Supplementary Fig. 5). 
The anti-correlation of genes positively and negatively weighted on C1 
or C2 was stronger within each class of cells than across multiple cell 
classes, and was even stronger when the single-cell data were strati-
fied by subclasses of cells in specific cortical layers—for example, 
L2 VIP-expressing interneurons (Fig. 3a, inset). By contrast, for C3, 
the anti-correlation of positively and negatively weighted genes was 
stronger across cell classes than within each class, although there was 
still evidence for significantly coupled expression across cells of the 
same class or subclass.

Second, to explore the developmental trajectories of the tran-
scriptional components, we used BrainSpan, an independent dataset 
where gene expression was measured by RNA-seq of bulk tissue sam-
ples from 4–14 cortical regions for each of 35 donor brains ranging 
in age from −0.5 years (mid-gestation) to 40 postnatal years6. We 
first asked if the gene weights for each of the components derived 
from the AHBA dataset would exhibit similar spatial patterns in the 
BrainSpan dataset. We projected the C1–C3 gene weights from the 
AHBA onto the subset of adult brains (18–40 years, n = 8) in BrainSpan 
(Fig. 3b and Methods) and found that the resulting cortical maps 
of component scores in the BrainSpan data were highly correlated 
with the corresponding cortical maps derived from the AHBA dataset 
(rC1 = 0.96, rC2 = 0.88, rC3 = 0.84; Fig. 1d). This indicated that the three 
components defined in the AHBA were generalizable to the adult 
brains in the BrainSpan dataset (for a full replication of C1–C3 in inde-
pendent data, see Extended Data Fig. 3). We then similarly compared 
the cortical component maps derived from the AHBA dataset to the 
corresponding maps calculated for subsets of the BrainSpan cohort 
from two earlier developmental stages (prebirth, n = 20, and birth to 
13 years, n = 14). We observed that, for C1 and C2, AHBA component 
scores were almost as highly correlated with BrainSpan component 
scores in fetal (prebirth) and childhood (birth to 13 years) brains as in 
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the adult (18–40 years) brains (birth to 13 years, rC1 = 0.87, rC2 = 0.91; 
prebirth, rC1 = 0.74, rC2 = 0.66; Fig. 3d). However, C3 scores in the AHBA 
dataset were not so strongly correlated with C3 scores in the fetal and 
childhood subsets of the BrainSpan dataset (prebirth, rC3 = 0.29; birth 
to 13 years, rC3 = 0.47). These results suggest that C3 may only emerge 
developmentally during adolescence, whereas the C1 and C2 have 
nearly-adult expression from the first years of life.

We tested this hypothesis by further analysis of the BrainSpan 
dataset, modeling the nonlinear developmental trajectories of each 
gene over the age range of −0.5 years to 40 years (Methods) and then 
averaging trajectories over all genes in each decile of the distribu-
tions of gene weights on each of the three components. We found that 
genes in the top few deciles of C3 gene weights became more strongly 
expressed during and after adolescence, whereas genes in the top 
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Fig. 3 | Transcriptional components represent intracellular coordination  
of gene expression programs with distinct developmental trajectories.  
a, For each of approximately 50,000 single-cell RNA-seq samples, the weighted 
average expression of the negatively weighted genes of each AHBA component 
C1–C3 is plotted against that of the positively weighted genes (Methods). 
Samples are colored by cell type, demonstrating that genes positively and 
negatively weighted on C1–C3 have correlated expression within each major 
class of brain cells. Astro, astrocytes; Endo, endothelial cells; Micro, microglia; 
N-Ex, excitatory neurons; N-In, inhibitory neurons; Oligo, oligodendrocytes; 
OPC, oligodendrocyte precursor cell. Inset, a subset of samples from L2 VIP 
interneurons, illustrating that C1–C3 weighted genes were transcriptionally 
coupled even within a fine-grained, homogeneous group of cells. b, Cortical 
maps representing the regional scores of components C1–C3 for each of 11 
regions with transcriptional data available in the BrainSpan cohort of adult 
brains (left) and C1–C3 component scores for the matching subset of regions 
in the AHBA (right). c, Scatter plots of matched regional C1–C3 scores from b, 
demonstrating that the three transcriptional components defined in the AHBA 

had consistent spatial expression in BrainSpan. d, Correlations between AHBA 
C1–C3 scores and BrainSpan C1–C3 scores (as in c) for each of three age-defined 
subsets of the BrainSpan dataset. C1 and C2 component scores were strongly 
correlated between datasets for all age subsets, whereas C3 component scores 
were strongly correlated between datasets only for the 18–40-year subset of 
BrainSpan. This indicates that C1 and C2 components were expressed in nearly 
adult forms from the earliest measured phases of brain development, whereas 
C3 was not expressed in adult form until after adolescence. e, Developmental 
trajectories of brain gene expression as a function of age (−0.5 years to 40 years; 
x axis, log scale) were estimated for each gene (Methods) and then averaged 
within each decile of gene weights for each of C1–C3; fitted lines are color-coded 
by decile. Genes weighted positively on C3 were most strongly expressed during 
adolescence, whereas genes weighted strongly on C1 or C2 were most expressed 
in the first 5 years of life. Dots above the x axis represent the postmortem ages 
of the donor brains used to compute the curves. RPKM, reads per kilobase per 
million mapped reads.
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few (C2) or bottom few (C1) deciles of gene weights on the other two 
components were most strongly expressed in the first 5 years of life and 
then declined or plateaued during adolescence and early adulthood 
(Fig. 3e). These results confirmed that components C1–C3 have distinct 
neurodevelopmental trajectories, with genes positively weighted on 
C3 becoming strongly expressed after the first postnatal decade.

