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Population coding of strategic variables 
during foraging in freely moving macaques

Neda Shahidi1,2,3, Melissa Franch1, Arun Parajuli1, Paul Schrater4,5, 
Anthony Wright1, Xaq Pitkow    6,7,8,9,10,12  & Valentin Dragoi    1,7,11,12 

Until now, it has been difficult to examine the neural bases of foraging in 
naturalistic environments because previous approaches have relied on 
restrained animals performing trial-based foraging tasks. Here we allowed 
unrestrained monkeys to freely interact with concurrent reward options 
while we wirelessly recorded population activity in the dorsolateral 
prefrontal cortex. The animals decided when and where to forage based 
on whether their prediction of reward was fulfilled or violated. This 
prediction was not solely based on a history of reward delivery, but also 
on the understanding that waiting longer improves the chance of reward. 
The task variables were continuously represented in a subspace of the 
high-dimensional population activity, and this compressed representation 
predicted the animal’s subsequent choices better than the true task 
variables and as well as the raw neural activity. Our results indicate that 
monkeys’ foraging strategies are based on a cortical model of reward 
dynamics as animals freely explore their environment.

While foraging, animals must continuously make decisions about 
where to search for food and when to move between possible food 
sources. To survive in environments with sparse resources, animals 
forage more effectively if they can predict future outcomes before they 
execute costly actions such as relocation1–3. Two major limitations of 
past neuroscience studies of foraging have impeded our understanding 
of this natural behavior. First, trial-based tasks are unable to expose the 
continuous decision-making process during food search and selection, 
and second, restraining body movements may substantially distort 
prediction of outcomes of dynamic food sources, as the perception of 
time is tightly linked to freedom of movement4,5 and cortical dynamics6.

Trial-based tasks revealed that animals use reward history to detect 
changes in reward rates7,8. We often quantify how an animal adapts 
to these reward rates by tracking how often it chooses each available 

option. For example, classical foraging theories revolve around the 
idea of the matching law9: animals dedicate time or effort to an option 
in proportion to its value according to its reward history. However, a 
neglected aspect of adaptive behavior is that the animals adjust their 
response rate, meaning that they choose ‘when’ to forage in addition to 
‘where’ to forage. Choosing the response rate systematically is particu-
larly efficient when the time of choice predicts the chance of receiving 
a reward, that is, in nature as well as in many foraging studies7–13. For 
a restrained animal engaged in a trial-based foraging task, ‘when’ to 
choose is distorted by the trial structure, while ‘where’ to choose is 
distorted by a confined spatial distribution of reward. Additionally, 
examining foraging in trial-based tasks makes it difficult to examine 
the neural bases of the continuous decisions the animal would make 
freely about when and where to engage with the task.
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multi-units). Additionally, we extracted the neurons’ press-locked 
events, that is, firing rates a few seconds before and after each press 
(Fig. 1b). The continuous-time neural activity allowed us to understand 
how continuous representations of task variables in dlPFC leads to the 
animal’s choice to press. The press-locked neural activity explained how 
the state of these representation, before a press, combined with the new 
information, which is the reward outcome, predict where and when the 
animals press next. The continuous spike raster and the press-locked 
firing rate of a sample neuron (Fig. 1e) are shown for four consecutive 
box presses with different reward/choice outcomes: an unrewarded 
press followed by a switch to the other box, an unrewarded press when 
the animal stayed at the same box and two rewarded presses when the 
animal stayed at the same box. The fourth outcome, switching to the 
other box after a rewarded press, accounted for only 2% of the presses, 
so we do not show it in this example.

Here we explain how we identified reward predictors, variables 
that the animal can either observe or control and that they potentially 
use to estimate the chances of rewards. Consequently, we determined 
whether these variables empirically predicted the next reward outcome 
in our experiment. As the stochastic rewards do not always match the 
prediction, we examined the consequences of prediction violations 
on animals’ choice of box and time of press. Next, we used canonical 
correlation analysis (CCA) to identify the neural representation of these 
variables in the population of recorded neurons in dlPFC. Finally, we 
tested whether these representations predicted the animal’s choices 
in advance.

Predictors of the next reward
According to the marginal value theorem of foraging theory1, an animal 
could optimize its reward while minimizing travel costs by estimating 
the box schedules, tracking the temporal evolution of the probability of 
reward availability and using them to choose when and where to search 
for reward. Although the probability of the reward availability is the 
best predictor of the randomly generated reward, it was completely 
unobservable to the animals in our experiment. However, other pre-
dictive variables were observable or controllable by the animals, such 
as the waiting time between the presses or the reward ratio, defined 
as the proportion of the current option’s recently delivered reward 
compared to all recently delivered rewards from either box. The recent 
history was defined by applying a causal half-Gaussian filter to the 
binary sequence of delivered (1) or denied (0) rewards7,8. The waiting 
time, together with the scheduled reward rate, determines the prob-
ability of reward availability (Methods and Extended Data Fig. 2a). The 
reward ratio, when tracked on a timescale relevant to the volatility of 
the environment7, is a proxy for the scheduled reward ratio, defined as 
the ratio of the scheduled reward rate on the current box and the sum 
of the scheduled reward rates of two boxes.

As the scheduled reward ratio changes without warning from 
block to block, we maximized the correlation of the scheduled reward 
ratio with the animal’s observed reward ratio by tuning the width of the 
causal half-Gaussian filter mentioned above (Extended Data Fig. 2b). 
We assessed how well each variable predicted the reward by correlating 
the rewarded fraction of presses with that variable before each press. 
Specifically, we pooled 8,862 behavioral presses from 30 sessions 
of two monkeys, binned them according to each hidden or observ-
able/controllable variable so that there were 50 presses in each bin, 
calculated the fraction of rewarded presses within each bin (Fig. 2a), 
and computed the Pearson correlation between the binned variable 
and rewarded fraction of presses. Naturally, the probability of reward 
availability was highly correlated (r = 0.93; Fig. 2a) with the rewarded 
fraction of presses. The scheduled reward rate was correlated with the 
fraction of rewarded presses as well (r = 0.43; Fig. 2a). This correlation 
is weaker than the correlation of the waiting time with the fraction of 
rewarded presses (r = 0.92; Fig. 2a) because the probability of reward 
availability is determined by both waiting time and the scheduled 

The second major limitation of past studies is that experimen-
tal restraints used when recording neural activity can distort animal 
behavior14–16. The consequences of physical restraints may be especially 
dramatic on food-seeking behavior because animals use head and body 
movements to gather information from their environment for forag-
ing17,18. Furthermore, the cortical activity differs when the animals aim 
for targets that are far from their immediate reach19. The restraints may 
also affect when the animals choose to act, particularly for trial-free 
experiments for which timing is crucial.

In this Article, to circumvent these limitations, we designed a 
trial-free task where animals can forage freely, without bodily restraints. 
We examined how dynamic task variables influence rewards and neural 
activity, and subsequently, how this activity influences foraging behav-
ior. Animals were allowed to continuously interact with the task and 
explore a wide range of reward expectancies by choosing when and 
where to act. We found that animals adjust their foraging on the basis 
of deviations from theoretical reward predictions, reflecting subjec-
tive reward expectations and leading us to two hypotheses about brain 
computations. First, the subjective estimates of reward predictors 
should be decodable from the brain. Second, animals should choose 
the time and the place of foraging attempts according to these neural 
estimates. We tested these hypotheses by recording from neurons 
in the dorsolateral prefrontal cortex (dlPFC), an area where neural 
activities encode reward13,20,21 and are related to memory22 and action 
preparation23,24. Here, we show that single neurons had mixed selectiv-
ity25 to experimental variables and, conversely, those variables were 
distributed across many neurons. Finally, this distributed representa-
tion accurately predicts where and when an animal will forage next.

