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Single-cell long-read sequencing-based 
mapping reveals specialized splicing 
patterns in developing and adult mouse  
and human brain
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Mark Diekhans    7, Jordan Marrocco    1,8,9, Jennifer Balacco10, 
Lishomwa C. Ndhlovu    1,11, Teresa A. Milner    1, Olivier Fedrigo10, 
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RNA isoforms influence cell identity and function. However, a 
comprehensive brain isoform map was lacking. We analyze single-cell RNA 
isoforms across brain regions, cell subtypes, developmental time points and 
species. For 72% of genes, full-length isoform expression varies along one 
or more axes. Splicing, transcription start and polyadenylation sites vary 
strongly between cell types, influence protein architecture and associate 
with disease-linked variation. Additionally, neurotransmitter transport 
and synapse turnover genes harbor cell-type variability across anatomical 
regions. Regulation of cell-type-specific splicing is pronounced in the 
postnatal day 21-to-postnatal day 28 adolescent transition. Developmental 
isoform regulation is stronger than regional regulation for the same cell 
type. Cell-type-specific isoform regulation in mice is mostly maintained 
in the human hippocampus, allowing extrapolation to the human brain. 
Conversely, the human brain harbors additional cell-type specificity, 
suggesting gain-of-function isoforms. Together, this detailed single-cell 
atlas of full-length isoform regulation across development, anatomical 
regions and species reveals an unappreciated degree of isoform variability 
across multiple axes.

Transcriptomic studies have offered insight into the molecular makeup 
of single cells in complex tissues such as the brain1–4 and perturba-
tions in neurological diseases5,6. However, few brain single-cell studies  
consider mRNA isoforms. mRNA isoforms are strongly modulated  
in the mammalian brain and influence processes such as cellular 
growth7, maturation8–11, migration12,13, synapse formation14,15 and  
activity patterns16–20. These properties of neuronal and nonneuronal 
cells are altered in development and are highly distinct between 

brain regions, which may underlie regional vulnerabilities in disease. 
Although tissue-specific splicing has evolved across species21–23, we 
know little about the cellular isoform diversity in the brain.

We and others have developed various single-cell short-read24–26 
and long-read27–31 technologies to study splicing. Long-read cDNA 
sequencing can quantify isoforms within and between conditions for 
thousands of single cells28,32–35. In the mouse brain, isoforms can define 
embryonic cell types27,28, postnatal cell subtypes and, to some extent, 
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and cell subtypes were broadly consistent between samples (see  
Supplementary Note 1 and Fig. 1d,e).

Cell types are characterized by distinct isoform regulation
Long-read data generated with Oxford Nanopore Technology (ONT) 
and PacBio HiFi sequencing yielded 250 × 106 and 38 × 106 barcoded 
long reads, respectively (Methods and Supplementary Tables 2  
and 3). These were further processed to assign uniquely identified, 
multiexonic transcripts to single cells (Supplementary Figs. 2a and 3 
and Supplementary Notes 2 and 3).

To understand the roles of (1) developmental age, (2) brain 
region and (3) cell subtypes in splicing programs for each cell type, we  
calculated isoform variability of each cell type across these three 
axes (Methods). Similar to TSS–exon–poly(A) site contributions in 
ENCODE39, we represented the normalized age–subtype–region vari-
ability in a ternary plot. Each vertex of the triangle shows directed 
enrichment for the indicated axis of variability. The ‘center triangle’ 
represents isoforms with broadly equal variability along all three  
axes (Fig. 2a).

Excitatory neurons and their subtypes were well represented in all 
samples. Isoform variability was strongest across subtypes and less so 
across regions and time points (Fig. 2b). Considering genes with two 
isoforms in distinct triangles, indicating isoform-specific regulation 
rather than overall gene regulation, we found enrichment for specific 
patterns. We constructed a network diagram with nodes represent-
ing axes and edge weights indicating the number of such genes. For 
excitatory neurons, strong variation across subtypes for one isoform 
was frequently accompanied by uniform variation across all three 
axes for at least another isoform (Fig. 2c and Supplementary Fig. 4a).

Progenitor cell isoforms also varied more strongly by subtype than 
by age, suggesting that the switch from neuronal intermediate progeni-
tor cells to granule neuroblasts is associated with isoform-mediated 
establishment of cell identity, regardless of developmental age. As 
progenitors are less abundant in nonhippocampal regions, there is 
little variation in progenitor isoforms between brain regions at P56 
(Supplementary Fig. 4b). In contrast to excitatory neurons, isoform 
variability in inhibitory neurons was strong between ages and brain 
regions (Supplementary Fig. 4c). Among glia, both astrocytes and 
oligodendrocytes showed complex variability patterns along regions, 
ages and subtypes, but oligodendrocytes had stronger variability 
across regions and subtypes (Fig. 2d,e). Microglia dominated the 
immune population, where little variability between subtypes was 
observed. However, strong regional isoform variability characterized 
immune cells (Fig. 2f and Supplementary Fig. 4d). These observations 
were robust when increasing the minimum threshold of reads per gene 
from 10 to 100 (Supplementary Fig. 4e).

Center triangle isoforms have similar variability across all three 
axes, with variabilities being either all high or all low (Fig. 2a). For 
excitatory neurons, most center triangle isoforms had consistent low 
variability; however, a few showed consistent high variability (Supple-
mentary Fig. 4f). Additionally, isoforms in the center triangle display 
subtype specificity, mirroring the trend in the entire excitatory neuron 
population (Supplementary Fig. 4g). A similar observation was made 

brain regions32. However, the extent to which brain regions differ in 
isoform expression for matched cell types is unknown. Furthermore, 
whether these regional differences differ in development or between 
cell subtypes is not well understood. Last, the degree to which any 
brain region- or cell-type-specific isoform patterns are transient or 
maintained across development is an unsolved question.

Here, using an enhanced single-cell long-read method 
(ScISOr-Seq2), we investigate these questions comprehensively. We 
investigate full-length isoforms across the following three axes: adult 
brain regions, cell subtypes and developmental time points. We find that 
neuron subtypes and glia show widespread isoform variability along 
these three axes. Thalamic and cerebellar astrocytes exhibit especially 
strong transcription start site (TSS), polyadenylation (poly(A)) site and 
exon regulation. Distinct exon sets display extremely high inclusion vari-
ability across cell types, brain regions and developmental time points, 
and mouse cell-type-specific splicing is conserved in humans. A strong 
splicing shift occurs in the hippocampal and cortical oligodendrocyte 
lineage after gene expression signatures distinguish oligodendrocyte 
precursors from astrocytes. Fluctuations in splicing variation occur dur-
ing mouse adolescence, a critical period for splicing variability across 
all major cell types. A peak of neuronal subtype variability occurs in the 
telencephalon during this time. These data showcase the importance 
of long reads to capture a fuller picture of transcriptomic diversity in 
the brain and are available at www.isoformAtlas.com.

Results
Single-cell RNA sequencing identifies heterogenous cell 
populations
Based on our single-cell/single-nucleus isoform sequencing27,29 studies, 
we devised ScISOr-Seq2 (Methods) to investigate brain region-specific, 
cell-type-specific and developmental-stage-specific isoform regula-
tion. Given widespread transcription-mediated cell identity establish-
ment in the telencephalon during postnatal development, we obtained 
single-cell 10x transcriptomics data from the mouse hippocampus 
and visual cortex at postnatal days 14, 21, 28 and 56 (P14, P21, P28 and 
P56, respectively; n = 16 samples, 2 biological replicates/age × 2 brain 
regions). Additionally, we obtained similar data from the adult (that 
is, P56) striatum, thalamus and cerebellum (n = 6 samples, 2 biological 
replicates/brain region × 3 brain regions). Filtering, quality control, 
short-read analysis36,37 and integration-mediated batch effect control38 
yielded 204,725 cells (mean = 9,300 cells per sample; Methods and Sup-
plementary Table 1), which we classified into neuronal, glial, vascular 
and immune cells. We defined three granularity levels for each cell: 
(1) broad, for example, neurons versus glia, (2) medium, for example, 
excitatory versus inhibitory neurons, and (3) subtype, for example, 
layer 2/3 versus layer 6 excitatory neurons (Fig. 1a). Time point-specific 
uniform manifold approximation and projection (UMAP) embeddings 
described hippocampal neurogenesis and oligodendrocyte maturation 
during adolescence (Fig. 1b). Similarly, mouse P56 brain region-specific 
UMAPs yielded broadly replicable cell types, albeit with region-specific 
neuronal populations (Fig. 1c). Gene expression of glial, immune and 
vascular cells was more homogeneous across brain regions (Fig. 1a,c 
and Supplementary Fig. 1). Except for the cerebellum, total cell numbers 

Fig. 1 | Summary of mouse brain cell subtype assignments by age and region. 
a, UMAP embedding of all ~200,000 cells. Each dot represents a cell that is 
colored according to its cell type of origin based on marker gene annotation; 
Excite, excitatory; DG, dentate gyrus; L, layer; Inhib, inhibitory; MOLs, mature 
oligodendrocytes; MFOLs, myelin-forming oligodendrocytes; Granule NB, 
granule neuroblasts; SMA, smooth muscle actin cells; COPs, committed 
oligodendrocyte precursors; NIPCs, neuronal intermediate progenitor cells; 
RGL, radial–glia like cells; NP, neural progenitors; D1 MSN, D1 medium spiny 
neuron; D2 MSN, D2 medium spiny neuron; D1D2 patch, Patch D1 and D2 striatal; 
DivOPCs, dividing OPCs; InhCajalRetzius, inhibitory Cajal–Retzius cells.  
b, Same UMAP representation from a but split by time point for the hippocampal 

(browns) and visual cortex (purples) lineage. c, Same UMAP representation 
from a but split by the region of origin at P56; blue, cerebellum; green, thalamus; 
olive, striatum; yellow, hippocampus; lilac, visual cortex. d, Bar plot depicting 
the number of cells obtained from each single-cell experiment (11 samples × 2 
biological replicates); VIS, visual cortex; HIPP, hippocampus; STRI, striatum; 
THAL, thalamus; CEREB, cerebellum. e, Dot plot showing the percentage of cells 
belonging to each cell subtype indicated on the y axis obtained from the samples 
on the x axis. The color of the dots indicates sample of origin, and the size of  
the dot indicates the percentage of cells belonging to a subtype per sample;  
Vasc, vascular; Endo, endothelial; Astro, astrocytes; Oligo, oligodendrocytes; 
Rep, replicate.
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across all cell types (Supplementary Fig. 4h). In summary, cell types 
exhibit distinct preferences for isoform variability across brain regions, 
ages and cell subtypes.