Autism and schizophrenia have specific links to C1/C2 and C3
Finally, we explored the clinical relevance of C1–C3 by analysis of previ-
ous neuroimaging, differential gene expression and GWAS associations 
for ASD, major depressive disorder (MDD) and schizophrenia.

First, we leveraged the BrainChart neuroimaging dataset of more 
than 125,000 MRI scans58, in which atypical deviation of regional corti-
cal volumes in psychiatric cases was quantified by centile scores relative 
to the median growth trajectories of normative brain development over 
the lifecycle (Fig. 4a). Using the Desikan–Killiany parcellation of 34 
cortical regions necessitated by alignment with this dataset (Methods), 
we found that cortical shrinkage in ASD was significantly associated 
with both C1 and C2 (rC1 = 0.49, Pspin = 0.0002, FDR < 5%; rC2 = −0.28, 
Pspin = 0.0006, FDR < 5%), whereas shrinkage in schizophrenia was spe-
cifically associated with C3 (rC3 = 0.43, Pspin = 0.008, FDR < 5%) (Fig. 4b).

Second, we compiled consensus lists of differentially expressed 
genes (DEGs) from RNA-seq measurements of dorsolateral prefrontal 
cortex (DLPFC) tissue in independent studies of ASD36,59,60, MDD61 and 
schizophrenia60,62–65 (Methods). We found that genes differentially 
expressed in ASD were specifically enriched in both C1 and C2 (but not 
in C3), whereas genes differentially expressed in schizophrenia were 
enriched in C3 (but not in C1 or C2), and genes differentially enriched 
in MDD were enriched only in C1 (Fig. 4b). Corroborating the enrich-
ments of ASD DEGs, case–control differences in expression at 11 cortical 
regions for ASD cases compared to healthy controls showed that the 
positively weighted genes on C1 and C2 were significantly less strongly 
expressed in ASD cases than in controls (Extended Data Fig. 3).

Third, using data from the most recent GWASs of ASD66, MDD67 and 
schizophrenia68, we found that genetic variants significantly associated 
with ASD were enriched in both C1 and C2 (but not in C3), whereas genes 
associated with schizophrenia were enriched in C3 (but not in C1 or C2) 
(Fig. 4d). Genes associated with MDD were not significantly enriched 
in any transcriptional component. These associations were replicated 
when using alternative methods (MAGMA69 and H-MAGMA70) to test 
the association between GWAS-derived P values for the association of 
each gene with ASD, MDD or schizophrenia and the C1–C3 gene weights 
without requiring an explicit prioritization of GWAS-associated genes 
(Supplementary Fig. 6). This pattern of results for autism and schizo-
phrenia GWAS associations evidently mirrored the pattern of previous 
results from analysis of case–control neuroimaging (Fig. 4b) and dif-
ferential gene expression studies (Fig. 4c), with ASD consistently linked 
to components C1 and C2 and schizophrenia consistently linked to C3.

Notably, this consistency of association between disorders and 
specific transcriptional components was observed despite minimal 
overlap between the DEGs and GWAS risk genes identified as significant 
by the primary studies of each disorder71 (Fig. 4e). However, motivated 
by the association of C3 with regions of greatest laminar differentiation 
(Fig. 2b), we found that the subsets of the schizophrenia-associated 
DEG and GWAS gene sets that were positively weighted on C3 were 
both significantly enriched for marker genes of L2 and L3 (Fig. 4g and 
Extended Data Fig. 6). These shared laminar associations between the 
non-overlapping DEG and GWAS gene sets were present only when sub-
setting to C3-positive genes and were specific to schizophrenia (that is, 
C3-positive subsets of ASD and MDD genes did not show the same L2/
L3 enrichments). Convergent with C3 revealing an L2/L3 association 
in schizophrenia-associated genes from DEG and GWAS gene sets, we 
found that the cortical map of C3 was significantly co-located with an 
MRI-derived map of specifically supragranular, L2/L3-predominant 
thinning in schizophrenia72 (rC3 = 0.55, Pspin = 0.002, FDR < 1%; Fig. 4g).

Discussion
Our results offer a new perspective on how the brain’s macroscale 
organization develops from the microscale transcription of the human 
genome. Through optimized processing of the AHBA and replication 
in PsychENCODE, we show that the transcriptional architecture of the 
human cortex comprises at least three generalizable components of 
coordinated gene expression. The two higher-order components (C2 
and C3) had not previously been robustly demonstrated, although 
the initial AHBA paper identified similar components to C1 and C2 by 
applying PCA to one of the six AHBA brains and filtering for only 1,000 
genes2 (Supplementary Fig. 1). In the present study, we derived C2 and 
C3 from all six AHBA brains and show here that they each represent 
the coordinated expression of hundreds of genes (Supplementary 
Fig. 2). Broadly, the C2 genes were enriched for ‘metabolic’ and ‘epi-
genetic’ processes, whereas the C3 genes were enriched for ‘synap-
tic’ and ‘immune’ processes (Fig. 1c). Both higher-order components 
were significantly enriched for genes associated with intelligence and 
educational attainment (Fig. 1f,g), indicating their relevance to the 
brain’s ultimate purpose of generating adaptive behavior. The brain 
maps corresponding to each of the components were also distinc-
tively co-located with multiple neuroimaging or other macroscale 
brain phenotypes (Fig. 2). These co-locations were often convergent 
with the gene enrichment results, triangulating evidence for C2 as a 
metabolically specialized component and for C3 as a component spe-
cialized for synaptic and immune processes underpinning adolescent 
plasticity (Table 1). Together, these convergent results expand on the 
proposal of a single S-A axis10,73 by demonstrating that macroscale 
brain organization emerges from multiple biologically relevant tran-
scriptional components.