Results
Monkeys (n = 2) were exposed to two concurrent reward sources on 
a variable interval (VI) schedule10. We made it costly for the animal to 
switch between reward sources by placing them 120 cm apart (Fig. 1a, 
left). Animals freely interacted with the task equipment, and we did 
not impose a trial structure or a narrow response window (Methods). 
A multi-electrode Utah array was chronically implanted in the dlPFC 
(Extended Data Fig. 1), and measured spiking activity was collected 
using a lightweight, energy-efficient wireless device (Fig. 1a, right and 
Fig. 1b)26. The experimental setup was designed for the effective trans-
mission of a low-power electromagnetic signal (Methods)27,28.

Rewards on both sides (box 1 and box 2) became available at expo-
nentially distributed random times after the animal obtained a previous 
reward. The reward availability was hidden from the monkey. Once 
becoming available, each reward remained available until the animal 
pressed a button, at which time the reward was delivered (Fig. 1c). 
The distribution of waiting times before a reward became available 
could have different mean times or ‘schedules’ for each side (that is, 
constant hazard rates; Fig. 1c). Schedules were chosen from 10, 15, 
25 or 30 s and were constant for a block of rewards. Multiple sched-
ules allowed us to diversify the response dynamics of the animals10. 
Each experimental session contained two to four blocks with 34 or 66 
rewards in each block. Given the constant hazard rate and the fact that 
rewards never disappeared once available, the probability of reward 
availability increased exponentially toward 1 with the time elapsed 
since the last press (the waiting time), with a time constant given by the 
reward schedule (Methods, Fig. 1d and Extended Data Fig. 2). Since the 
monkey chose when to respond, its decisions influenced the probability 
of reward availability (Fig. 1c). An ideal observer that did not know the 
schedule or availability should track the time and reward histories, 
so we hypothesize that animals attempt to maximize their reward 
by tracking these quantities, referred to as the reward predictors, to 
determine when and where to respond.

We examined whether the firing rates of neurons in dlPFC repre-
sent the reward predictors as they are continuously evolving in time 
(monkey G: 11 sessions and monkey T: 19 sessions; n = 1,323 single and 
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reward rate, and the animals choose a wide range of the waiting times, 
diluting the prediction of the scheduled reward rate alone.

Although the waiting time was highly predictive of the next 
reward, the reward ratio potentially plays an important role in animal’s 
subjective reward expectation8. The reward ratio was not correlated 
with the fraction of rewarded presses (Fig. 2a, r = −0.012). However, it 
was positively correlated with the scheduled reward rate on the side 
that the animal pressed (r = 0.32), meaning that it might be used by 
the animals as an observable estimation of the hidden reward rates. 
Moreover, it was only weakly correlated with the log of waiting time 
(r = −0.140.14), meaning that it may be considered by the animals as a 
source of information, independent from the waiting time. We refer to 
the waiting time and the reward ratio as the reward predictors because 
they may be used by the animals to predict the reward, and therefore 
may play a role in determining the animals’ reward expectation (for 
the analysis of other observable reward predictors, see Extended 
Data Fig. 2c–e).

Do reward predictors determine ‘when’ and ‘where’ to press?
Although the subjective reward expectation is not directly meas-
urable, we might infer changes in the animals’ reward expectation 

from the animals’ next choice, after a reward is delivered or denied. 
For example, an animal may realize that waiting longer increases its 
chances of receiving a reward, so we expect that an unrewarded press 
after a long wait might lead it to wait even longer between presses at 
the current box. Alternatively, the animal may realize that the waiting 
time for getting a reward at the current box is too long. Therefore, 
it may switch to the other box anticipating a better reward rate. We 
thus hypothesized that the animals’ decision on where and when to 
press depends upon the reward predictors, as the basis of animals’ 
reward expectation. We evaluated this hypothesis by analyzing the 
effect of such reward predictors on the probability distribution of 
the next waiting time and the probability of switching. These events 
were grouped depending on whether presses were rewarded and 
occurred after a short (3–5 s), medium (5–8 s) or long (8–60 s) wait 
(Fig. 2c and Extended Data Fig. 3, separated for monkeys). An unre-
warded press increased the next wait by 10% (area under the receiver 
operating characteristic curve (AUC) of 0.53 ± 0.03) after a short wait, 
by 28% (AUC of 0.59 ± 0.02) after a medium wait and by 42% (AUC of 
0.59 ± 0.02) after a long wait, each compared with the corresponding 
average waiting times for rewarded presses. Moreover, the prob-
ability of switching to the other box increased with the duration of 
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Fig. 1 | Foraging in freely moving monkeys while population activity in the 
prefrontal cortex is recorded wirelessly. a, Left: schematic of experimental setup 
with two reward boxes, two buttons and an overhead camera. Right: the location 
of the Utah array in the dlPFC (area 46) and wireless transmitter. b, Press-averaged 
firing rates of 80 single and multi-units recorded simultaneously. c, An illustration 
of task dynamics with eight hypothetical presses (vertical lines) in the concurrent 
variable-interval foraging task. In this illustration, the monkey responds six 
times on box 1, then switches to box 2 and responds twice. Therefore, press 6 is 
considered a press with a switch choice. The first two rows show the independent 
telegraph processes determining the reward (rew.) availability at boxes 1 and 2. In 
the example shown, press numbers 2, 5, 7 and 8 were rewarded (third row, red). The 
time dependence of the probability of reward availability is shown in the fourth 

row (see d for a different representation). d, An alternative illustration to clarify 
the relationship between the probability (prob.) of reward availability (avail.) and 
the waiting time. The shaded area shows when a reward is available after each 
of the 20 presses on box 1 (some of them shown in c). The black trace associated 
with the y axis on the right shows the probability of reward availability (Methods 
and Extended Data Fig. 2a), which at each time is in fact the proportion of pink 
bars, out of 20 trials with pink bars. e, The spike train of one example neuron on 
the timescale of four consecutive presses showing a variety of events (top row). 
Event-locked average firing rates of the same neuron are shown in the bottom 
row for conditions with reward/no reward and stay/switch choices. For ease of 
visualization, this example used a neuron with a relatively low firing rate compared 
to others in the population (compared with b).

http://www.nature.com/natureneuroscience


Nature Neuroscience | Volume 27 | April 2024 | 772–781 775

Article https://doi.org/10.1038/s41593-024-01575-w

unrewarded waits (9.5%, 10.2% and 16.5% more switches after a short, 
medium and long waiting time; Fig. 2c, insets). These choice differ-
ences (to continue pressing the button for the same box or switch 
to the other box) and the next waiting time when choosing to press 
on the same box, demonstrate that animals base their expectation 
of reward on their waiting time and adjust their behavior by waiting 
longer before the next press or switching to the other box when this 
expectation is not met. While previous studies point to melioration, 
that is, following the current flow of reward delivery9, we provide 
evidence of more temporally structured computations: the animals 
predict the chance of the next reward as they choose how long to 
wait before making the next press and adjust the waiting time when 
their expectation is not met. A key to this finding was a trial-free 
task, allowing animals to experience a wide range of waiting times 
and spontaneously discovering that longer intervals yielded a higher 
chance of receiving a reward.