Isoforms had higher mean variability across the three axes in neu-
rons than in glia or progenitors, pointing to more complex neuronal 
regulation (Fig. 2g). Approximately 71.9% of genes had isoforms in 
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Fig. 2 | Distinct sources contribute to cell-type- and brain region-specific 
isoform expression in the mouse brain. a, Outline of full-length isoform 
variability across developmental age, brain region and cell subtypes.  
b, Ternary plot of variability in three axes for excitatory neurons. c, Network 
diagram of genes with isoforms in more than one triangle. The thickness of the 
lines represents the number of such genes. d–f, Same as b for astrocytes (d), 
oligodendrocytes (e) and immune cells (f). g, Comparison of mean variability for 
three broad cell types. h, Percentage of genes showing significant differences 
in isoform expression after repeatedly (n = 100) downsampling astrocyte 
reads of one brain region versus astrocytes of all other brain regions at five ΔΠ 

cutoffs. The red curve represents the average percentage of significant genes 
when comparing two biological replicates of astrocytes within one brain region 
(n = 100 downsampling experiments averaged across N = 5 brain regions; 
left). The neighboring four plots depict the same for oligodendrocytes and 
immune cells and excitatory and inhibitory neurons. i, Same as in h but without 
downsampling for cell types indicated on the x axis. j, Percentage of genes 
with significant differences in TSS/poly(A) site choice for astrocytes of a fixed 
brain region versus astrocytes of all other brain regions at ΔΠ ≥ 0.1 (left). The 
neighboring plots depict the same for inhibitory (Inhib neuron) and excitatory 
(Excite neuron) neurons.
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distinct triangles and thus showed isoform variability independent of 
gene variability along at least one axis and cell type. Moreover, 48.14% 
of genes showed isoforms in three triangles, revealing isoform vari-
ability along two or three axes. However, this analysis does not include 
the comparison of isoform patterns of individual genes between cell 
types described above. We found that at least 36.6% of genes showed 
variable isoform usage between cell types in addition to regulation 
along another axis (Methods and Supplementary Fig. 5a). An investiga-
tion of individual cell types revealed a unique pattern of regulation in 
excitatory neurons, and some genes emerged as being hypervariable 
across multiple cell types (Methods, Supplementary Figs. 4i, 5b and 
6 and Supplementary Note 4). This points to a previously underap-
preciated complexity of isoform expression for genes such as Rufy3 
in conferring specialization across neurodevelopment, cell (sub)types 
and brain regions.

Given regional differences, we systematically tested genes for 
altered isoform expression for matched cell types comparing one 
brain region to all other brain regions at P56 using our isoform tests 
and differential isoform quantification32 (ΔΠ; Methods). First, we 
repeatedly downsampled highly expressed genes and tested for dif-
ferential isoform expression between replicates of the same sample. 
Although downsampling reduces statistical power, it allows a fair 
comparison between replicates and/or brain regions. Between-region 
variability was consistently higher than between-replicate variability 
for most cell types (Fig. 2h). Second, 60–80% of commonly tested 
genes that were significant in replicate 1 were also significant in rep-
licate 2 (Supplementary Fig. 7a). Leveraging the full dataset without 
downsampling, thalamic and cerebellar astroglia showed strong 
specialized isoform expression compared to other brain structures. 
This is particularly interesting because the cerebellum contains spe-
cialized Bergmann glia that are both morphologically and function-
ally distinct40. This high splicing specialization supports alternative 
splicing as an important influence on anatomical region morphology 
and function. At modest differences of 10% isoform usage between 
conditions (ΔΠ = 0.1, false discovery rate ≤ 0.05; Methods), ~40% 
of tested genes showed a significant difference in isoform abun-
dance between thalamic astrocytes and all other astrocytes. Neurons  
had more differentially expressed isoforms, with medium spiny neu-
rons contributing to high brain region specificity of striatal inhibitory 
neurons and distinct hippocampal pyramidal cells contributing to 
region specificity in excitatory neurons. These differences were 
consistent, albeit to a lower extent, for increased ΔΠ values across 
all cell types. However, for ΔΠ ≥ 0.5, few brain region differences 
arose, indicating that regional differences in isoform expression arise 
from smaller modulations across many genes (Fig. 2i). Importantly, 
although the within-sample variability is a consideration in these 
results, the trends noticed are robust and highly cell-type specific. 

Using pseudobulk isoform expression between regions, the num-
ber of significant genes is considerably reduced (Supplementary 
Fig. 7b,c).

Although many genes exhibited unique regional signatures, most 
genes showed distinct isoform expression in two or three regions and 
rarely in four or five (Supplementary Fig. 7d,i). Compared to astro-
cytes, neurons exhibited higher levels of differential TSS and poly(A) 
site usage between regions, and neuronal TSS usage was more region 
specific (Fig. 2j). In summary, in addition to isoform regulation across 
development and between distinct cell (sub)types within an anatomical 
structure, the same cell type leverages distinct splicing patterns, TSSs 
and poly(A) sites in different regions.

Marker exons delineate cell-type- and brain region-specific 
splicing patterns conserved in humans
To define precise transcript elements underlying splicing programs, 
we focused on individual exons. We considered exons alternatively 
included in at least one brain region or time point and calculated 
percent spliced in (Ψ) values for four main cell types (astrocytes, 
oligodendrocytes, excitatory neurons and inhibitory neurons) after 
ensuring reproducibility and averaging both replicates (Supple-
mentary Fig. 8). An exon’s Ψ value can vary along the triad of (1) cell 
subtypes, (2) matched cell types at different ages or (3) brain regions 
(for example, P21:hippocampus:oligo, n = 44 triads; Supplementary 
Fig. 9). Pairwise correlations of triad Ψ values separated neuronal from 
nonneuronal populations, and all adult (P56) astrocytes clustered 
together regardless of region. However, hippocampal excitatory neu-
rons clustered together regardless of age. Thus, unifying programs of 
age and/or brain region do not dictate splicing of distinct cell types  
(Supplementary Fig. 10).

Next, we compared exon inclusion between triads to isolate 
splicing programs. This yielded 4,557 exons with a 25% difference 
(ΔΨ ≥ 0.25) in at least one comparison (highly variable exons (hVExs); 
Methods). The highest ΔΨ values arose from neuron versus nonneuron 
comparisons (Fig. 3a, top left, bipartite network diagram). Moderate 
ΔΨ values corresponded to comparisons between two neuronal or 
two glial triads (Fig. 3a, top right, fully connected network diagram). 
Many of the latter comparisons corresponded to differences between 
cell subtypes or to brain region and developmental differences of a 
matched cell type (see self-loops in the network). Clustering along 
rows defined four exon groups (Fig. 3a, A1–A4) whose genes harbor  
largely nonoverlapping functional ontologies. A1 and A4 hVExs  
have high ΔΨ values for a few comparisons and low ΔΨ values for  
most others. The genes of these exons are linked to regulatory roles 
for transcription, histone methylation and acetylation and syn-
aptic signaling (Methods). Conversely, hVEXs exhibiting high ΔΨ 
values in many comparisons, especially in the left half of the heat 

Fig. 3 | Marker exons underlying distinct splicing programs correlate with 
function and are conserved in humans. a, ΔΨ heat map for pairwise cluster 
comparisons (columns) and exons (rows) where ΔΨ ≥ 0.25 in at least one 
comparison; ΔΨ, change in percent spliced index (PSI); O, oligodendrocytes; 
A, astrocytes; IN, inhibitory neurons; EN, excitatory neurons. b, Percentage of 
hVExs whose variability stems from a comparison of a matched cell type across 
brain regions or from two cell types in the same region. c, Maximal ΔΨ values 
for matched cell types across brain regions and across developmental time 
points. The numbers of exons per condition are indicated in the plot; Devel, 
development. d, Heat map of EVExs (rows) and axes of variation (columns: adult 
cell-type specificity (CTspec), developmental cell-type specificity, adult brain 
region specificity (BRspec) and developmental (Age) specificity of a matched 
cell type). The five EVEx classes are indicated in the bar on the left. e, Length 
distribution of five EVEx classes. P values were obtained from a Wilcoxon’s two-
sided test without correcting for multiple tests. f, Noncoding fraction for five 
EVEx classes; CDS, coding sequence. g, Cell-type variability of mouse EVExs in the 
human hippocampus. h, Heat map of neuron and glia Ψ values for mice (left) and 
humans (right) for exons that have high cell-type specificity in humans.  

The left annotation bar indicates whether cell-type specificity was maintained 
(pink) or attenuated (yellow) in mice. i, Protein domains enriched in five EVEx 
classes. **P < 0.01, ***P < 10−5. j, Pie chart of the number of RBPs significantly 
affecting each exon identified from human cell line data. k, Bar chart of the 
percentage of exons associated with a known brain region-specific sQTL for 
exons classified as constitutive, EVEx or lowly variable in mice. P values were 
obtained by using a Fisher’s two-sided exact test; *P < 0.05; ***P < 2.2 × 10−16.  
l, Cluster-resolved single-cell long reads for the Jakmip2 gene. Each line is a single 
cDNA molecule. Blue exons indicate alternative exons. The top three tracks 
indicate hippocampal excitatory CA isoforms for P21, P28 and P56, and the next 
three tracks indicate the visual cortex excitatory isoforms from P21, P28 and 
P56. The bottom black track shows the GENCODE annotation. m, Similar as l for 
the Tex9 gene with tracks colored for brain region of origin for P56 excitatory 
neurons. Data in l and m were plotted with ScisorWiz. n, GO biological process 
annotations for EVExs in E4 from e; FDR, false discovery rate. For box plots in 
c and e, the center lines indicate the median, box limits indicate the upper and 
lower quartiles, and whiskers indicate 1.5× the interquartile range.
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map (A2 and A3), belong to genes implicated in protein localization 
and neurotransmitter transport to the synapse. Together with the 
clean neuron-versus-glial split in the left half of the heat map, these 

observations emphasize the role of synaptic isoforms, rather than 
pure synaptic gene expression, in establishing neuronal and glial 
identities (Supplementary Fig. 11).
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By definition, each hVEx arises from one or more triad compari-
sons with highly different Ψ values. Considering the triads contributing 
to hVExs, we found that, although most came from cluster comparisons 
within one brain region, a cell type could also show variability across 
brain regions (Supplementary Fig. 12). Indeed, 33.71% of these compari-
sons corresponded to a matched cell type between two brain regions, 
and 66.29% corresponded to a comparison within one brain region 
(Fig. 3b). Developmental variability exceeded variability between 
adult brain regions (both for matched cell types; median ΔΨ = 0.197 
and 0.115, respectively; Wilcoxon rank sum test P < 2.2 × 10−16). This 
was true for each major cell type, suggesting that cell types extensively 
modulate exon inclusion during development but reach homeostasis 
in adulthood for many genes (Fig. 3c).