The discovery of these biologically relevant, higher-order tran-
scriptional components in the AHBA dataset raised further questions. 
(1) Do the components reflect coordinated gene expression within 
cells or only variation in cell composition? (2) When do the compo-
nents emerge during brain development? (3) How do they intersect 
with neurodevelopmental disorders? We addressed these questions 
using additional RNA-seq datasets (Supplementary Table 5). First, we 
found that genes positively or negatively weighted on the components 
derived from the AHBA bulk tissue samples had consistently coupled 
co-expression across RNA-seq measurements in single cells—for exam-
ple, individual neurons and glia (Fig. 3a). This indicated that C1–C3 rep-
resent transcriptional programs coordinated at the intracellular level, 
not merely regional variation in the proportion of different cell types. 
Second, we found that C1–C3 have differentially phased developmental 
trajectories of expression—for example, that the positive pole of C3 
becomes strongly expressed only during adolescence, convergent with 
its spatial co-location with a map of adolescent cortical myelination 
(Fig. 3b,c). Finally, we established that these transcriptional programs 
are not only critical for healthy brain development but, as might be 
expected, are also implicated in the pathogenesis of neurodevelop-
mental disorders (Fig. 4).

The pattern of results for disorders was strikingly convergent 
across multiple data modalities: C1 and C2 were both enriched for 
genes implicated by both GWAS and DEG data on ASD, whereas C3 
was specifically enriched for genes implicated by both GWAS and 
DEG data on schizophrenia (Table 1). We observed a similar pattern 
of significant co-location between C1–C3 maps and MRI phenotypes: 
developmentally normalized scores on reduced cortical volume in 
ASD were correlated with maps of C1 and C2 and, for schizophrenia, 
with the map of C3 (Fig. 4a,b). In contrast, there was no evidence for 
enrichment of C1–C3 by genes associated with risk of Alzheimer’s 
disease74 (Supplementary Fig. 6). An intuitive generalisation of these 
results is that the developmental processes that give rise to these 
three components of gene expression in the healthy adult brain are 
pathogenically more relevant for neurodevelopmental disorders than 
for neurodegenerative disease.
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Overall, our results were strongly supportive of the motivating 
hypothesis that the transcriptional architecture of the human cortex 
represents developmental programs crucial both to the brain’s healthy 

organization and to the emergence of neurodevelopmental disorders. 
For example, when interpreting C3 as a transcriptional program medi-
ating adolescent plasticity (Table 1), our finding that C3 represents 
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genes and then tested for enrichment with marker genes for each cortical 
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***P < 0.001.
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coupled transcription of synapse-related and immune-related genes 
within cells (Fig. 3a) is consistent with previous work indicating that 
the neuronal expression of immune-related, typically glial genes can 
play a mechanistic role in synaptic pruning75 and, vice versa, that neu-
ronal genes associated with synapse and circuit development can 
also be expressed in glial cells76. Although atypical synaptic pruning 
has long been hypothesized to be a mechanistic cause of schizophre-
nia77–79, previous results on the biology of schizophrenia have shown 
limited consistency, both among the primary data modalities of GWAS, 
postmortem expression and neuroimaging80,81 and even among DEG 
studies71. Here we demonstrate that the C3 transcriptional program 
offers a unifying link between these disparate previous results. When 
parsed by the C3-positive genes, the otherwise non-overlapping GWAS 
and DEG gene sets for schizophrenia display a shared enrichment for 
supragranular marker genes (Fig. 4e,f), and, convergently, C3 was 
spatially associated with supragranular-specific thinning in schizo-
phrenia (Fig. 4g). Supragranular layers have dense cortico-cortical 
connections82 and are expanded in humans relative to other species83–85, 
mature latest in development86, have been linked to intelligence87 and 
have previously been linked to schizophrenia88–90. This triangulation 
of evidence strongly suggests that the third component of the brain’s 
gene expression architecture represents the transcriptional program 
coordinating the normative, neuro-immune processes of synaptic 
pruning and myelination in adolescence55, such that atypical expres-
sion of C3 genes due to schizophrenia genetic risk variants can result in 
atypical development of supragranular cortical connectivity, leading 
to the clinical emergence of schizophrenia.

Clearly, there are limits to what can be learned from RNA meas-
urements of bulk tissue samples from six healthy adult brains. In the 
present study, we explicitly identified the limits of the AHBA dataset by 
optimizing data processing against an unbiased measure of generaliz-
ability, g, which yielded three components. The architecture of human 

brain gene expression likely involves more than three components; 
however, our analysis suggests that their discovery will rely on additional 
high-granularity transcriptional data. In particular, gene expression var-
ies with sex, age, genetics and environment91, so we expect that future 
data will reveal additional components that are more individually vari-
able and demographically diverse than the three that we characterize 
here. In addition, the code and data that supplement our results can help 
future research to leverage our work with the unique AHBA resource.
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Methods
AHBA data and donor-level parcellation images
Probe-level gene expression data with associated spatial coordi-
nates were obtained from the Allen Institute website (https://human.
brain-map.org), which collected the data after obtaining informed 
consent from the deceased’s next of kin. HCP-MMP1.0 parcellation 
images matched to the individual native MRI space of each donor brain 
(n = 6) were obtained from Arnatkevičiūtė et al. (https://figshare.com/
articles/dataset/AHBAdata/6852911)33. The use of native donor parcel-
lation images (rather than a standard parcellation image with sample 
coordinates mapped to MNI space) was chosen as it optimized the 
triplet generalizability metric (see the following).

AHBA processing parameters
To correctly match AHBA samples to regions in native donor space 
parcellation images using published processing pipelines, we recom-
mend the use of either (1) abagen version 0.1.3 or greater (for Python)34 
or (2) the version of the AHBAprocessing pipeline updated in June 2021 
or later (for MATLAB)33.