The animals might also develop expectations about the quality 
of the current box from the reward ratio. Again, we can infer these 
expectations indirectly through changes in the next waiting time 
and choices. After unrewarded presses, animals waited longer and 
switched more, with the smallest changes for biggest reward ratios 
(Fig. 2d; 23%, 18% and 15% longer unrewarded waits and 19%, 12% and 
3% switches after a low, medium and high reward ratio, respectively). 
This suggests that animals require stronger evidence to override a 
better reward history.

Altogether, this provides evidence that an animal’s policy on when 
and where to press depends on whether the box delivers a reward, as 
expected after a long waiting time or a high reward ratio. We inferred 
that animals update their expectation when those expectations are 
violated by the lack of an expected reward. This policy is a case of 
‘learning a guess from a guess’29, which is useful in the absence of sen-
sory evidence directly cueing the probability or availability of reward. 
To provide further evidence that the waiting time and reward ratio 
underlie animals’ reward expectation, we examined their encoding in 
the recorded neural population.

Task-relevant activity in dlPFC
Before a motor action, the activity of neurons in the dlPFC is correlated 
with the value of a visually cued expected reward20 or the probability 
of reward, estimated by the recent history of reward delivery13. There-
fore, we hypothesized that the activity of dlPFC neurons, before each 
press, encodes the reward expectation for that press, for the range of 
the reward predictors variables observed or generated by each animal. 
For example, the neuron in Fig. 3a, left, activates more before a press 
following a long wait (top 20% of waiting times in that session) com-
pared with a short waiting time (bottom 20%; Wilcoxon rank-sum test, 
P  ≪ 10−3). Similarly, the neuron in Fig. 3a, right, activates more when 
the reward ratio before a press is in the bottom 20% compared with 
when it was in the top 20% (Wilcoxon rank-sum test, P ≪ 10−3).

As task-irrelevant variables such as locomotion, limb and eye move-
ment and pupil size before or after presses may influence dlPFC activ-
ity30, we performed control experiments to quantify the correlation 
between task-irrelevant variables and neural activity. First, our control 
experiments in which animals moved to receive reward from the same 
boxes as in Fig. 1a revealed that eye movements have only a minor influ-
ence on neuronal activity while animals interacted with the box, 
although they have a stronger influence during locomotion (r = 0.16, 
t-test, P  ≪ 10−3, for eye velocity, and r = 0.13, t-test, P  ≪ 10−3, for fixation 
rate27). We thus decorrelated the neural activity from the locomotion 
by projecting neural activity onto the subspace orthogonal to locomo-
tion (Methods) such that the remaining neural activity was uncorrelated 
with locomotion (Extended Data Fig. 4). Second, one animal performed 
the same task as presented here, while its arm movements, pupil diam-
eter and eye velocity were monitored using the same eye tracking 
method as in ref. 27. We found ≤9% of neurons in dlPFC with significant 
(P < 0.01) correlation with the arm movement (Extended Data Fig. 5) in 
1 s time intervals starting 2 s before and ending 2 s after presses. Pupil 
diameter was correlated with ≤10% of neurons. However, after we decor-
related the neural activity from the locomotion, the percentage of 
neurons with a significant correlation with the pupil diameter dropped 
to ≤7%. Similarly, the percentage of neurons with a significant 
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the choices and the next waiting time. a, The predictability of the next reward 
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variable. The rewarded fraction of presses was calculated in each bin, then the 
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correlation with the eye velocity dropped from ≤9% to ≤4%. As decor-
relating the neural activity from locomotion also decreases the correla-
tion between the neural activity and other task-irrelevant variables, we 
focused our analysis for the rest of this study on the neural activity that 
was decorrelated from the locomotion.

Decoding reward predictors from the neural population
Since the waiting time influences both future behavior and the reward 
probability when the button is pressed, we examined how the neural 
activity encodes waiting time just before a button press. We measured 
the spike counts in a 1 s interval (that is, a ‘pre-press’ interval from −1.1 
to −0.1 s) for each neuron (n = 1,323 single and multi-units). This time 
interval was selected since the arm movement starts approximately 0.5 s 
before the press is recorded, and the modulation of neural activity 
typically starts around 0.5 s before that movement31.The pre-press firing 
rate of the neuron in Fig. 3a, left, was correlated with the waiting time 
(Spearman correlation coefficient of 0.24; t-test, P  ≪ 10−3; Fig. 3b, left). 
For the entire population of cells, around 35% of neurons exhibited a 
significant Spearman correlation (t-test, P < 0.01; 31% positively corre-
lated and 4% negatively correlated; monkey G: 27%, and monkey T: 37%).

To further examine how information about the waiting time is 
distributed across neurons, we decoded the waiting time from popu-
lation activity before each press using the spike counts of randomly 
subsampled sets of neurons (for a description of the regression-based 
decoder analysis, see Methods). Our decoder analysis revealed that 
even random neural subpopulations encode the waiting time (Fig. 3c; 
Wilcoxon rank-sum test with false discovery rate, with multiple com-
parison correction (WRFDR), P ≤ 0.01).

Furthermore, consistent with previous reports8,13,21,32, we found 
that dlPFC neurons encode the reward ratio. Over the entire population, 
there was a significant correlation between the pre-press firing rate 
and reward ratio (t-test, P < 0.01) for 23% of the neurons (9% positively 

correlated and 14% negatively correlated; monkey G: 12%, and monkey 
T: 26%). Decoder performance for the reward ratio was higher than 
chance (WRFDR, P < 0.01) when we used a subpopulation of one or more 
neurons as the predictors. Taken together, these results indicate that 
both reward predictors are encoded in the pre-press neural activity 
at the individual neuron and population levels. This finding provides 
further evidence that the animals’ reward expectation is founded on 
the chosen reward predictors.

Identifying continuous task variables in a latent space
Unlike waiting time, the reward ratio jumps discretely at press times. We 
aimed to gauge the waiting time’s explanatory power for the continu-
ously evolving neuron activity. We attempted to fit the variability in a 
neuron population using a weighted sum of task-related variables and 
basis functions33–35. Some of these variables were event based (presses, 
reward delivery and choice to stay or switch location), while others 
evolved continuously (waiting time, reward ratio and location within 
the cage). For event-based task variables, each event raster was fil-
tered with a 200 ms boxcar and then shifted to a variety of offsets36 
(Fig. 3e). For continuously evolving task variables, we used monomial 
basis functions with powers of 0.5, 1, 2, 3 and 5 (Fig. 4a). Neural activity 
was smoothed by a 1 s sliding window. To concentrate our analysis on 
times when animals were engaged in the task, we excluded time bins 
preceding or following any presses by more than 5 s.