To delineate markers of extensive splicing modulation, we  
defined extremely variable exons (EVExs; ΔΨ ≥ 0.75 between two tri-
ads; Methods) as representing potential candidates for functionality.  
Specifically, we determined five exon groups (E1–E5), 89 exons in E1 with 
cell-type-specific inclusion during development but not in adulthood 
and 60 exons in E2 with temporal variability. The largest group, E3, had 
373 exons with cell-type specificity in development and in adulthood. 
E4 included 75 exons with brain region variability between matched cell 
types, combined with cell-type specificity within a brain region. Thus, 
variability between matched cell types of different brain regions largely 
implied cell-type specialization within one region. Last, E5 contained 
84 exons with cell-type specificity acquired only in adulthood (Fig. 3d). 
Exons in E3 and E5, that is, those with adult cell-type specificity regard-
less of earlier cell-type specificity, were markedly shorter, suggesting a 
link to microexons29,41. Exons in E1, E2 (transient cell-type specificity in 
development) and E4 (brain region-specific regulation) were all longer 
(Fig. 3e; two-sided Wilcoxon rank sum test P = 1.62 × 10−10). Moreover, 
exons with adult cell-type specificity (E3, E4 and E5) contained more 
noncoding sequence (Fig. 3f; Fisher’s exact test P = 1.5 × 10−4).

We produced single-cell long-read data for six adult human hippo-
campi and compared cell-type-specific exon inclusion between humans 
and mice (Methods and Supplementary Fig. 13). Among the EVExs, 
24.09% (seen in E5, that is, adult cell-type signature) to 48.31% (in E1, 
that is, developmental cell-type- and time-specific signatures) of exon 
sequences and boundaries were conserved between species and were 
sufficiently expressed in our human hippocampal data (Methods and 
Supplementary Fig. 14a). Among those, exons with cell-type specific-
ity in mice (E3 and E5) tended to also exhibit high cell-type specificity 
in humans (Fig. 3g, Wilcoxon rank sum test P < 2.2 × 10−16). Probing 
the reverse transferability from humans to mice revealed that among 
exons that were highly cell-type specific in the human hippocampus, 
~42.6% showed similar cell-type specificity in the mouse hippocampus. 
However, ~57.4% of human cell-type-specific and almost 82.7% of invari-
able alternative exons in humans were constitutively included in mouse 
tissue, suggesting that human brains evolved some gain-of-function 
alternative exons, which cannot be modeled well in mice (Fig. 3h and 
Supplementary Fig. 14b).

Next, we estimated the functional impact of EVEx inclusion  
patterns by determining affected protein domains (Methods). Inter-
domain linkers typically represent intrinsically disordered regions, 
often mediating protein–protein interactions42, and were most fre-
quent in all EVEx groups (χ2 test P < 0.05; Supplementary Fig. 15a). 

This suggests that EVExs affect protein function by rewiring signal-
ing and regulatory networks in different cell types43. Additionally, 
protein repeats, including WD40 and ankyrin repeat (Fisher’s exact 
test P = 0.02) with short repetitive motifs, were frequently affected. 
Splicing is known to drive functional and structural diversity in these 
highly modular domains44–46. The protein kinase-like superfamily was 
highly enriched in exons displaying adult brain region-specific inclu-
sion (E4), consistent with the known roles of kinases in synaptic plastic-
ity47 (Fisher’s exact test P = 0.0054). Additionally, exons with transient 
developmental exon regulation (E2), were enriched for DBL homology 
domains as well as d-aminoacid aminotransferase-like PLP-dependent 
enzymes (Fisher’s exact test P = 8.29 × 10−6). These superfamilies  
are associated with cytoskeletal organization and neuronal devel-
opment and morphogenesis48, processes governing both cell- 
type identity establishment and differentiation. Finally, adult 
cell-type-specific EVExs (E5), especially those distinguishing neurons 
from glia, are enriched for the fibronectin type III (Fn3) superfamily 
(Fisher’s exact test P = 3.2 × 10−6). NRCAM and NFASC, both of which 
have been associated with neural regulation49–52, exemplify such pro-
teins. Their structure includes immunoglobulin-like domains, followed 
by several Fn3 domain repeats. The presence of Fn3 repeats in tandem 
with immunoglobulin domain repeats is not uncommon and is found in 
other proteins associated with the regulation of neuronal activity53–55 
(Supplementary Fig. 15b,c). These findings indicate that biological 
programs defining EVEx inclusion are intrinsically tied to cellular 
identity and function (Fig. 3i; Wilcoxon rank sum test P < 2.2 × 10−16).

Based on preferential knockdown (KD) data of hundreds of 
RNA binding proteins (RBPs) in human cell lines56,57, we found 20% 
of human orthologs of EVExs to be affected by RBP KD. Many exons 
were significantly affected by multiple RBPs (Methods, Fig. 3j and 
Supplementary Fig. 16a,b). Indeed, inclusion of an alternative exon 
of the well-characterized CLTA gene was influenced by the expression 
of many RBPs (Supplementary Fig. 16c). Separating RBPs with a low 
(ΔΨ < 0.4) versus high (ΔΨ ≥ 0.4) effect on the CLTA exon from the 
human data, we correlated RBP expression with that of mouse cell 
types in adulthood. RBPs themselves followed a neuronal–glial split, 
and expression was highly correlated with exon inclusion in these 
cell types and especially so with the high-effect RBPs (Methods, Sup-
plementary Note 5 and Supplementary Fig. 16d,e). Finally, visualizing 
the neuronal-versus-glial split in mouse cell types helped demonstrate 
the complex interplay of many RBPs modulating Clta exon inclusion 
in different brain regions (Supplementary Fig. 16f). This shows that 
the regulatory layer of cell-type-specific exon inclusion is somewhat 
conserved across species.

We additionally probed whether EVEx inclusion has known rami-
fications in human diseases. Sixteen percent of EVExs have an associ-
ated published splicing quantitative trait locus (sQTL),58 which largely 
arise from cell-type-specific EVEx categories (Methods, Fig. 3k and 
Supplementary Fig. 17a). Thus, we have identified a cell-type-specific 
component of sQTLs. Most genes containing these exons (81 of 114) 
have important known associations with neurological disorders, such 
as bipolar disorder, schizophrenia, Alzheimer’s disease, Parkinson’s 
disease, anxiety and depression (see Supplementary Note 6). This 
analysis opens the door to understanding the cell-type-specific effects 
of human variation on splicing in health and disease.

Fig. 4 | Neuronal exon inclusion changes between the mouse visual cortex 
and hippocampus and over time. a, Heat map of pairwise correlations of 
exon inclusion (Ψ) for excitatory and inhibitory types. b, Box plot of pairwise 
correlations of Ψ values for pairs of excitatory subtypes (n = 30), all inhibitory 
subtypes (n = 12) and inhibitory subtypes excluding Cajal–Retzius cells (n = 8). 
The center lines indicate the median, box limits indicate the upper and lower 
quartiles, and whiskers indicate 1.5× the interquartile range. c, Correlations of 
exon inclusion for excitatory clusters between neighboring time points in the 
visual cortex (yellow). The same is presented for inhibitory clusters (green).  

d, Correlations of exon inclusion for excitatory clusters at each time point 
between the visual cortex and hippocampus (yellow). The same is presented 
for inhibitory clusters (green). In c and d, error bars indicate 95% confidence 
intervals around the Spearman’s correlation. e, Depiction of cell-type-resolved 
single-cell long reads for the Bin1 gene in excitatory neurons in the hippocampus 
and visual cortex. Each line represents one individual cDNA molecule, and blocks 
are colored by cell type and time point. Green represents alternative exons. Gray 
blocks indicate oligodendrocyte populations at P56. The bottom black track 
shows the GENCODE annotation.
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Some EVExs were unexpectedly alternatively spliced. Identi-
fied in E2 (that is, exons that change exon inclusion in early devel-
opment), exon 3 of the Jakmip2 gene, annotated as constitutive, is 

developmentally regulated in hippocampal, but not visual cortex, 
excitatory neurons (Fig. 3l). Similarly, the testis-expressed 9 (Tex9) 
gene exhibits low brain region specificity in protein and single-cell 
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RNA data59,60. However, Tex9 exon 5 belongs to exon group E4, which 
represents exon variability across brain regions and cell types in adult-
hood, and the exon indeed marks brain regions. Visual cortex excita-
tory neurons have near-constitutive inclusion, whereas the excitatory 
neurons of other brain regions show inclusion as low as 11% (Fig. 3m). 
Gene ontology (GO) enrichment of neurotransmitter secretion and 
synaptic potential in E4 indicates that matched cell types expressing 
the same gene across brain regions modulate neuronal function using 
alternative splicing (Fig. 3n). These findings further underscore the 
role of alternative exons in conferring developmental, cell-type and 
brain region specificity.

Adolescence transiently increases brain region specificity
Given that age alone was not enough to define isoform differences 
(refer to Supplementary Fig. 8), we delineated cell-type and brain region 
specificity in development. We first correlated neuronal cell subtype 
Ψ values from hippocampus and visual cortex developmental time 
points. Hierarchical clustering separated excitatory from inhibitory 
populations independently of brain region and developmental stage 
(Fig. 4a). Surprisingly, pairwise correlations were higher between excit-
atory types than between inhibitory neuron types (Supplementary 

Fig. 18; two-sided Wilcoxon rank sum test P = 5.099 × 10−14). We then 
considered finer excitatory cell subtypes. Clustering correlation values  
of exon inclusion revealed four main groups, corresponding to  
(1) neuronal intermediate progenitor cells, (2) granule neuroblasts,  
(3) mature neurons including excitatory and inhibitory subtypes and  
(4) multiple Cajal–Retzius clusters, with a unique cell-type signature 
(Supplementary Fig. 19). Removing Cajal–Retzius subtypes from inhibi-
tory neurons increased intrainhibitory neuron correlation, but this cor-
relation remained lower than pairwise excitatory cluster correlations. 
Thus, Cajal–Retzius cells contribute strongly to hippocampal inhibitory 
neuron diversity but do not fully account for it (Fig. 4b). We examined if 
time points with large developmental shifts distinguished brain regions. 
In the visual cortex, excitatory neuron correlations between adjacent 
time points were lowest at the P21-to-P28 transition, with higher values 
before and after, whereas inhibitory neurons showed the opposite 
(Fig. 4c). After correlating Ψ values between the visual cortex and hip-
pocampus for matched cell types, excitatory neurons showed high 
correlation at P14 and P56 but lower correlation at P21 and especially 
P28. Thus, developmental timelines of excitatory neuron splicing differ 
between the visual cortex and hippocampus, and brain region speci-
ficity transiently increases. A similar, albeit weaker, observation was 
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Fig. 5 | Exon inclusion patterns in glial subtypes suggest an ordered molecular 
cascade. a, Heat map based on pairwise correlations of exon inclusion patterns 
for astrocyte and oligodendrocyte lineage cells. b, Similar heat map based on 
pairwise gene expression values. c, Slingshot trajectory of glial cells using exon 

inclusion values. d, Model depiction summarizing the findings of the presented 
data. Subtypes in the oligodendrocyte lineage have similar gene expression 
patterns. However, a switch in splicing patterns occurs after OPCs have matured 
to committed oligodendrocyte precursors. Arrows represent alternative exons.
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made for inhibitory neurons. The lowest hippocampus-versus-visual 
cortex correlation occurred at the P21-to-P28 critical developmental 
period61,62, indicating nonaligned splicing shifts for cortical and hip-
pocampal excitatory and inhibitory neurons (Fig. 4d). Bin1, a synaptic 
gene implicated in Alzheimer’s disease, exemplifies regional specificity 
in excitatory neurons and temporal regulation at the P21–P28 transi-
tion. Hippocampal excitatory CA neurons express the P1 cerebellar 
neuronal isoform61 at P14 and as the main isoform at P56, which begins 
to transiently disappear at P21 and is almost entirely absent at P28. At 