In the present study, we processed the AHBA with the abagen 
package, with one modification: we filtered the AHBA samples for only 
those annotated as cortical samples before subsequent processing 
steps. This was done such that subcortical and brainstem samples did 
not influence the intensity filter and probe aggregation steps. This 
modification was chosen as it optimized the triplet generalizability 
metric (see the following). The code used to apply the modification is 
available in the code/processing_helpers.py file at https://github.com/
richardajdear/AHBA_gradients.

Other than this modification, abagen was run using the follow-
ing parameters, which follow published recommendations33 unless 
otherwise specified:

•	 Hemisphere: The right hemisphere samples that are present 
for two of the six donors were reflected along the midline and 
processed together with the left hemisphere samples of those 
donor datasets to increase sample coverage.

•	 Intensity-based filter: Probes were filtered to retain only those 
exceeding background noise (as defined by the binary flag 
provided with the data by the Allen Institute) in at least 50% of 
the samples33.

•	 Probe aggregation: Probes were aggregated to genes by differ-
ential stability, meaning that, for each gene, the probe with the 
highest mean correlation across donor pairs was used.

•	 Distance threshold: Samples were matched to regions with a 
tolerance threshold of 2 mm, using the voxel-mass algorithm in 
the abagen package.

•	 Sample normalization: Before aggregating over donors, samples 
were normalized across all genes, using the scaled robust sigmoid 
method (a sigmoid transformation that is robust to outliers33).

•	 Gene normalization: Before aggregating over donors, genes 
were normalized across all samples, again using the scaled 
robust sigmoid.

To ensure robustness, the primary analysis of computing com-
ponents of the AHBA was repeated in a series of sensitivity analyses 
varying all of the processing parameters above—for example, not 
mirroring right hemisphere samples to the left hemisphere, different 
or no intensity filter for genes and different methods for aggregating 
and normalizing probes. Sensitivity analyses also included running 
the pipeline with alternative parcellation templates: HCP-MMP1.0 
(ref. 32), Schaefer-400 (ref. 96) Desterieux97 and Desikan–Killiany98 
(Extended Data Fig. 2).

Gene filtering by differential stability
Genes were filtered for those that showed more similar spatial patterns 
of expression across the six donors using the metric of differential 

stability as previously described by Hawrylycz et al.35. For each gene, 
differential stability was calculated as the average correlation of that 
gene’s regional expression vector between each donor pair (15 pairs 
with all six brains or three pairs in the triplets analysis; see below). 
Genes were ranked by differential stability, and then only the top 50% 
percent of genes were retained. The 50% threshold was chosen on the 
basis of a grid search (in combination with the region filter to optimize 
for generalizability) where the threshold for differential stability was 
varied between 10% and 100% (Extended Data Fig. 1).

Filtering regions by donors represented
Regions were filtered for those that included samples from at least 
three of the six AHBA donor brains, which, in the HCP-MMP1.0 parcel-
lation, retained 137 of 180 regions. Note that, in the triplets analysis (see 
below), this means that only brain regions with samples from all three 
donors in the triplet were retained. The choice to filter for representa-
tion of three of the six donors was made on the basis of a grid search in 
combination with the differential stability gene filter to optimize for 
generalizability (Extended Data Fig. 1).

Triplets analysis: disjoint triplet correlation as a proxy  
for generalizability
To test for generalizability, we separated the six AHBA brains into 
pairs of disjoint triplets (for example, donor brains 1,2,3 in one triplet 
and 4,5,6 in another). We applied our full analysis pipeline (including 
all processing steps—for example, probe aggregation, normalization 
and filters) independently to each of the 20 possible combinations of 
triplets and correlated the regional scores for each DME or PCA compo-
nent between each of the 10 disjoint pairs (Pearson’s r). When filtering 
for consistently sampled regions, the retained regions were different 
for each triplet of donor brains, so correlations were performed on 
only the intersection of regions retained in both triplets of each pair.

As the order of principal components can vary across different 
triplets, we used a matching algorithm in which the full correlation 
matrix was computed among the top five principal components of 
both triplets (for example, C1 from triplet A was correlated with each 
of C1–C5 of triplet B). The highest absolute correlation value in the 
matrix was then identified as representing two matched components 
and removed from the matrix, with the process repeated until all com-
ponents were matched. The components were then ranked by the mean 
variance explained in each matched pair.

The median absolute correlation across all 10 disjoint triplet pairs 
represented the generalizability, g, of the AHBA components processed 
using the given set of parameters. Processing parameters, in particular the 
filters for regions and donors, were optimized so as to maximize g while 
retaining as many genes and regions as possible (Extended Data Fig. 1).

Dimension reduction methods
Dimension reduction was performed using both PCA and DME, the lat-
ter having been described for use in spatial gradient analysis of brain 
imaging data by Margulies et al.17. For DME, the normalized cosine 
function was used as the kernel for the affinity matrix. No sparsity 
was added, and the alpha parameter was set at 1. These parameters 
were chosen as they optimized the inter-triplet correlation metric for 
generalizability. Both PCA and DME methods were implemented using 
the BrainSpace package99. See Supplementary Methods for further 
explanation on DME and its benefits over PCA and other alternatives 
(for example, independent component analysis).

Component gene weights
For each component, gene weights were computed as the Pearson’s 
correlation of each gene’s individual spatial expression vector with 
the regional scores of the component. For PCA, these correlations are 
equivalent to the PCA loadings (eigenvectors) multiplied by the square 
root of the variance explained by the component (eigenvalues).
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Variance explained
For PCA, variance explained is given directly by the squared eigen-
values of the singular value decomposition. For DME, eigenvalues 
do not represent variance explained as the gene expression matrix is  
first converted to an affinity matrix using a kernel (here, the normal-
ized cosine). Therefore, variance explained was calculated as the 
difference in the total variance of the region-by-gene expression 
matrix before and after regressing the matrix on each component’s 
region scores.