To identify the latent representation of task variables in the neural 
space, we used CCA to find components that are shared between the 
task and the neural spaces. CCA finds these canonical components by 
applying singular value decomposition to the cross-correlation matrix 
between two spaces37. To favor interpretable latent components such 
that each component is associated with a small subset of the task vari-
ables, we imposed a sparsification penalty (least absolute shrinkage 
and selection operator with fullness constant of 0.3 on the weights of 
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presented as mean values ± s.e.m. b, Decoded and measured waiting time (left) 
and reward ratio (right) for two sample sessions. Forty-five neurons in the session 

on the left and 60 neurons in the session on the right were used. The shown 
value of Pearson correlation coefficient is the average value across the cross-
validated sets in each session. c, Decoding the waiting time (top) or the reward 
ratio (bottom) for 30 sessions as a function of the number of neurons used as 
predictors. The predictor neurons were chosen randomly from the population. 
Data are presented as mean values ± s.e.m. across 20 randomly selected subset 
of units. Sessions of monkey G are shown with a darker color, and sessions of 
monkey T are shown with a lighter color.
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the task variables37). This regularization helps reduce overfitting the 
model. We calculated ten components for each training set (Fig. 4b), 
and then identified neural components making the greatest contribu-
tions to rewards, choices, waiting time and reward ratio. Interestingly, 
the waiting time neural component ramps up between the consecutive 
presses (Fig. 4b, third row), suggesting that the latent representation of 
the waiting time might be used by the brain to generate the next press, 
in a similar fashion to the evidence accumulation models proposed in 
decision making38. The reward ratio component followed the difference 
between the reward ratio of the boxes (Fig. 4b, fourth row). The reward 
and choice components showed sharp post-press elevated activity 
(Fig. 4b, first and second rows).

We asked whether fitting a model to reconstruct the activity of 
individually recorded neurons34 or sites33, then clustering the neurons 
based on the similarity between the reconstructed activity (Extended 
Data Fig. 6) yields a better representation than the latent variables 
that we found using the CCA. We calculated the Pearson correlation 
coefficient between reward predictors and their associated canonical 

components analysis and compared them with the correlation between 
the reward predictors with the neuronal clusters or individual neurons 
in each session that was maximally correlated with each reward predic-
tor. The average correlation coefficient between the waiting time and 
the neural components was higher than that with the individual neu-
rons or neural clusters of >5 neurons (WRFDR, P < 0.005; Fig. 4c, left). 
The correlation between the reward ratio and the neural components 
was the same as that with the individual neurons or clusters (WRFDR, 
P > 0.1; Fig. 4c, right). This indicates that the latent neural components 
provide better correlates of reward predictors relative to individual 
neurons or the average activity of groups of neurons that were clus-
tered together based on their task-relevant activity. Furthermore, the 
latent neural components were uncontaminated by movement-related 
confounds (Extended Data Fig. 7).

Predicting reward, choice and the next waiting time
Since the animal cannot know the true hidden reward dynamics, its 
choices can only be driven by its subjective beliefs about these variables, 
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rather than the objective truth from the experiment. For instance, if the 
monkey overestimates reward probability (perhaps due to misjudging 
waiting time or scheduled reward rate), he is more likely to switch boxes 
after an unrewarded push. We predicted switching based on neuronal 
components corresponding to task variables, interpreting them as 
current estimates of the animal’s subjective beliefs. We decoded the 
pre-press neural activity by projecting the population activity onto 
the subspace formed by the first ten canonical components for the 
reward predictors. This projection accounts for latent representation 
of reward predictors that could potentially influence the choices or the 
next waiting time or predict the eventual reward outcome.

We attempted to predict rewards, choices and the next waiting 
times from three distinct types of predictors: (1) the pre-press reward 
predictors (canonical components in the reward predictors’ space), 
(2) neural representations of the reward predictors (canonical compo-
nents in the neural space) and (3) the entire simultaneously recorded 
neural population (Fig. 5a). For a fair comparison between the compo-
nents and the entire neural population, we did not sparsify the weights 
of task variables in canonical components. To predict the reward, we 
trained binomial logistic regressions on the same data used to find the 
canonical components, then tested on the held-out data. To assess the 
prediction performance, we calculated the AUC showing the discrimi-
nability of the predictors’ output for the rewarded presses from the 
unrewarded presses. The same method was used for the choice to stay 

or switch. To predict the next waiting time, we used generalized linear 
models instead of logistic regression and evaluated the performance 
by calculating the Pearson correlation coefficient between the real and 
the predicted values. All predictors were trained and tested for each 
200 ms time bin, starting 3 s before each press and ending 1 s after.

In the example session shown in Fig. 5b, left, the prediction of the 
reward outcomes using the task components improved as the analysis 
windows approached the time of the press. The reward outcomes are 
determined by the actual experimental task variables, and indeed we 
confirmed that the true pre-press task components (the projection of 
the canonical component in the space of reward predictors) predict 
actual rewards better than either their neural representations (the pro-
jection of the canonical components on the neural population space) or 
the entire neural population (Fig. 5b, right, and for monkey-separated 
results, see Extended Data Fig. 8).

In contrast, the choices and the next waiting time should follow the 
animal’s subjective estimation of the reward dynamic variables. Fasci-
natingly, the neural activity before a press predicted the subsequent 
choice (Fig. 5c) and waiting time (Fig. 5d). As the animal’s movement 
to switch to the other box or press the button again occurred after the 
current press (Extended Data Fig. 9), the prediction of either of these 
actions by the neural components precedes the execution of the pre-
dicted actions. Moreover, the head, arm and eye movements within 
the pre-press time window were not significantly different between 
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presses after which the animal stayed and the presses after which the 
animal switched to the other box (Extended Data Fig. 5c; P > 0.12 for 
all the comparisons, Wilcoxon rank-sum test). Therefore, we provide 
further evidence that the animals construct an expectation of reward 
before a press, based on their subjective understanding of the temporal 
structure of the task. Subsequently, animals decide when and where 
to press next based on the expected reward and the actually observed 
reward. Interestingly, the ten-dimensional neural representation of 
the pre-press task components predicted the choice and the next wait-
ing time as well as the entire neural population (Fig. 5c,d), indicating 
that these few canonical neural components successfully capture the 
relevant signals within the larger neural population space.

It might seem obvious that neural features should be better pre-
dictors of when and where to press than experimental variables, after 
all, the animal’s brain is making its choice and not the experimental 
equipment. However, it is not evident a priori that the relevant neural 
representations would be found within our recorded dlPFC popula-
tion, nor whether we record enough neurons to capture enough of the 
animal’s choice-relevant information. Furthermore, even if the dlPFC 
does contain the choice-relevant signals, it is not obvious that the 
neural components for our specific hypothesized reward predictors 
would be the right ones to predict the choices. It is thus noteworthy 
that these neurally decoded reward predictors predict choices sig-
nificantly better than the task variables from which they are derived, 
and equally well as the full neural population. Evidently, our analysis 
identifies a neural subspace containing correlates of latent variables 
that are relevant for subsequent choices. This subspace also tends to 
avoid neural dimensions that contain choice-irrelevant variability, 
since if present, these variations could contribute to overfitting and 
would only hinder our ability to predict choice. We conclude that we 
are capturing neural correlates of the animals’ subjective beliefs about 
the latent reward dynamics that inform their choices.