P28, Bin1 excitatory neuron isoforms resemble the isoform profile of  
oligodendrocytes, skipping all six alternative exons. Although this is also 
observed in the visual cortex, the transition is drastic from P21 to P28, 
marking a brain region difference between the hippocampus and visual 
cortex (Fig. 4e). Similar patterns arise in other disease-relevant genes, 
including Mapt (Supplementary Fig. 20a,b). In summary, cell-type and 
brain region specificity in isoform expression can be transient for some 
genes, blurring the lines of cell-type-specific splicing. This temporal dif-
ference is an important consideration especially during development.
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Fig. 6 | Developmental exon regulation reveals convergent and divergent 
patterns of exon variability. a, Heat map of z-normalized exon variability 
between the four major cell types across development. b, Line plot of raw values 
of exon variability for individual genes in groups 3 (left) and 7 (right) for the visual 
cortex and heat map of exon variability for group 7 in the visual cortex (middle). 
Some show lower changes, whereas others exhibit drastic differences. c, Heat 

map of GO enrichment values for highly enriched sets of genes contributing to 
the nine groups from a. d, Depiction of time point-resolved single-cell long reads 
from visual cortex excitatory neurons for the Dnm2 gene. Each line represents 
one individual cDNA molecule. Alternative exons are denoted in orange and are 
marked A through D. e, Same as in d but for astrocyte (teal) and oligodendrocyte 
(sea green) clusters. The bottom black track shows the GENCODE annotation.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-024-01616-4

Discordance in splicing and expression-defined glial 
maturation
Similar to our temporal neuronal analysis, we determined exon inclu-
sion levels for 35 astrocyte clusters and 1 oligodendrocyte cluster. 
Surprisingly, clustering of correlations revealed that the first split in the 
dendrogram separated astrocytes and all oligodendrocyte precursor 
cell (OPC) clusters, regardless of age, from all committed and mature 
oligodendrocytes (Fig. 5a). In stark contrast, a similar gene expres-
sion analysis grouped all oligodendrocyte lineage clusters together, 
well separated from astrocytes (Fig. 5b). Consistently, a pseudotime 
trajectory63 using single-cell isoform data (Methods) with a starting 
point defined at OPCs revealed two trajectories, one toward astrocytes 
and one along the oligodendrocyte lineage. Of note, the trajectory 
from OPCs to astrocytes likely does not represent a maturation pat-
tern but rather the fact that, mathematically, OPC splicing is close to 
astrocytic splicing (Fig. 5c). Taken together, these analyses support 
divergent cell group similarities observable in splicing and 3′ gene 
expression patterns motivating cell-type identity partially defined 
by splicing (Fig. 5d).

Fluctuating patterns of exon variability in development
We hypothesized that EVExs with temporal regulation (E1–E2; Fig. 3d) 
were related to the correlation drop around P28 (Fig. 4c,d). We focused 
on 1,072 exons that substantially change exon variability between time 
points (Supplementary Fig. 21 and Methods). Three transitions, each of 
(1) increasing, (2) decreasing or (3) constant variability, define 33 = 27 
patterns, but after removing invariable exons (G0), only 9 were frequent 
(denoted G1–G9; Fig. 6a). For genes containing multiple alternative 
exons, 36% had all exons exhibiting fluctuations in a single pattern 
(n = 106 hippocampus, n = 115 visual cortex), whereas 64% had exons 
in two or more patterns (n = 195 hippocampus, n = 204 visual cortex). 
Interestingly, pairs of neighboring exons were frequently included 
or skipped together (Methods and Supplementary Fig. 22a). The 
P21-to-P28 transition consistently exhibited drastic shifts in exon 
variability (Fig. 6b and Supplementary Figs. 23 and 24, Bernoulli 
P = 1.89 × 10–6). Exon inclusion variability between cell types had the 
highest standard deviation at P28 in both the hippocampus and visual 
cortex, and we found that pairs of exons were tightly coordinated at 
this time point (Supplementary Fig. 22b). These observations further 
suggest that the difference between cell types can transiently change 
during this critical period (Supplementary Fig. 25).

Genes unique to each of the G1–G9 patterns were largely nonover-
lapping in function (Supplementary Fig. 26). Of note, synaptic vesicle 
budding and transport was associated with genes exhibiting an exon 
variability increase at P28 (G1), whereas actin filament capping and 
functions associated with cell projection were associated with G5 with 
an increase in exon variability at P21 and P56. Both observations sup-
port a developmentally regulated neuronal-versus-glial split (Fig. 6c 
and Supplementary Fig. 26). The dynamin 2 (Dnm2) gene is ubiqui-
tously expressed, has known roles in intracellular membrane traffick-
ing and cytoskeleton organization and is associated with neurological  
diseases64. In the visual cortex, Dnm2 has exons in G5 and G8 and  
therefore exemplifies repetitive developmental changes in cell-type 
variability (Fig. 6d,e and Supplementary Note 7). Dnm2 not only varies 
across the cell-type and developmental axes but also shows differing 
patterns of isoform regulation between the visual cortex and hip-
pocampus (compare Fig. 6d,e to Supplementary Fig. 27). This example 
highlights how cell types leverage inclusion patterns of multiple exons 
in tandem for developmental and brain region-specific specialization.

Discussion
A large body of research has established that isoform expression 
underlies physiological differences in brain regions and cell types and 
is altered in development and evolution. However, a unified view of 
these dimensions remained elusive.

We found that cell types vary extensively in their splicing patterns 
across these axes. Although exons most frequently modulate their 
inclusion between cell types within a brain region, we find compelling 
evidence for differences between matched cell types across regions, 
involving neurotransmitter secretion and regulation as well as syn-
aptic regulation. Thus, cell types that are considered homogenous 
and are ubiquitously present in brain tissue display specialized splic-
ing patterns depending on their region of origin. This is particularly 
true for astrocytes in the thalamus and the cerebellum, which differ 
not only in their exon inclusion but also in their TSS and poly(A) site 
usage, rendering the mRNA isoform landscape more complex than 
previously imagined.

We defined EVExs across brain regions, development and cell types 
and in combinations thereof. These exon groups exhibit key differences 
in properties such as length, protein coding capacity and protein domain 
architecture. Therefore, distinct programs of exon variability correlate 
with functional consequences of proteins. Remaining questions include 
the precise definition of regulatory elements governing inclusion vari-
ability and its conservation in humans. Nonetheless, we found that adult 
cell-type variability is largely recapitulated in human single-nucleus 
long-read data. Extrapolating from human data, the KD of multiple 
RBPs in tandem influences exon inclusion patterns, and sQTLs influence 
exon inclusion of a significant number of alternative exons, particularly 
of cell-type-specific exons. Therefore, many of these cell-type-specific 
mouse results can be extended to human brain and disease conditions.

Importantly, the same cell type traced along development exhibits 
more isoform fluctuation than across adult brain regions. Synapse for-
mation, axon guidance and general neural network formation induce a 
temporal splicing heterogeneity within cell populations that is attenu-
ated in adulthood. This observation is further strengthened by nine 
patterns of developmental variability that we identify, a majority of 
which involve fluctuations during the critical developmental period61,62 
of mouse adolescence (P21–P28) in the visual cortex and hippocampus. 
We repeatedly find that exons that are cell-type specific at a develop-
mental time point can transiently change inclusion status and lose their 
cell-type specificity. Fundamental genes, such as Bin1 and Mapt, show 
such transient cell-type specificity in isoform expression, suggesting 
highly sophisticated developmental splicing programs. Additionally, 
our data reveal the precise timing of splicing switches in maturation 
programs, especially on the oligodendrocyte lineage after the split 
from astrocytes. This adds subtlety to studies of isoform expression 
over development and justifies the need for simultaneous recording 
of gene expression and splicing.

Taken together, we present a comprehensive single-cell investi-
gation of alternative isoform usage in the brains of mice and humans 
and the dynamics of isoform expression variation across anatomical 
structures and development.
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Methods
Ethics statement
All experiments were conducted in accordance with relevant National 
Institutes of Health (NIH) guidelines and regulations related to the Care 
and Use of Laboratory Animals. All animal procedures were approved 
by the Institutional Animal Care and Use Committee of Weill Cornell 
Medicine and were in accordance with the 2011 Eighth Edition of the 
NIH Guide for the Care and Use of Laboratory Animals. Human tissue 
samples were acquired through the NIH NeuroBioBank and were com-
pliant with research ethics stated by the NIH. All donors completed 
University of Maryland Institutional Review Board-approved consent 
documents. They were informed via these consent documents that the 
donated tissue would be used for distribution to qualified researchers 
and that such distributions could be made at any time in the future. 
These consent documents also assured that the identity of the donor 
would remain unknown to any tissue recipients and those reviewing 
the results of their work.

Experimental design and analysis considerations
The null hypothesis of the study was that brain regions and develop-
mental time points of wild-type and healthy animals had no impact on 
alternative splicing patterns. No experimental manipulations of mice 
were performed. The study design was hence observational (known 
samples collected at different time points) and did not require ran-
domization of experimental or control groups. Additionally, data 
collection and analysis were not performed blind to the conditions of 
the experiments. No animals were excluded from the analysis; however, 
in cases where adequate data points were not available (for example, 
minimum number of reads per gene), then those points were excluded. 
No statistical methods were used to predetermine sample sizes (for 
example, cell number in single-cell experiments), but our sample sizes 
are similar to those reported in previous publications65,66. Statistical 
tests used in this manuscript largely involve Fisher’s exact test and 
Wilcoxon rank sum test, which do not make assumptions about the 
underlying data distribution. Some analyses used χ2 tests, for which 
the χ2 criterion was checked before testing32.