That is, defining the residual regional expression vector of gene g 
after regressing out i components as eg,i, the total variance Vi of the 
residualized region-by-gene expression matrix is

Vi = ∑g Var (eg,i)

and, for each component Ci, variance explained VEi is given by

VEi = Vi−1 − Vi

GO enrichment analysis for biological processes
Biological process enrichments of the gene weights for each compo-
nent were computed using the ‘proteins with values/ranks’ function of 
the online software STRING100, which tests whether the mean weight of 
each annotated gene list is significantly higher or lower than random 
permutations of the same gene weights (the ‘aggregate fold change’ 
method100,101) and includes a Benjamini–Hochberg adjustment of  
the FDR.

The aggregate fold change method was chosen as it does not 
require thresholding the gene weights of the components to define 
‘target’ versus ‘background’ gene lists (as in, for example, Fisher’s 
exact test). That is, rather than setting a threshold for which genes are 
‘in’ or ‘out’ of each component, we took the weighted gene list where 
all genes can have some contribution to each component and, for each 
component, tested whether each GO gene list was, in aggregate, more 
positively or negatively weighted than chance.

Layer and cell type enrichment analyses
The gene lists for cortical layer marker genes were obtained from 
published analyses of laminar enrichment in spatial transcriptomic 
data from human postmortem tissue in the DLPFC37 (columns Q–W of 
supplementary table 4b in Maynard et al.37).

Cell type gene lists were obtained from Seidlitz et al.22, who  
compiled lists of significantly differentially expressed genes from  
five independent single-cell RNA-seq studies38,102–105. The gene 
list for synaptic marker genes was the unfiltered gene list from 
SynaptomeDB106.

All enrichments for layers and cell types were computed by the 
same aggregate fold change method101 as in the STRING software100, 
whereby the mean gene weight of each gene list was computed for 
both the true set of gene weights of each component and for 5,000 
random permutations of the weights. The z-scores and permutation 
test P values for significance testing of enrichment were corrected for 
multiple comparisons with the Benjamini–Hochberg FDR.

GWAS enrichment analyses for educational attainment and 
intelligence
Genes associated with cognitive capacity by GWAS were obtained from:

•	 Lee et al.39, supplementary table 7 (educational attainment)
•	 Davies et al.40, supplementary table 6
•	 Savage et al.42, supplementary table 1 5
•	 Hill et al.41, supplementary table 5
•	 Hatoum et al.43, supplementary table 16

Enrichment tests were performed by the aggregate fold change 
method101, as above.

Neuroimaging and other macroscale brain maps (Fig. 2)
Neuroimaging and other macroscale maps were obtained as follows:

•	 The nine neuroimaging and macroscale maps in the clustering 
analysis (Fig. 2a) were obtained from the neuromaps package107 
and are also available in Sydnor et al.10.

•	 The regions of cytoarchitectural differentiation (Fig. 2b) were 
obtained from Paquola et al.108 and averaged into the HCP-MMP 
parcellation using the neuromaps package107.

•	 The map of fMRI degree (Fig. 2c) was obtained from Paquola et al.49  
and was originally computed from the HCP S900 release109.

•	 The maps of MEG power bands (Fig. 2d and Extended Data Fig. 5) 
were obtained from the neuromaps package107.

•	 The map of adolescent change in cortical myelination was 
obtained from Váša et al.56.

All maps were aggregated into the HCP-MMP parcellation and are 
provided in Supplementary Table 3.

Spatial associations between maps and the transcriptional com-
ponents were computed by Pearsonʼs correlations and tested for sig-
nificance using spin permutation tests (5,000 spins) by the Cornblath 
method110, leveraging tools from neuromaps107, and tested for signifi-
cance with FDR correction for multiple testing.

For the regions of cytoarchitectural differentiation, the mean 
component scores in each architectonic class were tested for differ-
ences between class mean scores using ANOVA against spin-permuted 
null models, followed by correction for FDR. The associations 
between individual cytoarchitectural regions and each component 
were computed by the z-score of the mean component score in  
each region normalized by a spin permutation distribution of the 
regional mean component score with significance testing corrected 
for FDR.

Single-cell co-variation analysis (Fig. 3a)
Single-cell RNA-seq data were obtained from the Allen Cell Types Data-
base (https://portal.brain-map.org/atlases-and-data/rnaseq)57.

Single-cell gene expression was filtered for the 7,873 genes in the 
optimally filtered AHBA dataset. To perform the analysis in Fig. 3a, the 
positive and negative gene weights were separated for each of C1–C3, 
and the dot product was taken with the gene expression matrix of 
single-cell samples. This produced a vector of six numbers, represent-
ing the weighted total expression of C1+, C1−, C2+, C2−, C3+ and C3− genes, 
respectively, for each of the 50,000 single-cell samples.

That is, given the gene expression vector sj of each single-cell 
sample j, we computed t he total weighted positive and negative expres-
sion s+ j,Ci and s− j,Ci from the C1–C3 gene weights as:

s+ j,Ci = sj ⋅ u+Ci and s− j,Ci = sj ⋅ u−Ci

where u+Ci = max {uCi,0} and u−Ci = min {uCi,0}.

BrainSpan developmental gene expression processing 
(Fig. 3b–d)
BrainSpan data were obtained directly from the Allen Institute website6 
(http://brainspan.org) and processed as follows:
 1. The 11 cortical regions in the BrainSpan data were manually 

matched to the HCP-MMP1.0 parcellation regions according 
to the descriptions in the BrainSpan documentation. This 
mapping is provided at https://github.com/richardajdear/
AHBA_gradients.

 2. Exon-level expression data were filtered for only the matched 
BrainSpan regions.

 3. Donor brains from which fewer than four regions were sampled 
were dropped.

 4. Within each donor, expression of each gene was z-normalized 
over regions.
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 5. Donors were aggregated into three age ranges (pre-birth, birth 
to 13 years and 18–40 years), and expression was averaged for 
each gene.