Discussion
We used a trial-free, unrestrained-animal approach to demonstrate 
that freely moving monkeys base their foraging strategy on an inter-
nal prediction of reward. This prediction is not based solely on the 
recent history of reward but relies on an internal estimation of the 
time they have been waiting since the last time they made a choice, 
which determines the probability of reward availability. Indeed, we 
found that neural populations in the prefrontal cortex contain informa-
tion about reward predictors. Complementary to previous research in 
restrained animals8,13, we revealed that neural signals not only encode 
reward information, but also significantly predict animal’s choices 
after each press during foraging. These findings challenge and extend 
long-standing theories of reward-seeking behavior9 that suggest that 
animals follow the choice with the maximum recent rate of reward, with-
out constructing a reward model to predict future behavior, according 
to the matching law9.

We argue that matching, while ubiquitous, does not entail a single 
computational strategy. For our foraging task, matching behavior is 
consistent with substantially different strategies. One strategy can 
be simulated using an agent that switches to the other box after the 
number of unrewarded presses exceeds a noisy threshold (Extended 
Data Fig. 10). This strategy corresponds to a basic ‘win-stay/lose-switch’ 
rule. We implemented this strategy by sampling the threshold from 
a Gaussian distribution with the same mean and variance as the loss 
count distribution at times when the animal switches sides. Although 
this agent is blind to both the average reward rate and the probability of 
the next reward, it still follows the generalized matching law (Extended 
Data Fig. 10). The slight undermatching that we observed resembles 
the behavior of various species in previous studies7,9.

We examined a more complex strategy that tracks reward prob-
ability and uses foraging theory to make choices by involving three vari-
ables: (1) the time since the preceding press and (2) the variable-interval 

schedule—which together determine the probability of reward—and (3) 
the relative cost of switching locations, which affects the threshold for 
when to switch. We simulated an agent that follows such a strategy by 
making choices based on the correct probability of reward availability 
on both boxes. The agent switches to the other side when the probabil-
ity of reward availability on the other box exceeds that of the current 
box by a fixed switching cost, and otherwise waits for the probability 
of reward availability to increase everywhere (Extended Data Fig. 10), 
in accordance with the marginal value theorem of foraging theory1. 
Unlike the first agent, this agent has complete information about the 
task. Nonetheless, we again observed nearly matching behavior, now 
with slight overmatching (Extended Data Fig. 10). These two simula-
tions show that the generalized matching law may arise when following 
a strategy that is either blind to timing or fully informed. This implies 
that matching behavior is not, by itself, informative about the under-
lying strategy or animals’ ability to grasp the hidden rule of the task.

Surprisingly, we found that the targeted representation within the 
high-dimensional space of neural population activity predicts choice 
better than the behavioral dynamics and as well as the entire population 
of recorded neural activity. This is an important confirmation of how 
targeted dimensionality reduction can reveal neural computations bet-
ter than behavior or unprocessed neural activity. This type of analysis 
is essential in natural experiments where task variables are correlated.

One limitation of our findings is the extent to which our results 
can be generalized across other types of reward dynamics. The reward 
dynamics in our task are stochastic and time based, and they resemble 
the repletion of food resources found in nature. Follow-up studies 
are needed to determine whether our findings apply to other reward 
schemes, such as non-Markovian, more clock-like dynamics or those 
based on press rate39, whereby the reward becomes available after a 
variable number of presses rather than a variable time interval.

By allowing animals to move freely, our study represents a nec-
essary move toward studying neural correlates of natural cognition 
in a free-roaming setting. This paradigm shift has been suggested 
decades ago40, but is only feasible now due to advances in low-power, 
high-throughput electrophysiological devices and large-scale comput-
ing41. Freely moving experimental paradigms probably increase the 
engagement of natural decision-making processes in the animal’s brain, 
and possibly reduce the distortions in population dynamics that may be 
associated with unnatural head-fixed tasks. The free-roaming setting 
also enabled us to implement a natural switching cost between two 
reward options by simply allowing the monkey to walk between them. 
This is commonly implemented for restrained animals as a timeout 
period immediately after switching decisions. The subjective value 
and its neural representation potentially differ for a foraging task in 
which the animal explores by performing an effortful action such as 
relocation, compared twith a task in which explorative actions do not 
cost effort, but instead cost time. Overall, a shift toward more natural 
behavior will be inevitable for understanding neural mechanisms of 
cognition41–46.
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Methods
All experiments were performed under protocols approved by the 
University of Texas at Houston Animal Care and Use Committee and 
the Institutional Animal Care and Use Committee for the University of 
Texas Health Science Center at Houston. Two adult male rhesus mon-
keys (Macaca mulatta; monkey G: 15 kg, 9 years old; monkey T: 12 kg, 
9 years old) were used in the experiments. An additional adult male 
rhesus monkey (Macaca mulatta; monkey M, 10 kg, 11 years old) was 
used for the control experiment, tracking the eye and limb movements.

Behavioral training and testing
The experimental setup was a custom-made cage (120 cm × 60 cm ×  
90 cm) that was placed in a dedicated room, free from distractions. 
After habituating each monkey for at least 4 days per week for over 
4 weeks, we trained animals to press the button on each box to receive 
a reward. Over the course of 4–6 months, we gradually increased the 
mean time in the VI schedule to let the monkeys grasp the concept 
of probabilistic reward delivery. Once we started using VI 10 (cor-
responding to an average reward rate of <0.1 rewards s−1), monkeys 
started to spontaneously switch back and forth between the two boxes. 
If the monkeys disengaged from the task or showed signs of stress, 
we decreased the VI schedule (increased the reward rate) and kept it 
constant for 1 or 2 days. If the monkey showed a strong bias toward 
one reward source, we used unbalanced schedules to encourage the 
monkeys to explore the less preferred box.

After training, we tested monkeys using a range of balanced and 
unbalanced reward schedules. For balanced schedules we used VI 
reward scheduling with the average interreward interval of 20 s or 
30 s, that is, VI 20 or VI 30, on both boxes. For unbalanced schedules, 
we used VI 20 versus VI 40, VI 15 versus VI 25, or VI 10 versus VI30. The 
unbalanced schedules may reverse once, twice or three times during a  
session, for example, after a reversal the box with VI 20 becomes VI 40  
and the box with VI 40 becomes VI 20. Each session lasts until the 
monkey receives 100 or 200 rewards, ranging from 1 to 7 h including 
a 1 h break after 100 rewards in sessions with 200 rewards. If monkeys 
were not engaged with the task for more than 2 min, we sometimes 
interrupted them to encourage them to engage with the task. For the 
analysis, we exclude all presses that occurred for more than 60 s. For 
the press-locked analysis, we also excluded presses that were made less 
than 2 s after the previous press to avoid mixing in the press-locked 
neural activity.

Tracking whole-body, limb and eye movements
To determine the physical location and locomotion of the monkey, 
an overhead wide-angle camera was permanently installed in the 
experimental cage and the video was recorded at an average rate of 
six frames per second. Each frame was postprocessed in six steps 
using custom-made MATLAB code. First, the background image was 
extracted by averaging all frames in the same experimental session, 
then it was subtracted from each frame. The background-subtracted 
image was then passed through a manually determined threshold to 
identify the dark areas. The same image frame was also processed 
using standard edge detection algorithms. The thresholded and edge 
detected images were then multiplied together, and the result was 
convolved with a spatial filter, which was a circle with the estimated 
angular diameter of the monkey. The peak of this filtered image was 
marked as the location of the monkey. We used this heuristic because 
the illumination of the experimental room and the configuration of 
objects was constant. We expect novel techniques for motion and 
posture detection using deep neural network47,48 to yield similar results. 
Locomotion (speed) was calculated as the magnitude of the vector 
difference between monkey locations in consecutive frames divided 
by their time difference.