ScISOr-Seq2: single-cell isoform RNA sequencing from 
adolescent and adult mouse brain
Tissue acquisition. C57BL/6NTac mice (male, P14: N = 2, P21: N = 2, P28: 
N = 2, P56: N = 6; see Supplementary Table 1) were housed in groups of 
three to four per cage with a 12 h-light/12-h-dark cycle and ad libitum  
access to food and water. Ambient temperature and humidity were 
centrally regulated. Mice were perfused with 25 ml of ice-cold and 
carbogen-treated 1× partial sucrose cutting solution containing 5 µg ml–1  
actinomycin D. The remaining 1× partial sucrose cutting solution  
and Earle’s balanced salt solution were oxygenated. Dissection of  
specific brain regions was conducted by using the mouse three- 
dimensional coronal sections from Allen Brain Atlas as a reference 
map for coordinates. The brain slices were collected on a vibratome 
(Leica) at a thickness of 300 µm per slice and kept in ice-cold 1× partial 
sucrose cutting solution. For the hippocampus, eight to ten mouse 
coronal slices (300 µm) were collected from the caudal region of the 
brain after removing the cerebellum. The hippocampus region was 
dissected out based on the mouse coronal sections (images 62~89). 
Note, each image section on Allen Brain Atlas is spaced at 100-µm 
intervals. Eight to ten slices can cover almost the whole hippocam-
pus region. The visual cortex was collected based on images 79–100. 
The first one or two slices from the caudal region of the brain were 
discarded, and subsequently five to six continuous slices were col-
lected. For the striatum, five to six mouse coronal slices were collected 
from the rostral region of the brain after removing the olfactory bulb. 
The striatum was dissected out based on the mouse coronal sections 
(images 39~59). Dissection of the cerebellum does not require any 
vibratome sectioning. The cerebellum was dissected based on the 

location and structure with forceps and minced into small pieces  
with a scalpel. Slices were transferred to a slicing chamber with 
bubbling 1× partial sucrose containing small-molecule mix B at 
room temperature, and slices were allowed to recover for ~30 min. 
The 1× cutting solution contained the following components: 
93 mM N-methyl-d-glucamine (Acros Organics, AC126841000),  
2.5 mM KCl (Sigma, 44675), 1.2 mM NaH2PO4 (Sigma, S5011), 30 mM 
NaHCO3 (Sigma, S5761), 20 mM HEPES (Gibco, 15630106), 25 mM glu-
cose (Sigma, G7021), 5 mM sodium ascorbate (Sigma, A4034), 2 mM 
thiourea (Alfa Aesar, AAA1282822), 3 mM sodium pyruvate (Gibco, 
11360070), 10 mM N-acetyl-l-cysteine (Alfa Aesar, AAA1540914), 0.5 mM 
CaCl2 (Sigma, 223506) and 10 mM MgSO4 (Sigma, M2643), pH 7.2–7.4.

Single-cell disassociation. Tissue sections were dissociated by 
using a previous protocol with modification from the Smit lab at 
Vrije Universiteit, the Netherlands. Regions of interest were dis-
sected on a Sylgard-coated plate with a dark background in 1–2 ml of 
carbogen-treated cutting solution. Tissue pieces were transferred to 
5 ml of 2 mg ml–1 activated papain (Worthington, LK003150) and incu-
bated for 15–25 min at 37 °C with gentle mixing. After the incubation, 
the tissue was cut into tiny pieces and gently triturated 15–20 times 
using large- to small-sized Pasteur pipettes until no obvious chunks 
were observed. Pasteur pipettes with different opening sizes (large: 
0.6–0.7 cm, medium: 0.3–0.4 cm, small: 0.15–0.2 cm) were created 
by flame polishing disposable glass Pasteur pipettes (Thermo Fisher) 
and assembled with rubber bulbs. After undissociated tissue chunks 
settled down, the supernatant was taken and filtered using a 30-µm 
cell strainer (Miltenyi Biotec, 130-041-407) into a nuclease-free col-
lection tube. The supernatant was then centrifuged at 300–400g for 
5 min at room temperature. After discarding the supernatant, the cell 
pellet was resuspended in 3 ml of 10% ovomucoid protease inhibitor 
solution (150 µl of DNase I, 300 µl of ovomucoid protease inhibitor 
solution and 2.55 ml of Earle’s balanced salt solution; Worthington, 
LK003150). Next, the cell suspension was slowly and gently added  
to the top layer of 5 ml of ovomucoid protease inhibitor solution  
(Worthington, LK003150) without interfering with the bottom layer. 
The cells were spun down by centrifugation at 70–100g for 6 min at 
room temperature. After removing all the supernatant, cells were 
suspended in 1 ml of fluorescence-activated cell sorting (FACS) buffer 
(1× HBSS (Gibco, 14175079) containing 0.2% bovine serum albumin 
(Thermo Scientific, 37525), 25 mM glucose (Sigma, G7021), 3 mM 
sodium pyruvate (Gibco, 11360070) and 0.2 U µl–1 RNase inhibi-
tor (Ambion, AM2682)). After incubation for 15 min in FACS buffer 
with 0.1 µg ml–1 DAPI (Sigma, D9542), viable cells were collected as 
a DAPI-negative population using a Sony MA900 sorter with FlowJo  
version 10 software. Sorted viable cells were centrifuged and subse-
quently diluted to 1,000–1,500 cells per µl in FACS buffer for capture on the  
10x Genomics Chromium controller.

SnISOr-Seq: single-nucleus isoform sequencing in frozen 
human tissue
Sample acquisition. Six healthy human brain samples (hippocampus, 
three male and three female; Supplementary Table 5) used for this study 
were requested through the NIH NeuroBioBank and were obtained from 
the University of Maryland Brain and Tissue Bank according to Institu-
tional Review Board-approved protocols. No donors had pre-existing 
neurodegenerative or neurological diseases. Tissues were flash-frozen 
and maintained at −80 °C until processing.

Single-nucleus isolation. Approximately 30 mg of frozen tissue from 
each sample was dissected in a sterile dish on dry ice and transferred to 
a 2-ml glass tube containing 1.5 ml of nuclei pure lysis buffer (Millipore-
Sigma, L9286) on ice. Tissue was completely minced and homogenized 
to a nuclei suspension by grinding samples with with Dounce homo-
genizers (MilliporeSigma, D8938-1SET) with 20 strokes with pestle A  
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and 18 strokes with pestle B. The nuclei suspension was filtered by 
loading through a 35-µm-diameter filter, followed by centrifuging for 
5 min at 600g and 4 °C. The nuclei pellet was collected and washed with 
cold wash buffer (1× PBS (Corning, 46-013-CM), 20 mM DTT (Thermo 
Fisher Scientific, P2325), 1% bovine serum albumin (New England Bio-
labs, B9000S) and 0.2 U µl–1 RNase inhibitor (Ambion, AM2682)) three 
times. After removing the supernatant from the last wash, the nuclei 
were resuspended in 1 ml of 0.5 µg ml–1 DAPI (MilliporeSigma, D9542) 
containing wash buffer to stain for 15 min. The nuclei suspension was 
prepared for sorting by filtering cell aggregates and particles out with 
a diameter of 35 µm. After removing myelin and fractured nuclei by 
sorting, the nuclei were collected by centrifuging for 5 min at 600g 
and 4 °C and resuspended in wash buffer to reach a final concentration 
of 1 × 106 nuclei per ml after counting in trypan blue (Thermo Fisher 
Scientific, T10282) using a Countess II cell counter (Thermo Fisher 
Scientific, A27977).

Linear/asymmetric PCR (LAP) to remove nonbarcoded cDNA
The first-round PCR protocol (95 °C for 3 min, 12 cycles of 98 °C for 
20 s, 64 °C for 30 s and 72 °C for 60 s) was performed by applying 12 
cycles of linear/asymmetric amplification to preferentially amplify 
one strand of the cDNA template (30 ng of cDNA generated by using 
a 10x Genomics Chromium Single Cell 3′ GEM kit) with the primer  
‘Partial Read1’, and the product was purified with 0.8× SPRIselect beads 
(Beckman Coulter, B23318) and washed twice with 80% ethanol. The 
second-round PCR was performed by applying six cycles of exponential 
amplification under the same conditions with forward primer ‘Partial 
Read1’ and reverse primer ‘Partial TSO’, and the product was purified 
with 0.6× SPRIselect beads, washed twice with 80% ethanol and eluted 
in 30 µl of buffer EB (Qiagen, 19086). The following primer sequences 
were used: 5′-CTACACGACGCTCTTCCGATCT-3′ (Partial Read1) and 
5′-AAGCAGTGGTATCAACGCAGAGTACAT-3′ (Partial TSO). KAPA HiFi 
HotStart PCR Ready Mix (2×; Roche, KK2601) was used as the polymerase  
for all the PCR amplification steps in this paper, except for the 10x 
Genomics 3′ library construction.

Exome capture (CAP) to enrich for spliced cDNA
Exome enrichment was applied to the cDNA purified from the previous 
step by using a SSELXT Human All Exon V8 probe kit (Agilent, 5191-6879) 
for human samples or SureSelectXT Mouse All Exon (Agilent, 5190-4641) 
for mouse samples. The reagent kit SureSelectXT HSQ (Agilent, G9611A) 
was used according to the manufacturer’s manual. First, the block oli-
gonucleotide mix was made by mixing an equal amount (1 µl of each per 
reaction) of Partial Read1 primer (5′-CTACACGACGCTCTTCCGATCT-3′) 
and Partial TSO primer (5′-AAGCAGTGGTATCAACGCAGAGTACAT-3′)  
with a concentration of 200 ng µl–1 (Integrated DNA Technologies), 
resulting in 100 ng µl−1. Next, 5 µl of 100 ng µl–1 cDNA diluted from 
the previous step was combined with 2 µl of block mix and 2 µl of 
nuclease-free water (New England Biolabs, AM9937), and the cDNA 
block oligonucleotide mix was incubated on a thermocycler under 
the following conditions to allow the block oligonucleotide mix to 
bind to the 5′ end and the 3′ end of the cDNA molecule: 95 °C for 5 min, 
65 °C for 5 min and 65 °C on hold. For the next step, the hybridization 
mix was prepared by combining 20 ml of SureSelect Hyb1, 0.8 ml of 
SureSelect Hyb2, 8.0 ml of SureSelect Hyb3 and 10.4 ml of SureSe-
lect Hyb4 and kept at room temperature. Once the reaction reached 
65 °C on hold, 5 µl of probe, 1.5 µl of nuclease-free water, 0.5 µl of 1:4 
diluted RNase Block and 13 µl of the hybridization mix were added to 
the cDNA block oligonucleotide mix and incubated for 24 h at 65 °C. 
When the incubation reached the end, the hybridization reaction was 
transferred to room temperature. Simultaneously, an aliquot of 75 µl 
of M-270 Streptavidin Dynabeads (Thermo Fisher Scientific, 65305) 
was prepared by washing three times and was resuspended with 200 µl 
of binding buffer. Next, the hybridization reaction was mixed with all 
the M-270 Dynabeads and placed on a Hula mixer for 30 min at room 

temperature. During the incubation, 600 µl of wash buffer 2 (WB2) 
was transferred to three wells of a 0.2-ml PCR tube and incubated in a 
thermocycler on hold at 65 °C. After the 30-min incubation, the buffer 
was replaced with 200 µl of WB1. The tube containing the hybridization 
product bound to M-270 Dynabeads was put back into the Hula mixer 
for another 15-min incubation at low speed. Next, WB1 was replaced 
with WB2, and the tube was transferred to the thermocycler for the next 
round of incubation. Overall, the hybridization product bound to M-270 
Dynabeads was incubated in WB2 for 30 min at 65 °C, and the buffer was 
replaced with fresh preheated WB2 every 10 min. When the incubation 
was over, WB2 was removed, and the beads were resuspended in 18 µl of 
nuclease-free water and stored at 4 °C. Next, the spliced cDNA, which 
bound with the M-270 Dynabeads, was amplified with primers Partial 
Read1 and Partial TSO by using the following PCR protocol: 95 °C for 
3 min, 12 cycles of 98 °C for 20 s, 64 °C for 60 s and 72 °C for 3 min. The 
amplified spliced cDNA was isolated from M-270 beads as supernatant, 
followed by a purification with 0.8× SPRIselect beads.