AHBA-BrainSpan developmental consistency analysis 
(Fig. 3b–d)
Consistency between the AHBA components and BrainSpan was evalu-
ated as follows:

 1. Processed BrainSpan data were filtered for only the 7,973 genes 
retained in the filtered AHBA dataset (top 50% by differential 
stability; see above).

 2. The dot product of the gene weights for C1–C3 were taken 
against the BrainSpan data, resulting in ‘BrainSpan scores’ for 
each of C1–C3, for each of the 11 BrainSpan regions, at each age 
range (pre-birth, birth to 13 years and 18–40 years).

 3. In each of the 11 BrainSpan regions, ‘AHBA scores’ were com-
puted as the mean of the matching HCP-MMP region scores 
from the original C1–C3 maps derived from the AHBA.

 4. The ‘BrainSpan scores’ and ‘AHBA scores’ were correlated over 
the 11 BrainSpan regions (Pearson’s r) for each of C1–C3 and for 
each age bucket of the BrainSpan data.

As further clarification: given gene weights ui for AHBA component 
Ci and the vector of expression over genes bj for each BrainSpan sample 
j (with a given age and region), the ‘BrainSpan score’ is

yj, i = bj ⋅ ui

and the consistency was tested as the correlation across the matched 
regions of the AHBA scores x and the mean of the BrainSpan scores y 
of BrainSpan donors in each age range.

BrainSpan developmental trajectory modeling (Fig. 3e)
The developmental trajectories of each decile of C1–C3 were computed 
as follows:

 1. The ages in the BrainSpan data were converted to 
post-conception days on a log10 scale.

 2. For each gene, a generalized additive model was fitted using 
the GLMGam function in the statsmodels Python package with 
alpha = 1 and 12 3rd-degree basis splines as a smoothing func-
tion (df = 12, degree = 3 in the BSplines function). Sex and brain 
region were included as covariates.

 3. Developmental curves were plotted from the fitted models for 
each gene, sex and region and then averaged by decile of gene 
weight for each of C1–C3.

Disorder spatial associations (Fig. 4a,b)
Maps of the regional centile score differences in cortical volume for ASD, 
MDD and schizophrenia were obtained from the BrainCharts project by 
Bethlehem et al.58, in which normative models were computed for mul-
tiple brain phenotypes across the human lifespan from a harmonized 
dataset of more than 125,000 total MRI scans (ncontrols = 38,839, nASD = 381, 
nMDD = 3,861, nSCZ = 315). As these data were in the Desikan–Killiany par-
cellation, the AHBA components in the HCP-MMP parcellation were 
mapped to a vertex-level surface map (FreeSurfer’s 41k fsaverage atlas) 
and then re-averaged into the Desikan–Killiany parcellation. Pearsonʼs 
correlations with cortical maps of C1–C3 scores were computed, and 
significance was assessed by spin permutation tests and corrected for 
FDR across all nine tests (three disorders by three components).

These disorder maps are provided in Supplementary Table 4.

Disorder DEG associations (Fig. 4c)
DEGs (FDR < 5%) from RNA-seq of postmortem brain tissue were 
obtained from the following case–control studies for each of ASD, 
MDD and schizophrenia:

•	 ASD:
•	 Gandal et al.36, supplementary table 3, WholeCortex_ASD_ 

FDR < 0.05
•	 Gandal et al.60, supplementary table 1, ASD.fdr < 0.05
•	 Parikshak et al.59, supplementary table 2, FDR-adjusted P value, 

ASD versus CTL < 0.05
•	 MDD

•	 Jaffe et al.61, supplementary table 2, Cortex_adjPVal_MDD < 0.05
•	 Schizophrenia

•	 Fromer et al.62, supplementary table 16, FDR estimate < 0.05
•	 Gandal et al.60, supplementary table 1, SCZ.fdr < 0.05
•	 Jaffe et al.65, supplementary table 9, fdr_qsva <0.05
•	 Collado-Torres et al.64, supplementary table 11), adj.P.Val <0.05 

& region == ‘DLPFC’

A consensus list of DEGs was compiled for each disorder (except 
MDD where only one study was included) by including only those genes 
identified in at least two studies.

Enrichments for these gene sets in each disorder were computed 
by the aggregate fold change method101—that is, computing the per-
centile of the mean weight of the DEGs in C1–C3 relative to the 5,000 
random permutations of the gene labels.

Disorder-associated genes from GWAS (Fig. 4d)
Genes significantly associated with ASD, MDD and schizophrenia by 
GWAS were obtained from:

•	 ASD: Matoba et al.66, supplementary table 7
•	 MDD: Howard et al.67, supplementary table 9
•	 Schizophrenia: Trubetskoy et al.68, extended GWAS: https:// 

figshare.com/articles/dataset/scz2022/19426775?file=35775617

Associations with GWAS were calculated using three methods (Sup-
plementary Fig. 6):
•	 Enrichment of the prioritized genes identified in each of the 

specific studies, using the aggregate fold change method101 as 
described above.

•	 MAGMA69, a regression technique that tests for association 
between each of the components C1–C3 and the P values for 
each gene’s association with ASD, MDD or schizophrenia (from 
corresponding primary GWASs) without requiring a threshold to 
be applied to the GWAS-derived P values to define a prioritized 
subset of genes for enrichment analysis. MAGMA addition-
ally accounts for gene length and gene–gene correlations. The 
COVAR function of MAGMA was used to test for association of the 
GWAS P values with the C1–C3 gene weights as a continuous vari-
able. For standard MAGMA, a single-nucleotide polymorphism 
(SNP)-to-gene mapping window of +35 kb to −10 kb was used.