To compute the head, arm and whole-body movements of monkey 
M, we trained DeepLabCut (version 2.0) with 200 frames annotated 

with the center of the head, snout, each ear, shoulders, elbows and 
paws, then tracked these body markers in videos recorded in three ses-
sions. These frames came from the same overhead camera described 
above but were recorded at 30 Hz. ‘Head movements’ included labels 
from the center of the head, snout and each ear. ‘Limb or arm’ move-
ment was computed from shoulder, elbow and paw labels. ‘Torso or 
whole-body’ movement was calculated from the animal’s upper and mid 
back labels. To calculate the average speed of each label during frames 
of interest, we calculated the Euclidean distance between the label 
coordinates across consecutive frames divided by the time between 
frames. Subsequently, we quantified the overall movement of each 
body area (head, arm or torso) by computing the mean speed, and 
averaging the speeds of the corresponding body part labels that were 
recorded at 30 Hz.

To track the eyes, we used a commercially available eye tracker 
(ISCAN). To train animals to wear the device without damaging it, its 
three-dimensional (3D) geometry was modeled (Sketchup Pro), and 
dummies were 3D printed and fitted with eye mirrors. To properly posi-
tion the eye tracker and dummies relative to the eye, custom adapters 
were designed and 3D printed to attach directly to the animal’s head 
post and serve as an anchor point for the eye tracker. These adapters 
were designed to interface with the head post, without touching the ani-
mal directly, to minimize discomfort and reduce the likelihood of the 
device being tampered with. These dummy eye trackers were worn by 
animals for several mock recording sessions to adjust them to wearing 
the device. Once the animals grew accustomed to wearing the dummy, 
the real device was used. We used two-dimensional coordinates of the 
pupil to compute eye velocity from Euclidean distance of these values 
across consecutive eye camera frames.

Determining reward availability and calculating probability of 
reward availability
In each time bin of size dt = 10 ms, reward became available at a given 
box if a sample from a Bernoulli distribution was 1. The probability 
of this event was dt/VI. When the reward became available, it stayed 
available until collected by the animal. This makes the probability of 
reward availability a function of the scheduled VI as well as the time 
since the preceding press:

Prew = 1 − (1 − dt/VI)t/dt,

where t is the time since the preceding press (Extended Data Fig. 1).

Chronic implantation of the Utah array
A titanium head post (Christ Instruments) was implanted, followed by a 
recovery period (>6 weeks). After acclimatization with the experimen-
tal setup, each animal was surgically implanted with a 96-channel Utah 
array (BlackRock Microsystems) in the dlPFC (area 46; anterior of the 
Arcuate sulcus and dorsal of the principal sulcus (Extended Data Fig. 1)). 
The stereotaxic location of dlPFC was determined using magnetic 
resonance images and brain atlases before the surgical procedure. 
The array was implanted using the pneumatic inserter (Blackrock 
Microsystems). The pedestal was implanted on the caudal skull using 
either bone cement or bone screws and dental acrylic. Two reference 
wires were passed through the craniotomy under and above the dura 
mater. After the implant, the electrical contacts on the pedestal were 
protected always using a plastic cap except during the experiment. 
Following array implantation, animals had at least a 2 week recovery 
period before we recorded from the array.

Recording and preprocessing of neural activity
To record the activity of neurons while minimizing the interference 
with the behavioral task, we used a lightweight, battery-powered device 
(Cereplex-W, Blackrock Microsystems) that communicates wirelessly 
with a central amplifier and digital processor (Cerebus neural signal 
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processor, Blackrock Microsystems). First, the monkey was head fixed, 
the protective cap of the array’s pedestal was removed, the contacts 
were cleaned using alcohol and the wireless transmitter was screwed 
to the pedestal. The neural activity was recorded in the head fixed posi-
tion for 10 min to ensure the quality of the signal before releasing the 
monkey in the experimental cage. The cage was surrounded by eight 
antennas. In the recorded signal, spikes were detected online (Cerebus 
neural signal processor, Blackrock Microsystems) using a manually 
selected upper threshold on the amplitude of the recorded signal in 
each channel or an upper and a lower threshold that were ±6.25 times 
the standard deviation of the raw signal. To minimize the recording 
noise, we optimized the electrical grounding by keeping the connection 
of the pedestal to the bone clean and tight. The on-site digitization in 
the wireless device also showed lower noise than common wired head 
stages. The remaining noise from the movements and muscle activities 
of the monkeys was removed offline using the automatic algorithms in 
offline sorting (Plexon Inc.). Briefly, this was done by removing the outli-
ers (outlier threshold, 4–5 standard deviations) in a 3D space that was 
formed by the first three principal components of the spike waveforms. 
Then, the principal components were used to sort single units using 
the expectation-maximization algorithm (offline sorter version 4.0). 
Each single and multi-unit signal was evaluated using several criteria: 
consistent spike waveforms, modulation of activity with 1 s of the but-
ton pushes and exponentially decaying inter-spike interval histogram 
with no inter-spike interval shorter than the refractory period (1 ms). 
The analyses used all spiking units with consistent waveform shapes 
(single units) as well as spiking units with mixed waveform shapes but 
clear pre- or post-press modulation of firing rates (multi-units).

Removing task-irrelevant components from neural activity
For each neuron k, we remove movement-related temporal compo-
nents of the press rkt, by subtracting its projection onto the subspace 
spanned by the task-irrelevant variables: r⟂k = rk −Πrk, where Π is the 
projection matrix Π = L(LL⊤)−1L⊤ and L is the T × 1 vector describing the 
time series of locomotion, calculated as the magnitude of the changes 
in the two-dimensional location.

Regression-based and binary decoder analysis
To decode a binary variable, such as the reward or the choice to stay or 
switch, we used logistic regression. To evaluate this model, we used the 
AUC to determine the separability of the probability distributions of the 
held-out samples belonging to either of the classes (reward versus no 
reward and stay versus switch). To decode continuous-value variables 
such as waiting time or the reward ratio, we used a linear regression 
model49. To evaluate this model, we calculated the Pearson correlation 
coefficient between the measured and predicted values. To train and 
cross-validate these decoders, we divided the presses in each session 
to 4–18 blocks, holding out one block at a time for testing and using 
the rest of the blocks for training. To divide the presses into blocks, we 
found the gaps in press times that were larger than 30 s, then placed all 
presses between consecutive gaps in one block.

Selecting task-relevant variables and useful basis functions for 
continuous-time analyses
Our continuous-time analyses used a set of basis functions applied to 
the time series of experimental task variables. To use event-based vari-
ables in continuous-time predictions, we filtered the variables with 
different boxcar-shaped delay filters. We used different numbers of 
these pulse basis functions for different variables: seven basis functions 
for the pre-press time interval, post-press time and post-choice; and 
ten basis functions for the post-reward time to include the entire range 
of reward collection time, starting with the food release sound cue at 
the press time and ending when the food pellet was consumed (span-
ning 2 s; Fig. 4a). For task variables xt that were already defined continu-
ously over time, we applied a set of nonlinear power functions, xat , with 

powers a ∈ { 1
2
, 1, 2, 3, 5}. This 51-dimensional feature vector was used to 

predict components of neural activity.