10x 3′ library preparation and sequencing
A single-cell/single-nucleus suspension containing 10,000 cells/10,000 
nuclei was loaded on a Chromium Single Cell B Chip (10x Genomics, 
1000154). Specifically, 75 µl of master mix + nuclei suspension was 
loaded into the row labeled 1, 40 µl of Chromium Single Cell 3′ Gel Beads 
(10x Genomics, PN-1000093) was loaded into the row labeled 2, and 
280 µl of partitioning oil (10x Genomics, 2000190) was loaded into 
the row labeled 3. This was followed by GEM generation and barcoding 
after GEM-RT cleanup and cDNA amplification. Then, 100 ng of puri-
fied cDNA derived from 12 cycles of cDNA amplification was used for 3′ 
Gene Expression Library Construction by using Chromium Single Cell 
3′ GEM, Library & Gel Bead kit v3 (10x Genomics, 1000092) according 
to the manufacturer’s manual (10x Genomics, CG000183 Rev C). The 
barcoded short-read libraries were measured using a Qubit 2.0 with 
a Qubit dsDNA HS assay kit (Invitrogen, Q32854), and library quality 
was assessed on a Fragment analyzer (Agilent) using a high-sensitivity 
NGS Fragment kit (1–6,000 base pairs (bp); Agilent, DNF-474-0500). 
Sequencing libraries were loaded on an Illumina NovaSeq6000 with 
PE 2 × 50 paired-end kits by using the following read lengths: 28 cycles 
read 1, 8 cycles i7 index and 91 cycles read 2.

Library preparation for PacBio
HiFi SMRTbell libraries were constructed according to the manufac-
turer’s manual by using a SMRTbell Express Template Prep kit 2.0 
(PacBio, 100-938-900). For all samples, ~500 ng of cDNA obtained 
by performing linear/asymmetric PCR followed by exome capture 
(LAP-CAP) from the previous step was used for library preparation. The 
library construction includes DNA damage repair (37 °C for 30 min), 
end repair/A tailing (20 °C for 30 min and 65 °C for 30 min), adaptor 
ligation (20 °C for 60 min) and purification with 0.6× SPRIselect beads.

Library preparation for ONT
For all samples, ~75 fmol of cDNA was processed with LAP-CAP and 
underwent ONT library construction by using a Ligation Sequenc-
ing kit (ONT, SQK-LSK110), according to the manufacturer’s protocol 
(Nanopore Protocol, Amplicons by Ligation, version ACDE_9110_v110_
revC_10Nov2020). The ONT library was loaded onto a PromethION 
sequencer by using a PromethION Flow Cell (ONT, FLO-PRO002) and 
was sequenced for 72 h. Base calling was performed with Guppy by 
setting the base quality score to >7.

Short-read assignment of cell types (mouse)
Fastq files were obtained from the Illumina sequencing reads by run-
ning bcl2fastq. Gene × cell matrices processed with CellRanger V3.1.0 
were loaded into Seurat V3.2.3 (ref. 36) and preprocessed individu-
ally using cutoffs described in Supplementary Table 4. After filtering 
for high-quality cells, they were scaled and normalized using default 
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parameters and clustered using the Louvain algorithm. Doublet clus-
ters were discarded. Subsequently, all samples from the hippocampal 
developmental lineage were processed together, as were the samples 
from the visual cortex lineage. After combining the data without any 
integration approaches and using the Seurat merge function, the 
data were scaled and normalized, and variable genes were identified. 
Integration of the data to control for sample-specific batch effects 
was performed using Harmony. Cell types were assigned using marker 
genes in the following three levels of granularity: broad, cell type and 
cell subtype. These were then assigned to each single cell along with 
the information on replicate, brain region and age. For the spatial axis, 
that is, the cerebellum, striatum and thalamus, the two replicates were 
integrated with Harmony38 before assigning cell types in the same three 
levels of granularity as described above. Finally, the entire dataset was 
merged together into a single object for visualization purposes and to 
obtain summary statistics in Fig. 1. This was also done using Harmony 
while controlling for region-specific differences in gene expression.

Short-read assignment of cell types (human)
Fastq files were obtained from the Illumina sequencing reads by run-
ning bcl2fastq. Gene × cell matrices processed with CellRanger v3.1.0 
were loaded into Seurat 3.2.2 and preprocessed individually. After 
filtering for high-quality cells, they were scaled and normalized using 
default parameters and clustered using the Louvain algorithm. Doublet 
clusters were discarded. Subsequently, all samples were processed 
together. After combining the data without any integration approaches 
and using the Seurat merge function, the data were scaled and normal-
ized, and variable genes were identified. Integration of data to control 
for sample-specific batch effects was performed using Harmony38. Cell 
types were assigned using marker genes in the following three levels of 
granularity: broad, cell type and cell subtype. These were then assigned 
to each single cell along with the information on sample ID.

Generation of PacBio circular consensus reads
Using the default SMRT-Link (v8.0.0.78867) parameters, we performed 
circular consensus sequencing (8.0.0.80529) with IsoSeq3 with the fol-
lowing modified parameters: maximum subread length of 14,000 bp, 
minimum subread length of 10 bp and minimum number of passes of 3.

Preprocessing of long-read sequencing data with PacBio
Subread fastq files were obtained from circular consensus sequencing 
performed using the parameters described above. Data were pro-
cessed using the scisorseqr32 pipeline by first aligning to the genome  
using STARlong (v2.7.0). Cellular barcodes were assigned using the 
cell-type and sample information from the short-read analysis as 
input to the GetBarcodes() function. Subsequently, uniquely mapped, 
spliced barcoded reads were obtained using the MapAndFilter() and 
InfoPerLongRead() functions in scisorseqr.

Preprocessing of long-read sequencing data with ONT
Reads were basecalled using MinKNOW Core (v4.0.5), Bream (v6.0.10) 
and guppy (v4.0.11) on the PromethION machine. Reads were aligned 
using minimap2 (ref. 67; v2.17-r943-dirty), and data were preprocessed 
using the scisorseqr (v0.1.9)32 package. Cell barcodes were assigned 
using the cell-type and sample information from the short-read analysis.

PacBio transcript assignment using IsoQuant
IsoQuant (v2.3.0) was run using default PacBio parameters on an aggre-
gate of all barcoded PacBio reads with GENCODE v21 as annotation. 
Multiexonic transcripts classified as ‘novel in catalog’ were then used 
to create an enhanced annotation

ONT transcript assignment using IsoQuant
This enhanced annotation gtf file was used on each of the ONT samples 
to correct incorrectly assigned splice sites in multiexonic barcoded 

reads. Isoquant (v3.1) was run using default parameters for ONT data. 
These corrected splice sites were then reassigned to reads in the AllInfo 
file, which was then filtered for unique molecular identifiers and used 
as input in subsequent analyses. More information is available in  
Supplementary Note 3.

Obtaining full-length isoform variability across three axes
To find regional variability, we first calculated the percent inclusion 
(Π) for each isoform in a region by summing the inclusion values 
over all cell subtypes and time points for that region. A Π value is only 
calculated if the minimum number of reads in a gene for that region 
is at least 10. If at least two regions have Π values, we obtain an iso-
form × region matrix of Π values. We then define the variability per 
isoform as the max(Π) – min(Π). The brain region contributing the 
most to the region-specific variability is recorded as having the Π with 
the highest divergence from the median Π value.

The same procedure was performed to calculate age and subtype 
variability of a given cell type provided that the minimum read number 
requirements per age and subtype in a gene were met. More formally, 
for a cell type (CT), all possible clusters can be represented as a com-
bination of brain region (a1), age (a2) and subtype (a3).

Therefore, for CT = oligodendrocytes,

stCT ∼ a1.a2.a3a1 ∈ {visual cortex, striatum. .} ,

a2 ∈ {P14,P21, . .}

wherea3 ∈ {OPCs,COPs, . .}

Per gene and cell type (CT), a matrix (G) can be constructed with 
i rows containing the isoforms of the gene and j columns containing 
the cell clusters. So,

G ∼ gi, j where j ∈ stCT and i is an isoform

So, for a brain region (x), a subset of the matrix can be obtained 
containing only the subtypes originating from that brain region,

G′ ∼ gi, j′where j′ ∼ x.a2.a3

Thus, for a cell type (CT), the brain region (BR) variability for iso-
form (i) is defined as

isoVari_CT_BR = max (Πa1 ) −min (Πa1 ) where

̇Πa1=x =
∑k∈j′ G′i,k
∑G′x

Similarly, the age variability is defined as

isoVari_CT_age = max (Πa2 ) −min (Πa2 ) where

̇Πa2=y =
∑k∈j′ G′i,k
∑Gy

and the subtype variability is defined as

isoVari_CT_subtype = max (Πa3 ) −min (Πa3 ) where

̇Πa3=z =
∑k∈j′ G′i,k
∑Gz

Thus, the raw isoform variability for a cell type (CT) is

isoVari_CT = [isoVari_CT_BR, isoVari_CT_age, isoVari_CT_subtype]
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For each isoform, we thus had a raw value for age, region and 
subtype variability. If an isoform did not have a reported variability 
value for any of the three axes, that isoform was excluded from further 
analysis. If any of these values were at least 0.1, that is, exhibiting at 
least a 10% change in isoform usage across an investigated axis, then 
the values were normalized to add up to 1 and represented in the 
ternary plot. For values where the normalized regional variability 
was greater than 0.5 but the age and subtype variability was less 
than 0.5, then the isoform was considered to be region specific for a 
particular cell type.