•	 H-MAGMA70, an extension of MAGMA where SNP-to-gene map-
ping is performed using Hi-C chromatin measurements from 
postmortem brain tissue so as to capture trans-regulatory 
effects. We used the Hi-C mapping from adult brain DLPFC, avail-
able online from the original H-MAGMA authors.

Laminar enrichments shared across DEG and GWAS  
gene sets (Fig. 4f)
Enrichments for the marker genes of each cortical layer37 were com-
puted for the disorder-associated gene lists from DEGs and GWASs 
using Fisher’s exact test. These enrichments were computed both with 
and without filtering for only genes with positive C3 weights.

Schizophrenia supragranular-specific cortical  
thinning (Fig. 4g)
The MRI-derived map of supragranular cortical thinning in schizophre-
nia was obtained from Wagstyl et al.72 (n = 90 subjects, n = 46 cases) and 
parcellated using HCP-MMP1.0 parcellation. Pearson’s correlations 

http://www.nature.com/natureneuroscience
https://figshare.com/articles/dataset/scz2022/19426775?file=35775617
https://figshare.com/articles/dataset/scz2022/19426775?file=35775617
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were computed with C1–C3, and significance was assessed by spin 
permutation tests, corrected for FDR.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Regional scores and gene weights for the transcriptional compo-
nents C1–C3 are provided in Supplementary Table 1. Gene expres-
sion datasets used are all publicly available. The Allen Human Brain 
Atlas is available at http://human.brain-map.org and individual 
donor HCP-MMP parcellation images at https://figshare.com/arti-
cles/dataset/AHBAdata/6852911. The BrainSpan Atlas is available 
at https://www.brainspan.org/. The Allen Human Cell Atlas is avail-
able at https://portal.brain-map.org/atlases-and-data/rnaseq. The 
PsychENCODE dataset is available at https://github.com/dhglab/
Broad-transcriptomic-dysregulation-across-the-cerebral-cortex-in-AS
D. Neuroimaging maps of healthy brain features are available in the 
neuromaps package (https://github.com/netneurolab/neuromaps). 
For convenience, all brain maps used are provided in Supplementary 
Tables 3 and 4. Gene lists used for enrichment analyses were all obtained 
from previous publications as detailed in the Methods.

Code availability
Analyses were performed with Python version 3.10.5 and R version 2.2. 
Key Python packages include abagen version 0.1.3, brainspace version 
0.1.10 and neuromaps version 0.0.3. Full details of all packages, a Dock-
erfile and links to Docker images and all code used for these analyses are 
publicly available at https://github.com/richardajdear/AHBA_gradients.
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Extended Data Fig. 1 | Optimised processing of the AHBA identified three 
generalisable components. a, In the HCP-MMP parcellation, 43/180 regions  
are matched to samples representing less than 3 of the 6 AHBA donors. 
b, Distribution of differential stability of genes measured in the AHBA dataset 
processed in the HCP-MMP parcellation. c, Generalisability of first five 
components of the AHBA dataset computed with either principal components 
analysis (PCA) or diffusion map embedding (DME). Color represents 
generalisability g, defined as the median absolute correlation between matched 
components computed across all 10 disjoint triplet pairs (Methods); x-axis 

represents variation in the proportion of genes filtered out by differential 
stability prior to PCA/DME; y-axis represents variation in which regions are 
filtered out prior to PCA/DME. Tick mark indicates parameter combinations 
that exceed generalisability g > 0.6. Green highlights for C3 indicate the best 
parameter option with PCA and DME respectively, showing that switching to 
DME achieves similar generalisability while retaining more genes. d, Scatter 
plots of regional scores for AHBA components computed using the best PCA/
DME options, demonstrating that PCA and DME derive spatially equivalent 
components.

http://www.nature.com/natureneuroscience
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Extended Data Fig. 2 | Transcriptional components were robust to 
parcellation and processing. Transcriptional components were computed in 
four different parcellation templates (Methods). For each parcellation, the gene 
weights for the first three components were correlated with the weights obtained 
from the HCP-MMP parcellation used throughout. Gene weights were highly 
consistent, although in the less-granular (34-regions/hemisphere) Desikan-

Killiany parcellation, C2 and C3 were less well aligned to the other parcellations. 
b, A wide range of parameters for processing the AHBA data were varied, and 
the resulting component region scores were correlated with the components 
obtained from the optimised parameters. For nearly all variations in parameters, 
highly consistent components were obtained, demonstrating the robustness of 
C1-C3.

http://www.nature.com/natureneuroscience
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Extended Data Fig. 3 | AHBA transcriptional components were reproducible 
in independent PsychENCODE control data, with differential spatial 
expression in autism. a, Gene weights from dimension reduction applied to 
group-averaged bulk RNA-seq measurements from 11 cortical regions in N = 
54 healthy control brains from the PsychENCODE dataset36 were correlated 
with gene weights from the components of the AHBA (derived by DME in the 
180-region HCP-MMP parcellation), showing that the genetic profiles of AHBA 
C1, C2, and C3 were reproduced by PsychENCODE C1, C2, and C4, respectively 
(highlighted in green). b, Regional scores of PsychENCODE C1, C2 and C4 were 
also correlated with region scores of AHBA C1, C2 and C3, showing that the 
matching genetic profiles correspond to matching spatial expression patterns. 
c, Variance explained by the first five components of each dataset, showing that 
AHBA C3 and PsychENCODE C4 account for similar proportions of variance 
(6.5% and 7.1%, respectively). d, 1st row: Cortical maps of AHBA C1-C3 in the 
same 11 regions sampled in the PsychENCODE data. 2nd row: Cortical maps of 
PsychENCODE C1, C2, and C4 demonstrating their spatial similarity to AHBA 