CCA
Canonical components were calculated using singular value decompo-
sition of the cross-covariance matrix between the task variables and the 
neural activity, specifically the pre-press firing rates of simultaneously 
recorded neurons. We regularized this linear model using an ℓ1 penalty37 
to calculate canonical components. The cross-validation procedure 
was the same as for the decoders.

Statistical analysis
We used the two-sided Wilcoxon signed-rank test except where indi-
cated. We chose this test rather than parametric tests, such as the t-test, 
for its greater statistical power (lower type I and type II errors) when 
data are not normally distributed. When multiple groups of data were 
tested, we used the false discovery rate multiple comparisons50 cor-
rection whose implementation is a standard function in MATLAB. We 
used WRFDR abbreviation to indicate using two-sided signed-rank test 
with false discovery rate multiple comparison correction. No statistical 
methods were used to predetermine sample sizes. However, the size 
of our dataset and the number of the experimental sessions are similar 
to those reported previously27. Data collection and analysis were not 
performed blind to the conditions of the experiments.

Use of generative artificial intelligence
While preparing the last version of this work, the authors used chatGTP 
to shorten parts of the text to meet the journal’s word count limit. After 
using this tool, the authors reviewed and edited the content as needed. 
The authors take full responsibility for the content of the publication.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.
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Extended Data Fig. 1 | The MEA was implanted in the dorsolateral prefrontal cortex. The location of a 96-channel Utah array in dlPFC (area 46) on the left 
hemisphere of monkey G. The arcuate sulcus (AS) and principal sulcus (PS) are marked.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | A comprehensive set of behavioral and experimental 
variables was examined before selecting the reward predictors. (a) The 
probability of reward availability as a function of the scheduled reward rate 
and the time since the preceding response on the same box. (b) The Pearson 
correlation coefficient between the scheduled and the (observable) reward ratios 
is calculated using a recent sequence of reward outcomes defined in the main 
text. The recency was imposed by choosing the standard deviation of a causal 
half-Gaussian filter (x-axis). For each monkey, the reward ratio was calculated 
using the standard deviation for achieving the maximum correlation with the 
scheduled reward ratio. (c-e) Other observable/controllable variables that the 
animal might have used to predict rewards. (c) Similar to Fig. 2a, but for the 
inverse of the time since the last reward, the inverse of the number of unrewarded 
presses (losses), and the reward per press (the binary sequence of rewarded 
(1) and unrewarded (0) presses, filtered using the same causal half-Gaussian 

filter that was used for calculation of the reward ratio). (d) Correlation matrix 
between observable and unobservable reward predictors. Based on this matrix, 
the waiting time was chosen as one reward predictor because it was maximally 
correlated with the hidden probability of reward availability, and the reward ratio 
was selected as another reward predictor because it was maximally correlated 
with the scheduled reward rate and minimally correlated with the waiting time. 
Other predictors were omitted because they were correlated with either of these 
two variables (|r | >0.21). (e) Change of the next action (n = 8862) as a function 
of each reward predictor candidate that was discretized into three bins with an 
equal number of presses in each bin. The x-axis shows the center of the bins. The 
y-axis shows the excess percentage of switches or waiting time when unrewarded 
compared to when rewarded. Two chosen reward predictors, waiting time 
and reward ratio, linearly predict the change of the following action. Data are 
presented as mean values +/- SEM.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Reward predictors, together with the reward  
outcome, determine the choices and the next waiting time. Same as Fig. 2,  
but separated for monkey G and T. (a,d) Correlation matrices of the task 
variables. (b,e) Predictability of the next reward from experimental and 
behavioral variables. The rewarded fraction of presses was calculated in each 
50 press bin, then the Pearson correlation coefficient was calculated across 
bins between the average of the experimental variable and the rewarded 

fraction of presses. (c,f ) Left: histograms of the next waiting time for rewarded 
and unrewarded presses that were made after a short, medium or long wait, 
determined by equal intervals in the percentile of the presses. Inset: an increase 
in the probability of switching when not rewarded after a short, medium or long 
wait. The probability of switching after being rewarded was less than 2% and 
therefore excluded from this analysis. Right: the same as left, but for reward ratio 
instead of waiting time.
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Extended Data Fig. 4 | The neural activities were orthogonalized to monkeys’ 
locomotion before Figs. 3–5 analyses. (a) Monkey locomotion in a sample 
session for the press-locked time bins (< 3 s before or > 1 s after a press). Each 
dot represents the animal’s position in space, sampled every 200 ms. (b) Left: 
Population-averaged firing rates for each time bin in (a). Top and bottom show 

firing rates before and after subtracting the vector projection of locomotion. 
Right: Matrix of correlation coefficients between pre-press firing rate of each 
neuron and between the monkey’s locations Loc X and Loc Y and locomotion 
Loc D. For clarity, only an arbitrary subset of neurons is shown. (c) Histogram of 
correlation coefficients computed as in (b), but for all recorded neurons.
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Extended Data Fig. 5 | Effect of eye and limb movements on the neural 
activities and choices. (a) Histograms of correlation coefficients between the 
limb and eye movements and individual neuron activities. Bars are shaded for 
statistically significant correlations, and the inset indicates the percentage of 
significantly correlated neurons. A deep artificial neural network was trained 
using DeepLabCut (Mathis et al., 2018) to localize monkey M’s shoulder, elbow, 
and paw of the forelimb contralateral to the recording site (right limb) in each 
overhead video frame of the foraging animal. We could compute average limb 
movement in any desired time interval using those three limb markers. We 
considered time intervals around button presses (–2 s, +2 s) and computed 
the average limb speed and firing rate of all the dlPFC neurons of monkey M in 
non-overlapping time-bins of 200 ms width. The pupil diameter and the eye 
velocity were computed with the same method as in ref. 26 (b) For comparison, 
the correlation coefficient of the reward predictors with firing rates of dlPFC 

neurons for monkeys G, T, and M (c) Magnitude of movements of the head, arm, 
and eye are similar whether the animal chooses to stay (horizontal axes, arbitrary 
units; 5 sessions, 238–336 presses per session) or switch locations (vertical 
axes, arbitrary units; 5 sessions, 3–27 presses per session) around the time of a 
button press. Points depict mean movement magnitudes, and widths of shaded 
ellipses indicate standard errors of the means along each axis. The top row shows 
movements after presses, and the bottom row shows movements before presses. 
(d) Prediction of monkey M choices, cross-validated using 1000 sub-samples 
of presses (80% of presses used for training, 20% for testing). The prediction 
performance was calculated as the area under the curve of the output of logistic 
regression (as in Fig. 5c), except that the predictors were the task-irrelevant 
variables, eye, body, and head movements, and pupil diameter (left) or reward 
predictors (right). The mean (black line) and the Gaussian-smoothed distribution 
(gray shades) across 1000 sub-sampled test data are shown.
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Extended Data Fig. 6 | An encoding model for reconstructing the activity of 
individual neurons using the continuously evolving experimental variables. 
(a) A generalized linear model to reconstruct continuously evolving firing rates 
of individually recorded neurons. Rates are predicted from combinations of the 
task variables passed through a set of basis functions. The basis functions were 
pulse-shaped temporal delay filters for press, reward, and choice events. (The 
time of the reward and the choice events were assumed to match the time of the 
press after which the reward was delivered or the choice was made.) The basis 
functions for continuously evolving task variables (waiting time, reward ratio, 
and 2-dimensional location) were instantaneous power functions with powers of 
½, 1, 2, 3, and 5. Altogether, 51 predictors were made using these 6 task variables. 
The model was fit to the training data using a Gaussian likelihood function; the 
trained model was used to reconstruct the neural activity for held-out testing 
data. (b) The improvement in the performance of the model when either one or 
both reward predictors were used alongside the other task variables in (a). 
Improvement was calculated as the percentage increase in the correlation 