Bootstrapping to evaluate cell-type differences in isoform 
variability
To reduce bias in our comparisons between cell types, reads were down-
sampled per gene for every cluster considered within an axis to have 
exactly ten reads. Thus, although it is possible to have a variable number 
of cell subtypes and time point clusters for different cell types, the Π 
calculation is performed on an equal number of reads. Variability per 
isoform and axis was performed as described above, and a matrix was 
obtained per iteration. One hundred such iterations were performed. 
To test if excitatory neurons exhibited variability not recapitulated in 
other cell types, that is, to test if the number of genes with isoforms in 
multiple (greater than or equal to two) triangles was greater than that 
for other cell types, we performed a Fisher’s exact test by construct-
ing a 2 × 2 contingency matrix of counts for each iteration. This was 
performed per cell type compared to excitatory neurons. We then 
counted the number of iterations wherein the P value was significant 
and reported the summarized statistic.

Obtaining full-length isoform variability across three axes in 
pseudobulk
A similar analysis to the one described above was performed, except 
that the cell subtype axis was replaced by a cell-type axis. Therefore, 
to find regional variability, we first calculated Π for each isoform in a 
region by summing the inclusion values over all cell types and time 
points for that region, and the variability values were obtained by 
subtracting the min(Π) from the max(Π). Age and cell-type variability 
were calculated similarly.

Differential isoform expression analysis
Between-replicate variability estimation using downsampling. For 
each of the five brain regions, we obtained Π values of isoform inclu-
sion per cell type and replicate. For each cell type, we selected genes 
wherein there were at least 100 reads per gene for both replicates. For 
each gene, we subsampled 50 reads from both replicates. To perform 
differential isoform expression analysis, we used the two-sample frame-
work using χ2 tests of abundance, as described in scisorseqr32, between 
replicates. P values from a χ2 test were reported per gene, along with a 
ΔΠ value per gene. The ΔΠ value was constructed as the sum of change 
in percent isoform (Π) of the top two isoforms in either the positive 
or negative direction. After these numbers were reported for all test-
able genes for a comparison, the Benjamini–Hochberg correction for 
multiple testing with a false discovery rate of 5% was applied to return 
a corrected P value. If this false discovery rate P value was ≤0.05, then 
the percentage of significant genes was reported for ΔΠ values ranging 
between 0.1 and 0.5. For each value of ΔΠ, the average percentage of 
significant genes across all five brain regions was reported. This process 
was repeated 100 times to obtain a confidence interval. This gave us an 
idea of within-sample variability in isoform expression.

To obtain intersample (that is, regional) differences, we repeated 
the same process (downsampling followed by testing) for each  
cell type by considering one brain region and comparing it to the 
aggregated counts across the other four brain regions. This pro-
cess was also repeated 100 times to get an estimate of intersample 
variability.

Cell types wherein the intrasample differences were much  
lower than the intersample differences were considered for further 
differential expression analysis.

Differential isoform expression for one brain region versus all others.  
We performed the same testing framework as described above by 
comparing one brain region to all others on all reads and reported the 
corrected P values and ΔΠ per cell type.

Differential TSS and poly(A) expression for one brain region versus 
all. For each sequenced long read, we assigned a known CAGE peak if 
the start of the read fell within 50 bp of an annotated peak. Similarly, 
we assigned a poly(A) site to a read if it fell within 50 bp of a known site. 
Counts for each known TSS and poly(A) site were obtained per cell 
type, and reads where a TSS/poly(A) site could not be assigned were 
discarded. Counts for brain region comparisons were aggregated in a 
similar fashion to the full-length transcript analysis described above to 
obtain an n × 2 matrix. Differential isoform expression was performed 
using scisorseqr, and the ΔΠ was recorded for each gene.

Obtaining exon counts using corrected splice sites
Using all exons appearing as internal exons in a read, we calculated 
the following:

 1. The number of long-read molecules containing this exon with 
identity of both splice sites: Xin

 2. The number of long-read molecules assigned to the same gene 
as the exon, which skipped the exon and ≥50 bases on both 
sides: Xout

 3. The number of long-read molecules supporting the acceptor of 
the exon and ending on the exon: Xacc_In

 4. The number of long-read molecules supporting the donor of 
the exon and ending on the exon: Xdon_In

 5. The number of long-read molecules overlapping the exon: Xtot

Nonannotated exons with one or two annotated splice sites, 
≥70 bases of nonexonic (in the annotation) bases, were excluded as 
intron-retention events or alternative acceptors/donors.

We then calculated

•	 Ψoverall =
Xin + Xacc_In + Xdon_In

Xin + Xacc_In + Xdon_In + Xout

•	 Ψacceptor =
Xin + Xacc_In

Xin + Xacc_In + Xout

•	 Ψdonor =
Xin + Xdon_In

Xin + Xdon_In + Xout
 

If
•	 0.05 ≤ Ψcondition ≤ 0.95, where condition ∈ {overall, acceptor, 

donor}

•	
Xin + Xacc_In + Xdon_In + Xout

Xtot
≥ 0.8

the exon was kept.
We then calculated the Ψoverall for each cell type from all long-read 

unique molecular identifiers for that cell type if and only if Xtot ≥ 10 for 
the exon and cell type in question. Otherwise, Ψoverall for the exon and 
cell type was set to ‘NA’.

Identifying hVExs
We first obtained a matrix of Ψ values for all major cell types for each 
of the 11 samples by summing the counts over replicates. This yielded 
44 triads defined by the age, region and cell type of origin. We then 
considered four lineages to calculate differences of exon inclusion 
values (ΔΨ values) across the following:

•	 For a matched cell type and region, the developmental time- 
specific changes in exon inclusion were obtained by calculating 
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pairwise ΔΨ values. All comparisons that yielded ΔΨ ≥ 0.25, that 
is, showed a 25% change in inclusion for an exon between two time 
points, were reported.

•	 For a given time point and region, the cell-type-specific changes in 
exon inclusion were obtained by calculating pairwise ΔΨ values. 
All comparisons that yielded ΔΨ ≥ 0.25 were reported.

•	 For a matched cell type at P56, adult brain region-specific changes 
in exon inclusion were obtained by calculating pairwise ΔΨ values, 
and comparisons yielding ΔΨ ≥ 0.25 were reported.

•	 For a given brain region at P56, the cell-type-specific changes in 
exon inclusion were obtained by calculating pairwise ΔΨ values, 
and comparisons yielding ΔΨ ≥ 0.25 were reported.

The exons obtained from the four lineages described above were 
classified as hVExs. The ΔΨ value for all pairwise comparisons of 44 
triads, that is, for 946 comparisons, were then calculated for these 
hVExs and reported. To enable hierarchical clustering of this matrix 
of comparisons × exons, exons with too many NA values due to lack of 
depth for Ψ calculations in many triads were filtered out.

Identifying EVExs
For the exons classified as highly variable (see above) and for each of 
the four lineages considered, we retained the comparison with the high-
est ΔΨ value. This yielded a matrix with four columns, one for each of  
the lineages, and 5,931 rows, 1 for each hVEx. Of these, exons with 
ΔΨ ≥ 0.75 in any of the four columns were retained. These were defined 
as EVExs, wherein at least one comparison between triads across  
the four lineages displayed 75% or more change in exon inclusion.

Mapping orthologous exons in human data
The TransMap67 projection alignment algorithm was used to map exons 
between human and mouse assemblies. LASTZ68 genomics alignments 
between the human GRCh38 and mouse GRCm39 reference assem-
blies were used to map reference transcript annotations between 
assemblies. TransMap was used instead of University of California 
Santa Cruz Genome Browser liftOver69 as it produces base-level align-
ments, allowing observation of insertions/deletions and other dif-
ferences between the LASTZ chain and net alignments files70. These 
were obtained from the University of California Santa Cruz Genome 
Browser site, along with the below-mentioned programs to process 
them. Syntenic genomic alignments were obtained by filtering the net 
files to obtain the syntenic nets using ‘netFilter -syn’ and then using 
‘netChainSubset -wholeChains’ to obtain a set of syntenic chain align-
ments for mappings. GENCODE71 human v35 and mouse vM26 were 
mapped to the other assembly using the pslMap program.

Obtaining cell-type variability in the human hippocampus
We obtained Ψ values for each cell type in the human data using the 
same strategy as for the mouse data. Orthologous exons that were 
unambiguously and reciprocally mapped between humans and mice 
and shared sequence homology and length were selected. For EVExs 
in groups E1–E5 identified in mice, exon Ψ values were obtained per 
cell type for exons where sufficient depth for the exon’s ortholog was 
available. Because only one brain region (hippocampus) and time point 
(adult) were available, variability was defined as the max(Ψ) – min (Ψ) 
among the major cell types. Similarly, for all exons in the human data 
that had orthologs in mice, Ψ values were obtained per major cell type, 
and exons were classified as ‘highly’ variable if eVar ≥ 0.5 and invariable 
but alternative if eVar ≤ 0.2. To allow for a higher number of exons to 
be queried, we then obtained the Ψ values for the broad categories of 
neurons and glia from both mouse and human data and reported them.

Effects of RBP on exon inclusion
We accessed ENCODE III data from two human cell lines, K562 and 
HepG2, wherein short hairpin RNA or CRISPR was used to deplete 

individual RBPs, followed by RNA sequencing of both the KD and con-
trol samples56,57. A total of 263 RBPs were profiled in this study, and 
about one-third were annotated as being involved in splicing regulation 
and RNA processing. We obtained data processed with rMATs and iden-
tified cassette exons that were significantly altered (P ≤ 0.05 and change 
in percent spliced index ≥ 0.1) in their splicing profiles from all the RBP 
KD experiments and recorded both the exon and the associated RBP. We 
intersected these exons with the human orthologs of the mouse EVExs. 
We could thus characterize the number of exons that were influenced 
by RBP expression and the number of RBPs that influenced each exon. 
More information is available in Supplementary Note 5.

Identifying sQTLs associated with exons of interest
We accessed the GTEx v8 (ref. 58) genome-wide association study 
(GWAS) catalog and obtained a list of sQTLs that were associated 
with intron removal ratios for brain regions included in our study. 
From our mouse data, we isolated exons that either flank or are con-
tained within these significant introns identified by GTEx. Finally, 
we cross-referenced the genes within which these single-nucleotide 
polymorphisms were located with the GWAS catalog and manually 
identified the list of genes that are associated with central nervous 
system traits.

Obtaining developmental modalities of variability
Considering the second of the four lineages above, that is, the 
cell-type-specific differences in exon inclusion for a given time point 
and brain region, we calculated exon variability. For exons where we 
had sufficient depth to calculate the Ψ values for at least two cell types, 
we calculated the exon variability as the max(Ψ) – min(Ψ) for each 
time point. Thus,

eVarTP = max (PSI) −min (PSI)where PSI

∼ [ΨAstro,ΨOligo,ΨExciteNeuron,ΨInhibNeuron]

We then considered the first lineage from the hVEx paradigm 
described above, that is, developmental time-specific changes. Here, 
we looked at the change in variability between time point transitions, 
that is, from P14 to P21, from P21 to P28 and from P28 to P56. If the 
change in eVar (ΔeVar) was less than 0.1 in all three transitions, indicating 
less than a 10% change in cell-type-specific variability over time, then 
the exon was classified as invariable (Supplementary Fig. 21).