C1-C3. 3rd row: Gene weights from the PsychENCODE healthy control data were 
projected onto transcriptional data of cases with autism spectrum disorder 
(ASD; N = 58) from the same dataset, demonstrating lower regional expression 
at the positive (red) pole of each component in the ASD cases compared to 
healthy controls. e, Distributions of regional scores for C1, C2 and C4, computed 
on group-average healthy controls as in a-d and projected to individual donor 
brains in the PsychENCODE dataset, demonstrating significant case-control 
differential expression for regions at the positive poles of C1-C3. T-tests of case-
control differences were corrected for multiple comparisons across all 33 tests; 
boxplots represent the median, first, and third quartiles with whiskers showing 
1.5 * inter-quartile range; *, **, *** indicate FDR-corrected two-sided p-value < 0.05, 
0.01, 0.001 respectively. Region names refer to the sampled Brodmann Areas 
(BA)36: Visual = BA17, Temporal Pole = BA38, Somatosensory = BA3-1-2-5, Motor 
= BA4-6, Anterior Cingulate = BA24, Prefrontal = BA9, Broca′s Area = BA44-45, 
Fusiform Gyrus = BA20-37, Auditory = BA41-42-22, Lateral Parietal = BA39-40, 
Dorsal Parietal = BA7.

http://www.nature.com/natureneuroscience
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Extended Data Fig. 4 | Higher-order components of cortical gene expression 
reflect anatomically relevant co-expression structure. a, C1-C3 were 
orthogonally aligned in anatomical space, as computed by the Pearson’s 
correlations of the regional scores with the XYZ coordinates of the region 
centroids: C1 and C2 were both aligned with the anterior-to-posterior (y) and 
ventral-to-dorsal (z) plane, but with opposite signs along the anterior-to-
posterior axis, while only C3 was aligned to the medial-lateral (x) axis. The middle 
panel represents these alignments as vectors in 3D space. The right-hand upper 

table shows the correlations of C1-C3 with each anatomical axis, and the lower 
table shows the angle in degrees between the vectors, showing that C1-C3 are 
orthogonal. b, Co-expression matrices computed by Pearson’s correlations of 
gene expression between brain regions, computed with and without regressing 
out the first component C1, and annotated by the major cortical lobes as 
defined in the HCP-MMP parcellation32. This further demonstrates that the gene 
co-expression structure captured by C2 and C3 (that is, the residual variation 
beyond C1) is anatomically relevant.

http://www.nature.com/natureneuroscience
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Extended Data Fig. 5 | Transcriptional components were distinctively 
associated with the regional power of canonical brain oscillation 
frequencies. Several MEG power bands55 were highly correlated (|r|>0.6) with 

C1 (delta, alpha, high-gamma) and C2 (beta, theta), although only the theta 
association to C2 survived FDR correction of the spin-test p-values (r = 0.78, 
FDRspin = 0.05). No MEG band was aligned with C3.

http://www.nature.com/natureneuroscience
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | C3 reveals shared biology across inconsistent 
postmortem brain RNA-seq studies of differentially expressed genes (DEGs) 
in schizophrenia. a, Euler diagram demonstrating the relative lack of overlap of 
genes linked to schizophrenia in four independent RNA-seq postmortem brain 
studies, as well as the latest GWAS study. b, Histogram of the schizophrenia GWAS 
and consensus DEG genes by C3 decile. The skew of the histograms towards 
higher C3 deciles reflects the significant enrichment of both non-overlapping 
gene sets, as in Fig. 4c,d. c, Histograms of the schizophrenia GWAS and DEG  
genes from each separate study by C3 decile, coloured by cortical layer where  
the gene was identified as a marker gene38. L2 genes are distinctly clustered 
towards the C3+ pole, while L1 and WM genes are clustered towards C3-.  
d, For schizophrenia and ASD, enrichments of the GWAS/DEG genes from each 

separate study for marker genes of cortical layers, showing that no consistent 
significant enrichments are found across the entire gene sets for studies of either 
disorder. e, Enrichments as in d, except for only genes positively weighted in C3 
(corresponding to the right-hand five deciles of each histogram in panel c). For 
schizophrenia, significant enrichments for L2 and L3 are observed for three of the 
four DEG studies, as well as the GWAS study. No such enrichments were observed 
for ASD, demonstrating that C3 reveals convergent biology across otherwise 
inconsistent results specifically for schizophrenia. Significance was tested by 
one-sided Fisher’s exact test and corrected for multiple comparisons across all 
tests in each panel. *, **, *** indicate FDR-corrected one-sided p-value < 0.05, 0.01, 
0.001 respectively.

http://www.nature.com/natureneuroscience
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• The BrainSpan Atlas is available at https://www.brainspan.org/. 

• The Allen Human Cell Atlas is available at https://portal.brain-map.org/atlases-and-data/rnaseq. 

• The PsychENCODE dataset is available at https://github.com/dhglab/Broad-transcriptomic-dysregulation-across-the-cerebral-cortex-in-ASD. 

 

Neuroimaging maps of healthy brain features are available in the neuromaps package (https://github.com/netneurolab/neuromaps). For convenience all brain maps 

used are provided in Supplementary Table 3-4. Gene lists used for enrichment analyses were all obtained from prior publications as detailed in Methods.
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Reporting on sex and gender Sex-and gender-based analysis was not performed due to lack of sufficient sample size in the AHBA dataset (n=6, 1 female).

Population characteristics The AHBA dataset brains have mean age of 42.5 (SD 13.4).

Recruitment Recruitment of the AHBA data was as detailed on the Allen Institute website. Specifically, postmortem tissue from males and 

females between 18 – 68 years of age and no known history of neuropsychiatric or neurological conditions (‘control’ cases) 

were eligible for inclusion.

Ethics oversight Ethics oversight was performed by the Allen Institute for Brain Science.
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