between the recorded and reconstructed activities. While the waiting time 
improved the model performance for the entire population by 5% (p≪10−3),  
this improvement was insignificant for the reward ratio (p = 1) at the level of 
individually recorded neurons. (c) The reconstructed and recorded firing rates 
averaged across 6 neurons in a sample session. The neurons were selected from 
60 simultaneously recorded neurons in this session by clustering them using the 
correlation matrix of their reconstructed activities (inset), then choosing all 
neurons in a sample cluster (bracket in the inset) to show here. (d) The correlation 
coefficient between each reward predictor and the reconstructed neural activity 
averaged across neurons in the same cluster vs. the number of neurons in the 
cluster. The vertical line shows a cluster size of 5, which was the lower bound of 
the cluster size for the clusters that were included in Fig. 4c. Across sessions, the 
average firing rates of clusters of ≥ 5 neurons were positively correlated with the 
waiting time (p = 0.004, top) and negatively correlated with the reward ratio 
(p = 0.004, bottom).
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Extended Data Fig. 7 | Extending the canonical correlation analysis from 
Fig. 4 to include eye and limb movements of monkey M. (a) The weight of the 
contribution of each task variable in the 10 first canonical components, sorted 
in descending order of the components’ correlations between the task and 
neural spaces. The indices of the components representing waiting time and 
reward ratio are color coded. b) Left: Pearson correlation coefficient between 

component 7, the neural component, best associated with the waiting time, 
and the true waiting time, as well as between this component and any of the 
task-irrelevant variables. Right: same as left but for neural component 1 instead of 
component 7, and reward ratio instead of waiting time. The mean (lines) and the 
Gaussian-smoothed distribution (shades), pooled across held-out chunks of all 
sessions are shown.
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Extended Data Fig. 8 | Prediction of rewards, choice, or next waiting time from task components, neural components, and the entire simultaneously recorded 
population. same as Fig. 5b–d, but separated for monkeys G and T.
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Extended Data Fig. 9 | Detecting the time of the switches using the 
locomotion data. (a) The magnitude of locomotion in each 200 ms time bin, 
separated for switch and stay trials. Trial averages are shown as solid yellow lines. 

The white dashed line shows when the average locomotion speed in switch trials 
is greater than 3 SD of the magnitude of locomotion in stay trials. (b) Average 
switch time in each session.
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Extended Data Fig. 10 | Analysis of the matching behavior for monkeys G 
and T and two simulated agents. (a) Illustration of foraging strategies for two 
simulated agents. The ‘loss counting’ agent switches to the other box when the 
loss count exceeds a threshold drawn from a Gaussian distribution (λ = 2.66, 
σ = 1.9). The ‘probability estimator’ agent switches to the other box when the 
probability of reward availability on the other box exceeds the probability of 
reward availability in the current box by a fixed switching cost1. The inter-press 
times were drawn from a random geometric distribution for both agents. The 
parameters of these strategies, namely the loss count distribution, the inter-press 
time distribution, and the switching time were estimated from the behavior of 
the monkeys. Each agent was simulated for 100 rewards for each set of reward 

schedules for box1 and box2. The variable interval reward schedules spanned 
the range between VI-5 and VI-50 in steps of 1 s and were drawn independently 
for each box. (b) Matching behavior of two monkeys and two simulated agents: 
the fraction of behavioral presses at box 1 is approximately proportional to the 
fraction of rewards at box 1 (26 sets of schedules for monkey G and 59 sets of 
schedules for monkey T are shown). Curves show spline fits for the matching 
behavior for the simulated agents. c) Dynamic matching for a sample session 
of Monkey T with 3 sets of reward schedules: VI15-VI25, VI25-VI15, and VI15-VI25 
again. We compared two simulated agents of panel a. The reward and press rates 
were calculated locally using a causal half-Gaussian filter8.
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For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection The neural data was collected using the the 'central' software (BlackRock Microsystems). The behavioral data and video data was collected 

using custom code in Matlab 2015a. The eye position and pupil size data was collected using the hardware and software provided by ISCAN 

Inc. 

Data analysis The neural data was pre-processed using offline sorter v4 (Plexon inc.). The behavioral, neural and part of the video material was processed 

using costum code in Matlab 2015a-2020b. The rest of the video material was processed using deepLabCut (open source; version 2.0).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The pre-processed data used for this study is available at https://doi.org/10.6084/m9.figshare.24762996.v1. The raw data will be available upon request. 
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Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender not applicable

Reporting on race, ethnicity, or 

other socially relevant 

groupings

not applicable

Population characteristics not applicable

Recruitment not applicable

Ethics oversight not applicable

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We conducted this study with two monkeys in order to achieve robustness for the behavioral and electrophysiological results despite possible 

differences in the behavioral strategies between monkeys (all results were consistent across animals). We limited the number of monkeys to 

two for the main results to meet the requirements of lab animal use regulations that requires minimizing the number of animals in each 

study. Choosing the sample size of two is typical in electrophisiological studies in monkeys. To provide additional data on eye position, 

movements and pupil size we used control data from a third monkey which was implanted in the same cortical area as part of another study.

Data exclusions For the continuous-time analysis, we exclude time bins that were > 60 s away from any press. For the press-locked analysis, we also excluded 

presses that were made less than 2 s after the previous press to avoid mixing in the press-locked neural activity.

Replication The experiments were repeated up to 20 times in each animal. The experimental equipment is commercially available and the custom made 

software and codes for reproduction of the analyses are available upon request.

Randomization Not applicable to this study. Two subjects were not categorized or randomly assigned. The same experiments were repeated in both animals.

Blinding Since no group allocation was done in this study, blinding was not required.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 

Research

Laboratory animals Two adult male rhesus monkeys (Macaca mulatta) were used for the main results. monkey G: 15 kg, 9 years old; monkey T: 12 kg, 9 

years old). An additional adult male rhesus monkey (Macaca mulatta; Monkey M, 10 kg, 11 years old) was used for the control 

analysis.

Wild animals We did not include wild animals.

Reporting on sex Due to the limited number of animals used for the main study (n=2), no reporting on sex or gender was possible.

Field-collected samples We did not include field collected samples.

Ethics oversight All experiments were performed under protocols approved by The University of Texas at Houston Animal Care and Use Committee 

(AWC) and the Institutional Animal Care and Use Committee (IACUC) for the University of Texas Health Science Center at Houston 

(UTHealth). 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 

gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 

number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 

the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 

was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 

plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 

off-target gene editing) were examined.

Plants
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