ΔeVar = eVarx − eVary where x > y and x, y ∈ {P14,P21,P28,P56}

ΔeVarcomp ≤ 0.1∀comp ∈ (P14 → P21,P21 → P28,P28 → P56)

∼ ‘Invariable exon’

Otherwise, the exon was classified as variable. Z scores were calculated 
per row of the matrix of exon × eVarTP by centering and scaling the data 
to have the mean at 0 and standard deviation of 1. This normalized 
matrix was used for clustering and obtaining nine developmental 
modalities.

Getting protein superfamily annotations per exon
We developed a computational pipeline to identify protein superfamily 
annotations per exon. For each exon, we used the genomeToProtein() 
function of the ensembldb package and extracted the Ensembl ID, 
coordinates, and residue sequence of the protein identified. We fil-
tered the obtained protein identifiers based on their corresponding 
Ensembl transcript IDs and limited the search to the principal isoforms 
from the APPRIS72 database. For each protein sequence, we ran the 
SUPERFAMILY73,74 tool that uses the hidden Markov model to identify 
the structural-defined SCOP protein domain families and the domain 
boundaries. The tool was implemented in InterProScan75–77. Protein 
regions not associated with domains were considered interdomain 
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linkers. Subsequently, for each exon, the superfamily annotation asso-
ciated with the protein residue for those coordinates was identified 
and used for further analysis.

Enrichment of protein superfamily annotations
We considered EVExs in clusters E1–E5 (Fig. 3) as well as a background 
set consisting of exons with low variability across the entire dataset. For 
exons that had a domain associated with the coordinates of the coding 
sequence, we extracted the superfamily rather than individual and 
similar domains, given that the broader classification would allow for 
better grouping. We then counted the number of exons associated per 
superfamily and group and reported a percentage. The superfamilies 
for which a value was obtained only for the background set were dis-
carded, yielding a total of 55 superfamilies. For better interpretability, 
we retained superfamilies that were associated with at least 4% enrich-
ment in any group, yielding a total of 15 superfamilies.

GO analysis for genes associated with variable exon categories
For exons in the four hVEx categories (H1–H4), genes to which these 
exons belonged were extracted per category. Only unique genes 
per category were retained, meaning that if two exons from a gene 
belonged to two different categories, the gene was discarded from the 
analysis. GO biological process enrichment analysis was performed 
using the function enrichGO() from the clusterProfiler78 package. GO 
terms with q values of ≤0.1 were reported, and the enrichment value was 
defined as the ratio of genes in the category being considered to those 
in the background. Similarly, for the invariable exons and the nine vari-
able developmental categories (G0–G9), unique genes containing the 
exons in each category were identified. GO biological process analysis 
was performed as described above using a list of brain-expressed genes 
obtained from SynGO79 as the background set. GO terms with q values of 
≤0.1 were reported, and the enrichment value was defined as the ratio 
of genes in the category being considered to those in the background. 
In the same vein, genes of adult brain region-specific EVExs (group E4) 
were identified, and the same steps were performed.

Pseudotime trajectory analysis
Isoquant v3.1 was run on the ONT data, and full-length isoforms were 
grouped by barcode to obtain an isoform × cell sparse matrix similar to 
the CellRanger pipeline across the dataset. Cell barcodes correspond-
ing to astrocytes and oligodendrocytes from the hippocampus and 
visual cortex developmental lineage were isolated, and a subset of a 
matrix containing these cellular barcodes as columns was obtained. 
This matrix was then processed using Seurat36 (v3.2.3) to obtain a 
UMAP representation of the cells. Each cell was colored according to 
the original short-read cell-type assignments. Slingshot (v1.6)63 was 
then used to obtain a pseudotime trajectory along these clusters, 
with the initial point specified at OPCs. Lineages obtained were then 
reported.

Testing for exon coordination
Testing for exon coordination can be done at the pseudobulk level or at 
the cell-type level. For every exon pair passing the criteria for sufficient 
depth, a 2 × 2 matrix of association for a given sample (that is, cell type 
or pseudobulk) was generated. This matrix contained counts for inclu-
sion of both exons (in–in), inclusion of the first exon and exclusion of 
the second (in–out), exclusion of the first exon and inclusion of the 
second (out–in) and exclusion of both exons (out–out).

The co-inclusion score of an exon was defined as the double inclu-
sion (in–in) divided by the total counts for that exon pair. An exon pair 
deemed ‘coordinated’ was assessed using the χ2 test of association. The 
effect size was calculated as the | log10 (odds ratio) |. The odds ratio was 
calculated by setting 0 values to 0.5 and dividing the product of double 
inclusion and double exclusion by the product of single inclusion, that 
is, [(in–in) × (out–out)]/[(in–out) × (out–in)].

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The summary of all mouse data used for this study is available on the 
Knowledge Brain Map at https://knowledge.brain-map.org/data/
Z0GBA7V12N4J4NNSUHA/summary, and all human data are available 
at https://knowledge.brain-map.org/data/ASP3B09DZ8PXDUYSHDH/
summary. These pages contain links to raw and processed data hosted 
on the Neuroscience Multi-Omic data archive under the identifier 
dat-717krsa (https://assets.nemoarchive.org/dat-717krsa). All data 
supporting the findings of this study are provided within the paper 
and its Supplementary Information. Publicly available data were down-
loaded from APPRIS (https://apprisws.bioinfo.cnio.es/landing_page/), 
ENCODE (https://www.encodeproject.org/), GTEx (https://www. 
gtexportal.org/home/downloads/adult-gtex/qtl) and the GWAS  
catalog (https://www.ebi.ac.uk/gwas/docs/file-downloads). Source 
data for the main figures can be found at https://github.com/
noush-joglekar/biccn_tilgner_scisorseq/tree/main/data (ref. 80).

Code availability
The source code generated for this paper is publicly available at  
https://github.com/noush-joglekar/biccn_tilgner_scisorseq (ref. 81).
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Viable cells were selected using FlowJo version 10 software. lllumina reads were converted to fastq using bcl2fastq. PacBio long reads were 

basecalled using SMRT-Link (v 8.0.0.78867) and CCS (8.0.0.80529). ONT long reads were basecalled using Min KNOW Core (v 4.0.5), Bream 

(v6.0.10), and guppy (v4.0.ll) on the PromethlON machine. 

Data analysis Data analysis was done using a combination of open source publicly available code and custom code. Software used in this analysis included: 

STARlong (v2.7.0), minimap2 (v2.17-r943-dirty), scisorseqr (v0.1.9), lsoQuant (v2.3.0) for PacBio and lsoquant (v3.l) for ONT, cellranger  

(v3.l.0), Seurat (v 3.2.2 and v3.2.3), harmony (v0.1.0), Slingshot (vl.6), ensembledb (v2.26). Data visualization was performed using a ScisorWiz, 

ComplexHeatmap (v 2.13.1), clusterProfiler (v3.18.1),  

The source code generated for this paper is publicly available at https://github.com/noush-joglekar/biccn_tilgner _scisorseq 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
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2

n
atu

re p
o

rtfo
lio

  |  rep
o

rtin
g

 su
m

m
ary

A
p

ril 2
0

2
3

Data

Policy information about availability of data
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- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The summary of all mouse data used for this study is available on the Knowledge Brain Map at https://knowledge.brain-map.org/data/Z0GBA7V12N4J4NNSUHA/
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processed data hosted on the Neuroscience Multi-Omic data archive (NeMO) under the identifier dat-717krsa (https://assets.nemoarchive.org/dat-717krsa). All 

data supporting the findings of this study are provided within the paper and its supplementary information. Publicly available data was downloaded from APPRIS 
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Reporting on sex and gender 6 human (3 Male, 3 Female) hippocampal tissue samples were acquired. 

Reporting on race, ethnicity, or 

other socially relevant 

groupings

All subjects were unaffected controls with no pathological diagnosis, and died of accidental causes 

Sex: 3 males, 3 females, age range: 28-40, Race: 2 Black and 4 White individuals

Population characteristics Sex: 3 males, 3 females, age range: 28-40, Race: 2 Black and 4 White individuals. No pathological diagnosis

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and 

how these are likely to impact results.

Ethics oversight Acquisition of human tissue samples was done through the NIH Neurobiobank and were compliant with research ethics 

stated by the NIH. All donors completed University of Maryland IRB-approved consent documents. They were informed via 

these consent documents that the donated tissue would be used for distribution to qualified researchers and that such 

distributions could be made at any time in the future. These consent documents also assured that the identity of the donor 

would remain unknown to any tissue recipients and those reviewing the results of their work.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to pre-determine sample sizes (e.g., cell number in a single-cell experiments) but we aimed for ~10000 

single cells / experiment. These numbers are similar to those reported in previous publications (see PMIDs 31435019, 35256815). For the 

mouse experiment we had 11 samples (4 timepoints x 2 brain regions, 1 timepoint x 3 brain regions) with each sample having 2 biological 

replicates resulting in 22 experiments.  

For the human samples there is more inter-individual variability so we had 1 brain region x 6 donors resulting in 6 samples

Data exclusions No data was excluded from this study except for filtered cells after QC. Raw data have been deposited for all samples.

Replication 2 biological replicates were obtained for each sample from mouse, and 6 from human. QC and results were replicable, and these were 

confirmed by comparing gene, exon, and isoform expression profiles between replicates

Randomization The null hypothesis of the study was that brain regions and developmental timepoints of wild type, healthy had no impact on alternative 

splicing patterns. No experimental manipulations of mice were performed. The study design was hence observational (known samples 

collected at different time points) and did not require randomization of experimental or control groups. 

Blinding No experimental manipulations of mice were performed. The study design was observational (known samples collected at different time 
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Research

Laboratory animals C57BL/6NTac mice were used throughout. We collected samples from Pl4 (n=2), P21 (n=2), P28 (n=2), and P56 (n=6) mice. Mice 
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temperature and humidity were centrally regulated. 

Wild animals This study did not involve wild animals 

Reporting on sex All male samples were used for this study and the reported results are all derived from the male sex. This was done to avoid sex as a 

covariate in the analysis and reduce the experimental cost of requiring more replicates per sample.

Field-collected samples The study did not involve samples collected from the field

Ethics oversight All experiments were approved by the Institutional Animal Care and Use Committee of Weill Cornell Medicine and were in 

accordance with the 2011 Eighth Edition of the National Institute of Health Guide for the Care and Use of Laboratory Animals.
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